首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

A study was conducted to evaluate the use of P vectors to predict the amount of P required on a yearly basis to maintain a constant solution‐solid phase P relationship in an irrigated calcareous and a dryland acid soil. Irrigated potato‐spring barley and dryland spring pea spring‐barley crop rotations established at the two locations. Mono‐calcium phosphate (0–45–0) was applied annually at five levels, ranging from 0–4 times estimated crop removal. Phosphorus vectors were determined on soil samples by equilibration with standard P solutions. Yields tended to increase with added P on the calcareous soil; however, significant responses were not recorded at either location. Consequently, critical P vectors were not established. A constant solution‐solid phase P relationship was maintained by addition of P equal to that removed by the crop on the calcareous soil. A constant solution‐solid phase P relationship was not maintained on the acid soil.  相似文献   

2.
  【目的】  磷的形态影响着其施入土壤后的移动分布。研究滴灌施肥中不同水溶性磷肥在石灰性土壤中的分布特征及玉米对磷素的吸收和利用,为滴灌玉米生产中的磷肥选择提供理论依据。  【方法】  于2018—2020年在新疆石河子市实验站开展滴灌玉米田间试验,选用玉米品种‘郑单958’作为试验材料。试验共设磷酸脲(UP)、磷酸二氢钾(MKP)、聚磷酸铵(APP)、磷酸二铵(DAP)、磷酸一铵(MAP)、不施磷肥(CK) 6个处理,除CK不施磷肥外,其余处理灌溉量及氮磷钾投入量均相同。玉米开花期和成熟期,分别在滴头下、根系、宽行3个位点,在垂直方向0—10、10—20、20—40 cm处采集土样,测定pH、速效磷和全磷含量。采集玉米地上部植物样品,测定茎、叶、穗器官磷素含量。在完熟期测产,计算磷肥利用效率等指标。  【结果】  与DAP和CK处理相比,UP处理能显著降低0—40 cm土层土壤pH,开花期UP处理土壤pH较CK和DAP分别降低了0.20和0.32个单位,成熟期分别降低了0.24和0.31个单位,MAP、APP和MKP也不同程度地降低了滴头下0—10 cm土层土壤pH。UP处理土壤有效磷在0—40 cm土层的分布最均匀,APP处理10—20 cm土壤速效磷含量显著高于UP和MAP。玉米开花期APP、UP、MAP处理土壤速效磷含量较DAP分别增加了65.47%、44.18%和23.14%,成熟期分别增加了58.08%、40.13%和127.89%。APP处理的玉米穗、叶和总磷素积累量均最高,开花期较DAP分别显著增加了29.22%、43.97%和22.43%,成熟期较DAP分别增加了65.39%、26.63%和50.60%。APP、UP、MAP处理的玉米产量没有显著差异,较DAP分别增产了18.03%、11.64%和9.46%,磷肥利用率分别较DAP增加了29.62个百分点、13.65个百分点和9.93个百分点。APP处理的磷肥偏生产力和磷肥农学效率分别较DAP增加了18.03%和174.96%。相关分析表明,玉米产量和磷素积累量与0—20 cm土层的土壤有效磷含量正相关,与20—40 cm土层土壤速效磷含量负相关或相关性较弱。  【结论】  速效磷的分布与土壤pH的变化高度一致。酸性水溶性磷肥可不同程度地降低玉米根系周围土壤pH,磷酸脲的影响范围可达滴头周围0—40 cm土层,磷酸二氢钾、聚磷酸铵和磷酸一铵仅在滴头周围0—10 cm土层范围内有影响,而磷酸二铵对土壤pH无显著影响。滴施磷酸脲土壤中速效磷在0—40 cm土层中的分布较均匀,其在10—20 cm土层中的速效磷含量低于聚磷酸铵并高于其他磷肥处理。磷肥利用率与10—20 cm土层速效磷含量极显著相关。因此,滴施聚磷酸铵的玉米产量和磷肥利用率高于其它磷肥处理。综合3年试验结果,在新疆滴灌玉米生产中,水溶性磷肥中以聚磷酸铵最优,其次是磷酸脲和磷酸一铵等酸性磷肥,应减少磷酸二铵等碱性磷肥的施用。  相似文献   

3.
为阐明施磷对不同质地棉田土壤磷素有效性及磷肥利用率的影响,以盆栽试验为基础,在不同质地(粘土、壤土、砂土)上设计5个磷素水平(P0、P150、P300、P600、P1200)研究棉田磷素状况和棉花磷素积累及磷肥利用率。结果表明:不同质地棉田土壤有效磷含量在苗期和蕾期均随施磷量的增加而增加,苗期时粘土、壤土、砂土的土壤有效磷含量在P1200处理下与对照相比分别增加了80.94%、85.78%、94.41%,蕾期则分别增加了76.82%、85.10%、94.20%。苗期时,土壤全磷含量分别在粘土P600、壤土P1200、砂土P600处理下达到最大值;蕾期时粘土、壤土和砂土的全磷含量均在P1200处理达到最大值,土壤磷素活化系数在苗期时表现为粘土砂土壤土,蕾期磷素活化系数在粘土和砂土基本呈持续递增状态,最大值与对照(P0)相比分别增加了34.22%、85.71%。植物整株干物质积累在不同土壤质地表现为粘土砂土壤土。植物全磷含量则是壤土略低于粘土,砂土最低。棉花整株磷素积累量在不同土质上表现为粘土最高,壤土次之,砂土最低,且分别在P600、P300、P600处理时达到最大值。不同磷水平下,磷肥表观利用率在3种土壤质地上表现不同,粘土、壤土、砂土分别在P150、P300、P600时达到最大值,与P0相比分别提高了16.84%、29.19%、10.68%。同一磷水平下不同土壤质地磷素生理利用率表现为砂土壤土粘土。因此,在生产中应针对土壤质地合理施磷,粘土土质下棉田施磷量应控制在约150 kg/hm~2,壤土土质应控制在150~300 kg/hm~2,砂土土质施磷量总体应控制在300~600 kg/hm~2,才能促进土壤中磷的有效性和棉花磷素吸收,从而提高磷肥利用率。  相似文献   

4.
Accumulation of surplus phosphorus (P) in the soil and the resulting increased transport of P in land runoff contribute to freshwater eutrophication. The effects of increasing soil P (19–194 mg Olsen‐P (OP) kg−1) on the concentrations of particulate P (PP), and sorption properties (Qmax, k and EPCo) of suspended solids (SS) in overland flow from 15 unreplicated field plots established on a dispersive arable soil were measured over three monitoring periods under natural rainfall. Concentrations of PP in plot runoff increased linearly at a rate of 2.6 μg litre−1 per mg OP kg−1 of soil, but this rate was approximately 50% of the rate of increase in dissolved P (< 0.45 μm). Concentrations of SS in runoff were similar across all plots and contained a greater P sorption capacity (mean + 57%) than the soil because of enrichment with fine silt and clay (0.45–20 μm). As soil P increased, the P enrichment ratio of the SS declined exponentially, and the values of P saturation (Psat; 15–42%) and equilibrium P concentration (EPCo; 0.7–5.5 mg litre−1) in the SS fell within narrower ranges compared with the soils (6–74% and 0.1–10 mg litre−1, respectively). When OP was < 100 mg kg−1, Psat and EPCo values in the SS were smaller than those in the soil and vice‐versa, suggesting that eroding particles from soils with both average and high P fertility would release P on entering the local (Rosemaund) stream. Increasing soil OP from average to high P fertility increased the P content of the SS by approximately 10%, but had no significant (P > 0.05) effect on the Psat, or EPCo, of the SS. Management options to reduce soil P status as a means of reducing P losses in land runoff and minimizing eutrophication risk may therefore have more limited effect than is currently assumed in catchment management.  相似文献   

5.
Abstract

In an attempt to search for a cheaper source of phosphorus (P), both for direct application and industrial use, three P fertilizers were evaluated in incubation and greenhouse studies. Indigenous Sokoto rock phosphate (SRP) imported, Togo rock phosphate (TRP), and conventional single superphosphate (SSP) were applied on three soil types namely Oxisol, Ultisol, and Alfisol at rates ranging from 0–800 mg P kg‐1 soil. Evaluation of the P sources was conducted for 12 weeks in incubation study, and five weeks in the greenhouse using maize as test crop. Evaluation of direct application of SSP and SRP on an oxic paleudult was carried out in the field for three years. The results of incubation studies revealed in general, that P availability increased as fertilizer rates increased. The P availability was, however, greater when SSP was applied on the Alfisol than on the Oxisol and Ultisol. The rock phosphates on the other hand were more efficient on acid soils than on soils neutral in pH. Optimum P availability from the fertilizers was observed to occur predominantly between four and eight weeks of incubation. In the greenhouse study, SSP gave the highest cumulative P uptake and optimum rate of application was 200 mg P kg‐1 soil, while optimum rate for rock phosphate was 400 mg P kg‐1 soil. The agronomic effectiveness (EA) of the rock phosphates was about 40% relative to SSP on the Alfisol. The EA, however, for TRP and SRP was 120% and 160%, respectively, on the Oxisol, while on the Ultisol, SRP was equally effective as SSP and TRP had 65% effectiveness. The results of the field trial indicated that the SRP had 54%, 83%, and 107% agronomic effectiveness of SSP, respectively, in the first, second, and third year of cropping. Optimum rate for SSP and SRP application was considered to be 50 and 75 kg P2O5 ha‐1, respectively.  相似文献   

6.
通过田间试验,研究不同磷肥对滴灌棉田土壤有效磷及棉花产量和磷肥利用效率的影响。试验选取5种滴灌用磷肥:磷酸一铵(MAP)、聚磷酸铵(APP)以及大量元素水溶肥固体型(SF)、悬液型(LSF)、清液型(LCF),并以不施磷肥为对照(CK),共6个处理。测定土壤有效磷含量以及棉花生长、磷素吸收和产量。结果表明:在一个灌溉施肥周期内,施用清液型水溶肥(LCF)和聚磷酸铵(APP)较其它处理显著增加了土壤有效磷含量;在棉花各生育期,聚磷酸铵(APP)0~20 cm土层土壤有效磷含量较其它处理显著增加,清液型水溶肥(LCF)20~40 cm土层土壤有效磷含量最高,在盛铃期时较聚磷酸铵(APP)显著增加了21.41%;聚磷酸铵(APP)较磷酸一铵(MAP)显著促进了吐絮期棉花茎、叶的干物质及磷素积累量,而清液型水溶肥(LCF)干物质和磷素吸收在棉铃的分配比例最高,分别为64.89%、69.28%;清液型水溶肥(LCF)产量最高,聚磷酸铵(APP)次之,分别较磷酸一铵(MAP)提高了8.97%、2.87%;施用清液型水溶肥(LCF)较其它处理显著提高了棉花的磷肥偏生产力和磷肥农学效率,而聚磷酸铵(APP)的磷肥表观利用率最高。综上,施用聚磷酸铵(APP)和清液型水溶肥(LCF)能使土壤有效磷含量保持在较高水平,但清液型水溶肥有更强的磷素迁移能力。两种肥料(聚磷酸铵、清液型水溶肥)均能促进棉花干物质积累和磷素吸收,但聚磷酸铵的磷肥表观利用率最高,而清液型水溶肥则是增加了磷肥偏生产力和磷肥农学效率,增产效果最为显著。  相似文献   

7.
A solution culture study was conducted to compare the phosphorus (P) remobilization efficiency of four wheat cultivars under induced P deficiency. Wheat cultivars, i.e. Sarsabz, NIA-Sunder, NIA-Amber and NIA-Saarang were initially grown on adequate P nutrition for 30 days and then exposed to P-free nutrient solution for next 15 days to study P remobilization. Completely randomized design (CRD) with ten replicates per cultivar was employed. Cultivars varied for biomass production, P concentration, P uptake, and P utilization efficiency at both harvests. Overall, more than 75% of absorbed P was mobilized from older leaves to younger leaves as well as roots of all cultivars during P-omission period. However, cultivars could not produce significant variations (P < 0.05) in P remobilization, which implied that P remobilization was only a stress response to P deficiency in wheat cultivars and it could not be related to P utilization efficiency of these cultivars.  相似文献   

8.
施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性   总被引:16,自引:0,他引:16  
为了给玉米磷高效利用提供理论依据, 在低磷土壤(Olsen-P 4.9 mg·kg-1)上, 通过田间试验, 研究了施磷0(T0)、50 kg(P2O5)·hm-2(T1)、100 kg(P2O5)·hm-2(T2)、200 kg(P2O5)·hm-2(T3)、1 000 kg(P2O5)·hm-2(T4)对两个玉米品种"鲁单9002" (LD9002)、"先玉335"(XY335)的产量、磷素吸收利用及根际磷动态变化的影响。结果表明: 两玉米品种根际土、非根际土速效磷含量在不同生育时期都表现为T12O5)·hm-2的T3处理非根际土转化为根际土土壤磷的量最大, 同时玉米生物量、产量、磷转移量也达到最高, 而施磷1 000 kg(P2O5)·hm-2处理玉米生物量、产量与中磷水平相比没有显著增加, 但植株吸磷量较高。XY335的花后磷转移量小于LD9002。相关分析表明, LD9002根际土、非根际土速效磷含量与茎、叶吸磷量之间显著相关, 以播种后79 d与茎、叶磷浓度、吸磷量、生物量、产量之间的相关系数最高; 而XY335根际土、非根际土速效磷含量与茎、叶磷浓度之间显著相关, 在播种后47 d期间与茎、叶磷浓度、吸磷量、生物量、产量之间的相关性最好。因此, 在低磷土壤上, LD9002和XY335分别在播种后79 d和47 d时是植株对磷的敏感期, 可以通过测试根际土、非根际土速效磷含量来反映土壤的供磷状况; LD9002在79 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为54.95 mg·kg-1、32.99 mg·kg-1, XY335品种在47 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为51.24 mg·kg-1、35.35 mg·kg-1; 施磷量1 000 kg(P2O5)·hm-2处理两品种玉米产量、生物量、磷积累量与施磷量100~200 kg(P2O5)·hm-2处理没有显著差异。  相似文献   

9.
通过盆栽模拟试验,探讨不同施磷量对玉米 -大豆间作作物生长及磷吸收的影响,并分析根际红壤中各无机磷形态的变化。结果表明:与单作相比,玉米 -大豆间作显著提高了作物地上部生物量及磷素吸收量,并具有明显的产量优势。与常规施磷水平(P100)下的单作相比,玉米 -大豆间作条件下,磷肥减施 1/2(P50)并未降低作物籽粒产量与玉米的磷吸收量。间作种植显著降低了玉米、大豆根际红壤总无机磷含量,并且无机磷减少量主要以O-P、Fe-P和 Ca-P为主。玉米、大豆根际土壤Fe-P、Al-P、Ca-P与 O-P占土壤总无机磷含量的比例主要受磷水平的调控,而种植模式对玉米和大豆根际土壤中各无机磷形态的比例(除 Fe-P外)均没有影响。在本试验条件下,玉米 -大豆间作通过根系交互作用主要促进土壤中 Fe-P、Ca-P和 O-P的活化来增加玉米与大豆的磷吸收,并具有节约磷肥、维持作物产量和磷吸收的潜力。  相似文献   

10.
探究水肥一体化下磷肥种类和施用方式对棉花产量、磷素积累量、土壤磷素有效性和磷肥利用率的影响,以期为棉田优化磷肥施用方式提供理论依据和技术参考。田间试验于2021年在新疆昌吉州棉花主产区进行。试验设不施磷肥对照(CK)、基施重过磷酸钙(TSP)、基施磷酸一铵(MAP-B)、基施+滴施磷酸一铵(50%基施,25%+25%分别在蕾期和花铃前期)(MAP-D)、基施+滴施磷酸一铵(50%基施,25%+25%分别在蕾期和花铃前期)和聚谷氨酸(MAP-P)5个不同施肥处理,测定指标包括土壤有效磷、植株生物量、植株磷积累量和籽棉产量,并计算磷肥利用率。在棉花盛花期和盛铃期,磷肥滴施显著提高0~20 cm土层有效磷含量,0~5 cm土层尤为显著,MAP-P处理有效磷含量比CK处理分别提高136.27%和113.99%。TSP、MAP-B、MAP-D和MAP-P处理产量比CK处理分别提高17.65%、16.25%、19.37%和31.88%。棉花生育期内,磷肥滴施植株累积吸磷量高于基施,各处理植株累积吸磷量在盛铃期达最大,MAP-P处理植株累积吸磷量整体高于其余处理,在苗期、蕾期、盛花期和盛铃期比CK处理分别提高50.92%、55.38%、81.33%和84.69%。在等量施磷条件下,磷肥滴灌追施的磷肥利用率高于基施。MAP-P处理磷肥利用率、磷肥累积利用率、磷肥农学效率和磷肥偏生产力均高于其余处理,磷素表观平衡低于其余处理,磷肥利用率达33.94%,比TSP、MAP-B和MAP-D处理分别提高20.23%、25.28%和16.71%。水磷一体下,磷肥结合活化剂(聚谷氨酸)滴施显著提高土壤磷素有效性和棉花产量。MAP-P处理提高了棉花产量和磷肥利用率,减少了土壤磷素的盈余。  相似文献   

11.
为探究反硝化除磷-诱导结晶磷回收工艺中缺氧池污泥释磷、吸磷以及微生物特征,利用荧光原位杂交(fluorescence in situ hybridization,FISH)技术、电子扫描显微镜(scanning electron microscope,SEM)观察了微生物的数量、分布和形态;通过批次试验考察了污泥在厌氧/好氧和厌氧/缺氧2种模式下的释磷和吸磷特征。结果表明:该双污泥系统缺氧池中聚磷菌占总细菌比例的69.7%,明显高于单污泥系统中富集的聚磷菌比例,污泥中的微生物多呈杆状;厌氧/好氧、厌氧/缺氧模式下单位污泥浓度(mixed liquor suspended solids,MLSS)总吸磷量(以PO43--P计)分别为22.84、18.60 mg/g,反硝化聚磷菌(denitrifying polyphosphate-accumulating organisms,DPAO)占聚磷菌(polyphosphate-accumulating organisms,PAO)的比例为81.44%,表明在长期的厌氧/缺氧运行条件下可以富集到以硝酸盐为电子受体的反硝化聚磷菌,同时还存在着仅以氧气为电子受体的聚磷菌;通过pH值和氧化还原电位(oxidation reduction potential,ORP)的实时监测可以快速地了解污水生物处理系统中各类反应的进程,对调控工艺参数有着重要的意义。综上所述,为保证污水生物处理工艺的正常稳定运行,将微生物分析与常规的化学参数分析结合起来考察将是未来发展的必然趋势。  相似文献   

12.
Gross phosphorus (P) fluxes measured in isotopic dilution studies with 33P labeled soils include the biological processes of microbial P immobilization, remineralization of immobilized P and mineralization of non-microbial soil organic P. In this approach, isotopic dilution due to physicochemical processes is taken into account. Our objectives were to assess the effect of inorganic P availability on gross P mineralization and immobilization in soil under permanent grassland, and to relate these fluxes to soil respiration, phosphatase activity and substrate availability as assessed by an enzyme addition method. We used soils from an 18-year-old grassland fertilization experiment near Zurich, Switzerland, that were collected in two treatments which differed only in the amount of mineral P applied (0 and 17 kg P ha−1 yr−1 in NK and NPK, respectively). Water-extractable phosphate was low (0.1 and 0.4 mg P kg−1 soil in NK and NPK, while hexanol-labile (microbial) P was high (36 and 54 mg P kg−1 soil in NK and NPK). Extremely fast microbial P uptake under P-limited conditions in NK necessitated the use of a microbial inhibitor when determining isotopic dilution due to physicochemical processes. At the higher inorganic P availability in NPK, however, isotopic exchange parameters were similar in the presence and absence of a microbial inhibitor. Phosphatase activity was higher in NK than in NPK, while soil respiration, water-extractable organic P and its enzyme-labile fraction were not affected by P status. Together, the results showed that inorganic P availability primarily affected microbial P immobilization which was the main component of gross P fluxes in both treatments. Gross P mineralization rates (8.2 and 3.1 mg P kg−1 d−1 for NK and NPK) during the first week were higher than reported in other studies on arable and forest soils and at least equal to isotopically exchangeable P due to physicochemical processes, confirming the importance of microbial processes in grassland soils.  相似文献   

13.
Abstract

Hakea francisiana and H. laurina were grown in soilless media based on pine bark, to which had been added one of the following phosphorus (P) sources: crushed bone, rock phosphate, calcined rock phosphate, sewage sludge, or sludge compost. Available P was assessed through extraction with unbuffered 2 mM DTPA. Similar regression equations between shoot P content and P in 2 mM DTPA extracts of the media at potting were obtained for both total P in the extract (determined by inductively coupled plasma emission spectrometry) and PO4‐P. The difference between them was small compared with the variation caused by different rates of dissolution of P the various sources during the growing period. Extractants give only an approximate guide to plant P uptake when the medium contains sources that slowly dissolve during the growing period. Nevertheless, the data indicate that, irrespective of P source, the maximum P concentration in a 2 mM DTPA extract (1:1.5 v/v) of the medium that is tolerated by P‐sensitive plants is 3–4 mg/L. This is similar to the concentration found previously for superphosphate as the source of P.  相似文献   

14.
采用随机区组设计,以塔额盆地主栽甜菜品种 (Beta796)为试验材料开展大田试验。在氮、钾施用量相同的情况下,设置滴灌施磷(P2O5)0 kg·hm-2(P0)、120 kg·hm-2(P1)、180 kg hm-2(P2)和240 kg·hm-2(P4)4个处理,研究甜菜主要生育时期磷养分吸收、积累和分配规律,分析甜菜磷养分利用效率,以期为甜菜高产、优质、高效生产中磷肥管理提供理论依据。结果表明,滴灌施磷能增加甜菜干物质积累量,P1、P2和P3处理干物质积累量较P0处理分别增加16.6%、24.7%和27.9%,其中P2、P3处理间差异不显著。甜菜干物质积累Logistic方程显示施磷能显著提高甜菜干物质最大累积速率和平均积累速率,最高分别可达443.7和185.7 kg·hm-2·d-1。甜菜磷积累总量随施磷增加而增加,有利于提高生育后期甜菜磷积累量,尤其是甜菜地下部的磷积累量;收获期P3处理地下部磷积累量为74.25 kg·hm-2,较P0、P1和P2处理分别显著增加76.7%、24.8%和12.1%。施磷对收获期甜菜磷素在地上部、地下部分配无显著影响。试验结果表明滴灌施磷显著提高了甜菜产量,增加了甜菜块根的含糖量及产糖量。 P1、P2和P3处理块根产量比P0处理分别增加11.57%、18.58%和20.89%,甜菜蔗糖含量比P0处理分别增加1.18%、2.90%和3.37%。施磷对甜菜品质影响不大。施磷增加了磷肥的当季利用率,不同处理磷肥利用率可达31.54%~39.66%。P2处理能增加磷素农学效率,磷肥偏生产力则随着施磷量增加而减少。综合甜菜相对产糖量、经济效益及磷肥利用效率,滴灌施磷(P2O5)85.1~187.4 kg·hm-2,可以实现甜菜高产和磷肥高效利用的目的。  相似文献   

15.
Abstract

The effect of P on growth of ‘Bartlett’ pear (Pyrus communis L.) seedlings was evaluated on the P‐fixing, Parkdale soil (Vitrandepts) from Oregon, USA. The P treatment levels were 0.03, 0.04, 0.06, 0.09, 0.15, 0.25, and 0.40 mg P/L of soil solution, based on a P‐sorption isotherm. At age 145 days, the dry weight response to P was significant. Seedlings required 0.25 mg P/L for maximum growth. This corresponds to 723 mg P/kg soil based upon the P‐sorption isotherm. Standard P soil tests did not accurately predict seedling response to P. About one‐half of the soil P was in the chemisorbed fraction.  相似文献   

16.
为研究水溶性磷肥在石灰性土壤中的转化,采用室内土壤培养的方法,在土壤中分别添加过磷酸钙0、6.25、12.5、25、50和100 mg/kg干土(即P0、P6.25、P12.5、P25、P50和P100处理),保持土壤湿度为田间持水量的70%~80%,在25℃恒温培养箱中培养120 d。培养期间在第1、3、7、15、30、60和120 d连续采样,测定土壤Olsen-P、CaCl2-P和各无机磷组分的含量。结果表明,在石灰性土壤中施用过磷酸钙能显著增加土壤Olsen-P和CaCl2-P含量,在一定的培养时间内,过磷酸钙转化为土壤Olsen-P和CaCl2-P的比例不随施肥量的变化而变化。随着培养时间的延长,土壤有效磷含量逐渐下降,尤其是培养前期(前7 d)土壤有效磷含量显著下降,之后下降速率减缓。施入土壤中的过磷酸钙主要转化为Ca2-P和Ca8-P(两者之和约占90%),其次是Al-P和Fe-P(两者之和约占10%),在短期内O-P和Ca10-P相对较为稳定。随着培养时间延长,Ca2-P逐渐向Ca8-P转化,在培养的前30 d转化速率较快,之后速率减缓。随着磷肥施用量的增加,Ca2-P转化为Ca8-P所需的时间逐渐延长。Olsen-P和CaCl2-P含量均与土壤无机磷组分中的Ca2-P、Ca8-P和Al-P含量呈显著正相关,通过逐步回归分析表明,其中Ca2-P是土壤Olsen-P和CaCl2-P的主要来源。  相似文献   

17.
Abstract

Red soils are widespread in Southern China and other subtropical regions in the world. An improved management of phosphorus (P) is crucial for sustainable agriculture and environmental quality in red soil regions. Plant‐availability of P in red soils mainly depends on fertilization and biological cycling. Both laboratory analyses and greenhouse experiments were conducted to examine the relationships between plant P uptake, chemical index of P, and microbial biomass P in red soils with different fertility levels. Microbial biomass P ranged from 2.1 to 43 mg kg‐1 in the red soils and was significantly correlated with total P (r=0.84*), organic P (r=0.87*), or Bray I extractable P (r=0.94**). Extractable P plus organic carbon accounted for >85% of the variation in microbial biomass P in the red soils. The significant relationship between microbial biomass P and extractable P suggests that microbial biomass P has a great potential in predicting P‐supply ability in soil. Greenhouse experiments showed that there were close relationships between ryegrass dry matter yield, plant P uptake or tissue P concentration and microbial biomass P in the red soils. The corresponding correlation coefficients were 0.79*, 0.90*, and 0.91*, respectively. These results imply that microbial biomass P plays an important role in the availability of P to plants, and is a potential biological index of P availability in the red soils.  相似文献   

18.
It has been reported for many soils that maize (Zea mays L.) has a higher soil‐P critical level than soybean (Glycine max L.) and sunflower (Helianthus annuus L). The objective of this work was to compare the rhizosphere P depletion in these three species in order to investigate if they differ in their capacity to acquire soil P. Sequential P fractionation and pH were determined in rhizosphere and nonrhizosphere soil samples from field and greenhouse experiments. Neither sunflower (the species with highest rhizosphere acidification) nor soybean or maize showed a significant relationship between P depletion and rhizosphere pH. The labile P fraction and the NaOH‐Pi fraction had lower values in the rhizosphere than in the bulk soil in 38% and 77% of the studied cases, respectively. Sunflower and especially maize presented a more intense Pi depletion than soybean. The comparison between sunflower and maize revealed that neither of them took a clear advantage over the other in terms of P depletion. Rhizosphere Pi depletion was associated with the amount of P acquired by the plants. We conclude that the accessibility to different P pools does not explain the differences in soil‐P critical levels among the three species.  相似文献   

19.
The effect of phosphorus (P), copper (Cu), and zinc (Zn) addition on the P‐Cu and P‐Zn interaction in lettuce (Lactuca sativa L.) was analyzed following a factorial design. The experiment was conducted in a greenhouse. Two levels of P (62 and 224 ppm), three levels of Zn (0, 0.17, and 0.34 ppm), and three levels of Cu (0, 0.03, and 0.06 ppm) were applied in all combinations to lettuce grown in perlite. The influence of the different treatments on the leaf P concentration suggests that the P‐Cu interaction was positive, whereas P‐Zn was negative. An increase in root absorption and retention and a decrease in translocation to leaves were observed for Zn and Cu when the nutrient solution was supplied at a luxurious consumption level of P.  相似文献   

20.
中国太湖环境土壤磷测试与磷释放   总被引:3,自引:0,他引:3  
A microtiter plate assay (MPA) for soluble reactive phosphorus (SRP) was applied to samples in overlying water and pore water as well as in three forms of environmental soil test phosphorus (P) types: water soluble phosphorus (WSP), diluted calcium chloride extractable phosphorus (PCaCl2), and Olsen-P in the sediments of Taihu Lake, China, where potential P release in response to pH was analyzed. MPA for rapid P analysis was shown to be promising when applied on samples of natural water and sediment extracts. Concentrations of WSP and PCaCl2 in the sediments were much lower than those of Olsen-P. Olsen-P levels in the littoral sediments along the north coast of Meiliang Bay in Taihu Lake (80 to 140 mg kg^-1) were much higher than those in the mouth of the bay (less than 50 mg kg^-1). The risk of P release in the mouth area of Meiliang Bay was lower than that in the north littoral zone with a risk of sediment P release induced by pH increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号