首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cai G  Schneider RW 《Phytopathology》2005,95(3):257-261
ABSTRACT Nitrogen nonutilizing (Nit) mutants were used to assess vegetative compatibility of 58 isolates of Cercospora kikuchii, 55 of which were isolated from soybean plants in Louisiana. Two isolates were vegetatively self-incompatible. Of 56 self-compatible isolates, 16 were assigned to six multimember vegetative compatibility groups (VCGs), 01 to 06, with 2 or 3 isolates in each VCG. The other 40 isolates each belonged to a distinct VCG. All six multimember VCGs contained isolates from different soy bean cultivars, and three included isolates from different locations. Only one of six multimember VCGs included isolates both from soybean leaves and seed, while the other five included isolates from only leaves or seed. The likelihood of tissue specificity or preference was discussed. All isolates and tested Nit mutants produced cercosporin on potato dextrose agar under light. Significantly different amounts of cercosporin were produced among wild-type isolates, and two Nit mutants produced significantly more cercosporin than their wild-type counterparts. All isolates produced typical Cercospora leaf blight symptoms on soybean plants in greenhouse pathogenicity tests.  相似文献   

2.
ABSTRACT A collection 160 isolates of Cercospora kikuchii was made from South America and 245 from Japan. DNA fingerprint patterns were analyzed based on amplified fragment length polymorphism among the sample isolates, dividing the isolates into seven lineages (I to VII). Partial nucleotide sequence analyses of the beta-tubulin gene supported this division into seven lineages. Lineages I and III commonly existed in South America and Japan. In all, 136 of the 160 isolates from South America and 223 of the 245 isolates from Japan belonged to lineage I, indicating that lineage I was the major lineage in each area; 5 isolates from South America and 8 isolates from Japan belonged to lineage III. Lineages II (12 isolates) and IV (2 isolates) were specific to Japan and lineages V (3 isolates), VI (1 isolate), and VII (15 isolates) specifically existed in South America. These results suggest that the population genetic structure of C. kikuchii was different between South America and Japan, but the dominance of lineage I was common between the two areas.  相似文献   

3.
Cercospora leaf spot is a destructive fungal disease that has become a threat to the coffee industry in Brazil. Nevertheless, little is known about populations of its causal agent, Cercospora coffeicola. We evaluated the potential of using nitrogen-nonutilizing (nit) mutants and vegetative compatibility groups (VCGs) to characterize the genetic variability of the C. coffeicola population associated with coffee plantings in Minas Gerais state (MG), Brazil. A total of 90 monosporic isolates were obtained from samples collected according to a hierarchical sampling scheme: (i) state geographical regions (Sul, Mata, and Triangulo), and (ii) production systems (conventional and organic). Nit mutants were obtained and 28 VCGs were identified. The 10 largest VCGs included 72.31% of all isolates, whereas each of the remaining 18 VCGs included 1.54% of the isolates. Isolates of the largest VCGs were found in the three regions sampled. Based on the frequencies of VCGs at each sampled level, we estimated the Shannon diversity index, as well as its richness and evenness components. Genetic variability was high at all hierarchical levels, and a high number of VCGs was found in populations of C. coffeicola associated with both conventional and organic coffee plantings.  相似文献   

4.
Isolates of Colletotrichum gloeosporioides associated with anthracnose disease on coffee berries in Vietnam were characterized by morphological and molecular methods. Random amplified polymorphic DNA (RAPD) and microsatellite-primered PCR (MP-PCR) analyses were employed to investigate the genetic variation among 38 and 51 isolates of C. gloeosporioides , respectively. According to both methods, the isolates mainly grouped in accordance with geographical origins. Higher genetic variation ( H  = 0·312 and 0·335) in the northern population of C. gloeosporioides than in the southern population ( H  = 0·261 and 0·186), according to the RAPD and MP-PCR markers, respectively, was indicative of a difference between the northern and southern populations. Moderate gene differentiation ( G st = 0·1) between populations from the north and the south was found. However, there was no differentiation between locations within the northern or southern populations, indicating significant gene flow. A four-gamete test indicated a high level of recombination, particularly in the south. The geographic differences may be explained by different histories of coffee cultivation in different parts of Vietnam. The symptoms caused by the Vietnamese isolates on both hypocotyls and green berries were less severe than symptoms caused by the reference CBD (coffee berry disease; Colletotrichum kahawae ) isolates originating from Africa.  相似文献   

5.
ABSTRACT A total of 540 isolates of Pyricularia grisea from rice in the United States were examined for vegetative compatibility, MGR586 DNA fingerprint diversity, and mating type based on hybridization with the mat1-1 and mat1-2 sexual mating type alleles. The collections contained both archived and contemporary field isolates representative of the known MGR586 lineages and races that occur throughout the United States. Complementary nitrate nonutilizing (nit) or sulfate nonutilizing (sul) mutants were used to assess vegetative compatibility in P. grisea. There was a complete correspondence between vegetative compatibility groups (VCGs), MGR586 lineage, and mating type among 527 contemporary isolates (collected between 1991 and 1997) from Arkansas, Louisiana, Missouri, Mississippi, and Texas; all isolates in MGR586 lineages A, B, C, and D belonged to VCGs US-01, US-02, US-03, and US-04, respectively. In addition, all isolates tested in VCGs US-01 and US-04 had the mat1-1 mating type allele whereas those in VCGs US-02 and US-03 had the mat1-2 allele. The strict association of independent markers during this sample period was consistent with a strictly asexual mode of reproduction. However, examination of archived isolates collected in the 1970s and 1980s and contemporary isolates revealed an incongruent relationship between the independent markers. MGR586 C and E isolates were vegetatively compatible which indicated that multiple robust MGR586 delineated lineages could be nested within certain VCGs. Although isolates in lineages C and E were vegetatively compatible, they were of opposite mating type. Several hypotheses, including recombination, could account for the incongruence between the various markers. Among the eight MGR586 lineages (A through H) that occur in the United States, all isolates in lineages A, D, E, G, and H had the mat1-1 allele, whereas isolates in lineages B, C, and F had the mat1-2 allele. Nit mutants can be recovered relatively easy from P. grisea and should allow large numbers of individuals within a population to be assessed for vegetative compatibility. VCGs may prove to be an effective multilocus marker in P. grisea. Thus, VCGs should be a useful means for characterizing genetic structure in populations of the rice blast fungus worldwide, provide a useful genetic framework to assist in interpreting molecular population data, and may provide insight into potential sexual or asexual recombination events.  相似文献   

6.
Isolates ofF. oxysporum collected from symptomless carnation cuttings from Australian carnation growers properties, together with isolates from national collections, were screened for pathogenicity and grouped according to vegetative compatibility and random amplified polymorphic DNA (RAPD) patterns. The collection of 82 Australian isolates sorted into 23 different vegetative compatibility groups (VCGs). Of 69 isolates tested for pathogenicity, 24 were pathogenic to carnations, while the remaining 45 were non-pathogenic. All pathogenic isolates were within two VCGs, one of which was also compatible with an isolate obtained from an international culture collection, and which is known to represent VCG 0021 and race 2. Race status of the two pathogenic VCGs remains unknown. The RAPD assay revealed distinct DNA banding patterns which could distinguish pathogenic from non-pathogenic isolates as well as differentiate between isolates from the two pathogenic VCGs.  相似文献   

7.
Ma Z  Luo Y  Michailides TJ 《Phytopathology》2004,94(4):326-332
ABSTRACT Spatiotemporal changes in the population structure of Botryosphaeria dothidea, causal agent of panicle and shoot blight of pistachio, were analyzed by using microsatellite-primed polymerase chain reaction (MPPCR), partial sequences of the RNA polymerase II (RPB2) gene, and vegetative compatibility groups (VCGs). We examined 390 isolates, 378 recovered from pistachio in seven counties of California from 1990 to 2001 and 12 recovered from peach, apple, and sycamore in Georgia, North Carolina, South Carolina, Illinois, and Pennsylvania. Six microsatellite primers generated 116 polymorphic bands. Based on MP-PCR data, we observed very high (>98%) levels of genetic identity among populations of B. dothidea collected from the commercial pistachio orchards in California. The near identity of these populations was supported by VCGs and partial sequences of the RBP2 gene. These findings suggest that populations of B. dothidea from commercial pistachio orchards are spatially and temporally stable, at least in the past 5 years.  相似文献   

8.
Malformation is a destructive disease of mango, Mangifera indica . Its causal agent possesses the morphological features of Fusarium subglutinans , a species whose taxonomy and nomenclature has recently been in a state of flux. Genetic diversity was examined among 74 F. subglutinans -like isolates from malformed mango in Brazil, Egypt, Florida (USA), India, Israel and South Africa. With nitrate-nonutilizing ( nit ) auxotrophic mutants, seven vegetative compatibility groups (VCGs) were identified. Three of the VCGs were found in a single country, and VCG diversity was greatest in Egypt and the USA where, respectively, four and three different VCGs were found. RAPD profiles generated with arbitrary decamer primers were variable among isolates in different VCGs, but were generally uniform for isolates within a VCG. In PCR assays, a 20-mer primer pair that was developed previously to identify F. subglutinans from maize (mating population [MP]-E of the Gibberella fujikuroi complex) also amplified a specific 448 bp fragment for isolates of F. sacchari from sugarcane (MP-B) and what was probably F. circinatum (pine, MP-H). With the exception of three isolates from Brazil, it did not amplify the fragment from F. subglutinans -like isolates from mango. A second pair of 20-mer primers was developed from a unique fragment in the RAPD assays. It amplified a specific 608 bp fragment for 51 of 54 isolates from mango (all but the three Brazilian isolates). It also amplified a smaller, 550 bp fragment from isolates of F. nygamai (MP-G), but did not amplify DNA of isolates of any other taxon of Fusarium that was tested.  相似文献   

9.
Vegetative compatibility tests and random amplification of polymorphic DNA (RAPD) were used to assess genetic relationships amongst 54 strains of Fusarium poae obtained from various geographical regions. Twenty-seven strains were assigned to eight multiple member vegetative compatibility groups (VCGs), while the other 27 isolates were found to form single-member VCGs. There was a partial correlation between VCG and geographical origin, but the relationship was not always clear. However, no correlation was observed between the VCG and the host plant of origin. RAPD patterns were closely associated with VCGs in all cases. Members of VCGs that were interconnected by bridging isolates formed common branches in the phenogram constructed on the basis of the RAPD patterns, while strains that belonged to single-member VCGs were scattered throughout the phenogram. These data demonstrate that the combination of traditional and molecular methodologies allows reliable intraspecific subdivisions in an asexual fungus, which is a secondary invader of a wide range of host plants, and so has never been subject to the intense selection pressure of a single host species and lacks pathogenic subgroups.  相似文献   

10.
Fusarium oxysporum f. sp. cepae, which causes basal rot of onion, consists of seven vegetative compatibility groups (VCGs 0420 to 0426) and several single-member VCGs (SMVs). F. oxysporum f. sp. cepae populations in South Africa and Colorado each consist of one main VCG (namely, VCG 0425 and 0421, respectively). The aim of this study was to develop sequence-characterized amplified region (SCAR) markers for the identification of VCGs 0425 and 0421, using 79 previously characterized F. oxysporum isolates. A second aim was to investigate the prevalence of VCG 0425 among 88 uncharacterized South African onion F. oxysporum isolates using (i) the developed SCAR markers and (ii) inter-retrotransposon (IR)- and random amplified polymorphic DNA (RAPD) fingerprinting. Only two RAPD primers provided informative fingerprints for VCG 0425 isolates but these could not be developed into SCAR markers, although they provided diagnostic fragments for differentiation of VCG 0425 from VCG 0421. IR fingerprinting data were used to develop a multiplex IR-SCAR polymerase chain reaction method for the identification of VCG 0421, VCG 0425, and SMV 4 isolates as a group. Molecular identification of the uncharacterized collection of 88 F. oxysporum isolates (65 F. oxysporum f. sp. cepae and 23 F. oxysporum isolates nonpathogenic to onion) confirmed that VCG 0425 is the main VCG in South Africa, with all but 3 of the 65 F. oxysporum f. sp. cepae isolates having the molecular characteristics of this VCG. Genotyping and VCG testing showed that two of the three aforementioned isolates were new SMVs (SMV 6 and SMV 7), whereas the third (previously known as SMV 3) now belongs to VGC 0247.  相似文献   

11.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

12.
Host Range Specificity in Verticillium dahliae   总被引:1,自引:0,他引:1  
Bhat RG  Subbarao KV 《Phytopathology》1999,89(12):1218-1225
ABSTRACT Verticillium dahliae isolates from artichoke, bell pepper, cabbage, cauliflower, chili pepper, cotton, eggplant, lettuce, mint, potato, strawberry, tomato, and watermelon and V. albo-atrum from alfalfa were evaluated for their pathogenicity on all 14 hosts. One-month-old seedlings were inoculated with a spore suspension of about 10(7) conidia per ml using a root-dip technique and incubated in the greenhouse. Disease incidence and severity, plant height, and root and shoot dry weights were recorded 6 weeks after inoculation. Bell pepper, cabbage, cauliflower, cotton, eggplant, and mint isolates exhibited host specificity and differential pathogenicity on other hosts, whereas isolates from artichoke, lettuce, potato, strawberry, tomato, and watermelon did not. Bell pepper was resistant to all Verticillium isolates except isolates from bell pepper and eggplant. Thus, host specificity exists in some isolates of V. dahliae. The same isolates were characterized for vegetative compatibility groups (VCGs) through complementation of nitrate nonutilizing (nit) mutants. Cabbage and cauliflower isolates did not produce nit mutants. The isolate from cotton belonged to VCG 1; isolates from bell pepper, eggplant, potato, and tomato, to VCG 4; and the remaining isolates, to VCG 2. These isolates were also analyzed using the random amplified polymorphic DNA (RAPD) method. Forty random primers were screened, and eighteen of them amplified DNA from Verticillium. Based on RAPD banding patterns, cabbage and cauliflower isolates formed a unique group, distinct from other V. dahliae and V. albo-atrum groups. Minor genetic variations were observed among V. dahliae isolates from other hosts, regardless of whether they were host specific or not. There was no correlation among pathogenicity, VCGs, and RAPD banding patterns. Even though the isolates belonged to different VCGs, they shared similar RAPD profiles. These results suggest that management of Verticillium wilt in some crops through crop rotation is a distinct possibility.  相似文献   

13.

A survey was conducted in 1998 to determine the status and impact of mango malformation in Egypt. In the El Giza, Ismailîa and Sharkaia Governerates, disease incidence and severity ranged from 20 to 100% and from 5 to 60%, respectively. In contrast, 75 km to the south in the El Faiyûm Governerate, incidence and severity were lower, 3-5 and 0.1 to <1%, respectively. Based on these figures and recent production statistics, it is estimated that malformation causes losses in Egypt of at least E35 million/year. When malformation was managed in El Giza, Ismailîa and Sharkaia by removing affected vegetative and floral terminals, the mean disease incidence and severity were lower than in non-managed orchards (69 versus 29% and 29 versus 6%, respectively). Thirty-nine isolates of the pathogen, Fusarium mangiferae, recovered during the survey were sexually incompatible with the B, C and D mating populations of the Gibberella fujikuroi complex; 10 of these were also incompatible among themselves. Four vegetative compatibility groups (VCGs) were detected among 43 of the isolates from this and a previous survey. VCG was generally not correlated with farm, governerate or host cultivar, and in three instances, isolates from two different VCGs were recovered from the same tree. RAPD analyses divided isolates into two genetically distinct clusters: Group I contained isolates in VCGs 1, 2 and 4; Group II contained isolates in VCG 3. The VCG and RAPD data support the conclusion that isolates of the pathogen from the Nile Delta were probably responsible for the recent appearance of the disease in El Faiyûm.  相似文献   

14.
Aspergillus flavus is considered a generalist-opportunistic pathogen, but studies are beginning to show that A. flavus populations have strains specific to various hosts. The research objective was to determine whether A. flavus soil populations consist of solely saprophytic strains and strains which can be facultatively parasitic on corn. A. flavus was isolated from both corn kernels and soil within 11 Louisiana fields. Sixteen vegetative compatibility groups (VCGs) were identified among 255 soil isolates. Only 6 of the 16 VCGs were identified in the 612 corn isolates and 88% of corn isolates were in two VCGs, whereas only 5% of soil isolates belonged to the same two VCGs. Isolates were characterized for aflatoxin B1 production and sclerotial size. A random subset of the isolates (99 from corn and 91 from soil) were further characterized for simple-sequence repeat (SSR) haplotype and mating type. SSR polymorphisms revealed 26 haplotypes in the corn isolates and 78 in the soil isolates, and only 1 haplotype was shared between soil and corn isolates. Corn and soil populations were highly significantly different for all variables. Differences between corn and soil populations indicate that some soil isolates are not found in corn and some isolates have become specialized to infect corn. Further understanding of A. flavus virulence is important for development of resistant hybrids and for better biological control against toxigenic A. flavus.  相似文献   

15.
Fusarium wilt of tobacco could be caused by Fusarium oxysporum f. sp. batatas or f. sp. vasinfectum since f. sp. nicotianae was rejected because there was no evidence of isolates specific to tobacco. Forty isolates of F. oxysporum from soil and plants from tobacco fields in Extremadura (south-western Spain) were characterized by pathogenicity on burley and flue-cured tobacco, for vegetative compatibility group (VCG), and by random amplified polymorphic DNA (RAPD). Isolates from burley were identified as race 1 of F. oxysporum f. sp. batatas based on pathogenicity on tobacco, sweet potato and cotton, and those from flue-cured as race 2. Most isolates from soil were heterokaryon self-incompatible (HSI) and the remaining isolates from soil and tobacco were grouped into four VCGs: VCG 1 (5 isolates from burley), VCG 2 (17 isolates from flue-cured and 4 from soil), VCG 3 (2 isolates from flue-cured) and VCG 4 (2 isolates from soil). This is the first report of the two races and VCGs of F. oxysporum f. sp. batatas in Spain. Analysis of RAPD revealed two clusters (C-I and C-II) related to race and VCGs. C-I included race 1 (VCG 1) isolates from burley and nonpathogenic (VCG 4 or HSI) isolates from soils. C-II included nonpathogenic (VCG 2) and race 2 (VCG 2 or VCG 3) isolates from flue-cured. VCG and RAPD markers were effective in distinguishing race 2 from race 1, suggesting that there are two genetically differentiated groups of F. oxysporum f. sp. batatas on tobacco in Extremadura.  相似文献   

16.
ABSTRACT A collection of race 1 and race 2 isolates of Fusarium oxysporum f. sp. lycopersici was screened for vegetative compatibility and characterized by random amplified polymorphic DNA (RAPD) analysis to establish the identity and genetic diversity of the isolates. Comparison of RAPD profiles revealed two main groups that coincide with vegetative compatibility groups (VCGs). In addition, several single-member VCGs were identified that could not be grouped in one of the two main RAPD clusters. This suggests that F. oxysporum f. sp. lycopersici is a polyphyletic taxon. To assign avirulence genotypes to race 1 isolates, they were tested for their virulence on a small set of tomato lines (Lycopersicon esculentum), including line OT364. This line was selected because it shows resistance to race 2 isolates but, unlike most other race 2-resistant lines, susceptibility to race 1 isolates. To exclude the influence of other components than those related to the race-specific resistance response, we tested the virulence of race 1 isolates on a susceptible tomato that has become race 2 resistant by introduction of an I-2 transgene. The results show that both line OT364 and the transgenic line were significantly affected by four race 1 isolates, but not by seven other race 1 isolates nor by any race 2 isolates. This allowed a subdivision of race 1 isolates based on the presence or absence of an avirulence gene corresponding to the I-2 resistance gene. The data presented here support a gene-for-gene relationship for the interaction between F. oxysporum f. sp. lycopersici and its host tomato.  相似文献   

17.
Forty-four isolates of Verticillium dahliae obtained from different diseased hosts were tested by vegetative compatibility group (VCG) analysis to investigate their genetic relatedness and correlate the results with four VCGs (1, 2, 3, 4) previously described. Based on complementarity of nit mutants, only three VCGs were identified from the Greek isolates. Seventeen isolates were assigned to VCG 2 (A or B), two to VCG 3 and eight to VCG 4 (A or B). The 17 remaining isolates could not be grouped to any of the three VCGs. All isolates belonging to a distinct VCG complemented strongly with at least one of the two tester strains of that group, or with several strains of the Greek collection belonging to that VCG.  相似文献   

18.
Chestnut blight, caused by Cryphonectria parasitica, was identified in Devon, UK, in December 2016. Intensive surveys detected the disease at further sites in Devon (seven), Berkshire (one), Dorset (one), Derbyshire (four) and a cluster of eight sites in southeast London. Over 570 survey samples were tested, and 227 were positive for C. parasitica by isolation and real-time PCR. A total of 227 isolates were tested for mating type, and 197 screened for vegetative compatibility group (VCG) and compared with VCGs known from mainland Europe. The same isolates were also screened for the presence of Cryphonectria hypovirus 1 (CHV-1). Eleven VCGs were identified within the UK population. Five corresponded to already known European VCGs but six were unique. The European VCGs mainly came from the Devon, Dorset, Berkshire and Derbyshire disease outbreaks, whilst unique VCGs were almost exclusively from the southeast London cluster. Both mating types were detected, but only one mating type was present at each site, with the exception of a single Devon site. Perithecia of C. parasitica were never observed at any site. CHV-1 was found in seven isolates from three different locations and was always subtype-I, which has limited hypovirulence. Therefore, although CHV-1 is associated with C. parasitica at some outbreaks, it probably has limited impact on virulence. The diversity of VCGs and their distribution at outbreak sites, together with findings of CHV-1, suggests C. parasitica has been introduced to the UK multiple times over at least two decades through international plant trade.  相似文献   

19.
Dunkle LD  Levy M 《Phytopathology》2000,90(5):486-490
Two taxonomically identical but genetically distinct sibling species, designated groups I and II, of Cercospora zeae-maydis cause gray leaf spot of maize in the United States. Isolates of the gray leaf spot pathogen from Africa were compared with isolates from the United States by amplified fragment length polymorphism (AFLP) analysis and restriction digests of internal transcribed spacer (ITS) regions and 5.8S ribosomal DNA (rDNA), as well as by morphological and cultural characteristics. The isolates from Africa were morphologically indistinguishable from the U.S. isolates in both groups, but like isolates of group II, they grew more slowly and failed to produce detectable amounts of cercosporin in culture. Analysis of restriction fragments from the ITS and rDNA regions digested with five endonucleases indicated that all of the African isolates shared the profile of the C. zeae-maydis group II population from the eastern United States and, thus, are distinct from the group I population, which is more prevalent in the United States and other parts of the world. Cluster analysis of 85 AFLP loci confirmed that the African and U.S. group II populations were conspecific (greater than 97% average similarity) with limited variability. Among all group II isolates, only 8 of 57 AFLP loci were polymorphic, and none was specific to either population. Thus, although gray leaf spot was reported in the United States several decades prior to the first record in Africa, the relative age of the two populations on their respective continents could not be ascertained with confidence. The absence of C. zeae-maydis group I in our samples from four countries in the major maize-producing region of Africa as well as the greater AFLP haplotype diversity found in the African group II population, however, suggest that Africa was the source of C. zeae-maydis group II in the United States. The overall paucity of AFLP variation in this sibling species further suggests that its origin is recent or that the ancestral population experienced a severe bottleneck prior to secondary migration.  相似文献   

20.
玉米新月弯孢菌(Curvularia lunata)的RAPD分析   总被引:3,自引:1,他引:3  
 对分离自玉米弯孢菌叶斑病标样中的77株新月弯孢菌和1株来自水稻的新月弯孢菌进行RAPD分析表明,菌株间具有丰富的遗传多样性,在相似系数约0.60处,所有菌株被聚为3个组,但88.0%的菌株聚入第Ⅰ组内,其余菌株被聚入另外2个组内。第Ⅰ组内共有69个菌株,包含来自不同区域的致病性较强的菌株,是玉米弯孢菌叶斑病的优势类群,其余2个类群主要是一些致病能力较弱或不致病的菌株。结果表明,新月弯孢菌种内菌株的遗传多样性与致病性相关,但与菌株地理来源无明显的直接关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号