首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Pythium oligandrum (PO) is a mycoparasite on a wide range of fungi and suppresses diseases caused by fungal pathogens when colonizing the rhizosphere. PO and its cell wall proteins (CWPs) have elicitor activity that induces defence responses in plants. The potential of a mycelial homogenate of PO to suppress bacterial diseases was studied in roots of tomato ( Lycopersicon esculentum cv. Micro-Tom) inoculated with Ralstonia solanacearum . PO-treated plants showed enhanced resistance to R. solanacearum and reduction in severity of wilt symptoms. As ethylene often acts as one of the signal molecules for induced resistance, its production following treatment of tomato roots with the mycelial homogenate or CWP of PO was measured. The level of ethylene in PO- and CWP-treated plants was transiently elevated six- to 11-fold at 4–8 h after treatment, followed by high expression of three basic ethylene-inducible defence-related genes ( PR-2b , PR-3b and PR-5b ). Analysis of PR-5b gene expression in the leaves of PO- and CWP-treated plants suggested that PR gene expression was induced systemically. The expression of LeERF2 and LeETR4 , which confer an ethylene-dependent signalling pathway, was also significantly accelerated by such treatments. These results indicate that PO has the potential to control bacterial wilt disease and that CWP may play an important role in the induction of resistance to R. solanacearum accompanying the activation of the ethylene-dependent signalling pathway.  相似文献   

2.
为了解内生解淀粉芽胞杆菌Bacillus amyloliquefaciens TF28诱导番茄抗病分子机制,本文采用相对定量RT-PCR方法研究内生细菌TF28对番茄抗病信号传递途径中促分裂原活化蛋白激酶基因MAPK和转录因子WRKY基因表达的影响,采用双向电泳、质谱检测和生物信息学等蛋白质组学技术研究接种菌株TF28后番茄叶片差异蛋白的表达情况。结果表明接种菌株TF28后,番茄叶片中的基因MAPKWRKY上调表达,基因WRKY表达增幅高于基因MAPK,2个基因均在接种后2 d表达量最高。从接种内生细菌2 d后的番茄叶片中分离到373个蛋白点,与对照相比,有23个蛋白点特异表达,18个蛋白点上调表达,53个蛋白点下调表达,280个蛋白表达量与对照相当,对14个特异表达蛋白进行质谱分析和蛋白数据库检索,9个与抗病相关,3个与品质相关,2个与生长调控相关。  相似文献   

3.
Herman MA  Davidson JK  Smart CD 《Phytopathology》2008,98(11):1226-1232
Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.  相似文献   

4.
Tomato-Fusarium oxysporum f.sp. radicis-lycopersici pathosystem was used to study induced systemic resistance elicited by Trichoderma koningiopsis (Th003) using the split root model. The ability of the antagonist to promote plant growth was also established. Stem colonization by the pathogen was significantly reduced in treated plants. The induction of resistance was enhanced 6 days after elicitation and when the antagonist was used in a concentration of 105 conidia per ml. Th003 application in seed priming and nursery significantly stimulated plant growth. Gene expression induced by Th003 was evaluated using the tomato TOM1 microarray. Plant treatment with T. koningiopsis affected mRNA levels of 45 genes: 41 in roots and 4 in leaves. Of particular interest was the induction of genes involved in the jasmonic and ethylene transduction pathways found in the microarray analysis and qRT-PCR, which suggest a temporary increment of defense related gene expression response to T. koningiopsis Th003.  相似文献   

5.
6.
When the biocontrol agent Pythium oligandrum (PO) colonizes the rhizosphere, it suppresses bacterial wilt disease in tomato (Solanum lycopersicum cv. Micro‐Tom) caused by Ralstonia solanacearum, and a homogenate of its mycelia exhibits elicitor activity, inducing an ethylene (ET)‐dependent defence response in Micro‐Tom. Since salicylic acid (SA) and jasmonic acid (JA) play an important role in plant defence responses to pathogens, the involvement of SA‐ and JA‐dependent signal transduction pathways in resistance to R. solanacearum was investigated in tomato roots treated with a mycelial homogenate of PO. Bacterial wilt disease was also suppressed in tomato cv. Moneymaker treated with the PO homogenate. However, the SA‐inducible PR‐1(P6) gene was not up‐regulated in either Micro‐Tom or Moneymaker. SA did not accumulate in homogenate‐treated roots in comparison with distilled water‐treated controls, even 24 h after inoculation. Induced resistance against R. solanacearum was not compromised in SA‐non‐accumulating NahG transgenic plants treated with the PO homogenate. On the other hand, the expression of the JA‐responsive gene for the basic PR‐6 protein was induced in both tomato cultivars treated with the PO homogenate. Furthermore, quantitative disease assays showed that the induced resistance against R. solanacearum was compromized in PO homogenate‐treated jai1‐1 mutant plants defective in JA signalling. These results indicated that the JA‐dependent signalling pathway is required for PO‐induced resistance against R. solanacearum in tomato.  相似文献   

7.
8.
Pathogens and insects can elicit different sets of plant host responses, supporting the hypothesis for control by different signaling pathways. To evaluate the potential for signal interaction in plants attacked by pathogens and insects, the mRNA abundance for lipoxygenase (LOX), a wound-inducible proteinase inhibitor (PINII), and a pathogenesis-related protein (P4) was evaluated in tomato leaves following challenge with a variety of agents. PINII and P4 expression was determined as these proteins are induced in tomato leaves characteristically following attack by certain insects or pathogens, respectively. Expression studies of LOX, PINII, and P4 indicate that their induction in tomato does not follow a strict pattern based on the type of biologic inducer (insect vs. pathogen) or chemical treatment, with each specific treatment inducing a distinct pattern of gene expression. However, plants induced to express disease resistance with the synthetic salicylate mimic benzothiadiazole-7-carbothioic acid S-methyl ester were compromised in their expression of the wound- or jasmonate-activated PINII, consistent with an observed increase in susceptibility to insect herbivory reported in a companion study. The results do not support the hypothesis for a strict dichotomy of signaling by insects and pathogens of LOX, PINII and P4 in tomato, but point to a potential vulnerability of acquired resistance evident at the levels of gene expression and response to insect attack.  相似文献   

9.
Induced resistance by chemicals such as acibenzolar-S-methyl -ASM (commercialized as Actigard by Syngenta Inc) mimics the biological activation of systemic acquired resistance (SAR). ASM takes the place of salicylic acid (SA) in the SAR signal pathway inducing the same molecular markers and range of resistance. The goal of our work was to understand the downstream molecular events by which ASM confers resistance to Phytophthora infestans in tomatoes. To accomplish this goal we assayed gene expression in ASM-treated plants using a microarray with more than 12,000 tomato ESTs. As many as 300 genes were responsive to ASM. Of these, 117 were detected in most of the biological replications. Basal defense associated genes as well as SAR and disease resistance genes (R-like) involved in induced resistance and effector-triggered immunity were highly expressed. We attempted to determine the phenotype of 13 of these genes by virus induced gene silencing (VIGS). These 13 genes were selected on the basis of previous implication in plant defense response and by reliability of induction by ASM. VIGS was partially successful for three of the 13 genes, but this partial silencing did not lead to a significant reduction in the effect of ASM. The ethylene pathway was also activated in response to ASM, but a tomato mutant not responsive to ethylene remained responsive to ASM. It seems most likely that the ASM effect is complex and polygenic, depending on the effect of several genes.  相似文献   

10.
11.
12.
Orobanche crenata is a root parasitic weed that is a major constraint for grain and forage legume cultivation in Mediterranean and West Asia. Only moderate to low levels of incomplete resistance of complex inheritance has been identified so far in legume crops, which has hampered genetic and genomic analysis. In the present study, we provide a gene expression profile of roots of the model legume Medicago truncatula in response to infection by O. crenata . M. truncatula accessions SA27774 (complete resistance acting at early penetration stages) and SA4087 (incomplete late acting resistance mediated by necrosis of parasite tubercle) were inoculated with O. crenata seeds in a semi-sterile dish system. Roots were harvested at 15 (first contacts of the parasitism structures with the host roots), 21 (initial stage of parasite tubercle formation on SA4087) and 35 (prior necrosis of well-developed parasite tubercle of on SA4087) days post-inoculation. Array hybridisations revealed several hundred genes up-regulated in response to O. crenata infection. Gene expression patterns suggest that resistance mechanisms activated in both genotypes are temporally and spatially different and resemble those associated with plant resistance to microbial pathogens. Regulated genes identified here represent a comprehensive resource that can be used as a support to breeding strategies for resistance.  相似文献   

13.
Phytohormones are involved in the regulation of plant responses to biotic stress. How a limited number of hormones differentially regulate defence responses and influence the outcome of plant–biotic interactions is not fully understood. In recent years, cytokinin (CK) was shown to induce plant resistance against several pathogens. In the present study, we investigated the effect of CK in inducing tomato resistance against the hemibiotrophic pathogenic bacteria Xanthomonas campestris pv. vesicatoria (Xcv) and Pseudomonas syringae pv. tomato (Pst). We demonstrate that CK enhances tomato resistance to Xcv and Pst through a process that relies on salicylic acid and ethylene signalling. CK did not directly affect the growth or biofilm formation ability of these pathogens in vitro. Overall, our work provides insight into the underlying mechanisms of CK-induced immune responses against bacterial pathogens in tomato.  相似文献   

14.
大量研究表明, 乙烯可激发植物对死体营养型真菌的抗性, 但我们前期研究发现, 乙烯合成前体ACC可提高小豆对活体营养型真菌——锈菌的抗性, 为初步明确其机制, 本研究分析了ACC处理对小豆乙烯合成及信号转导的影响, 结果表明, ACC处理显著提高了乙烯合成基因VaACS1及信号通路关键基因VaEIN2?VaEIN3?VaERF5的表达水平?此外, ACC处理后再接种锈菌, 小豆锈病的发病程度显著降低?对接种锈菌后不同时间VaPR2和VaPR4的表达分析表明, 相比ACC处理后不接种对照, ACC处理后再接种锈菌的处理, 接种后1~5 d这两个基因表达量显著升高; 与水处理不接种锈菌相比, 水处理接种锈菌5~8 d后VaPR2和VaPR4的表达量虽显著上调, 但应答时间较ACC处理滞后, 且总体表达水平低, 表明ACC激活乙烯通路进而诱导防卫反应基因上调表达是其诱导小豆抗锈性的关键?  相似文献   

15.
广谱抗真菌枯草芽孢杆菌Bacillus subtilis菌株TR21在温室和大田对香蕉枯萎病具有较好的防效,其机制已证明与诱导香蕉产生系统抗性有关。本文以巴西蕉(Musa AAA Cavendish subgroup cv.Brazil)为材料,利用半定量RT-PCR法,以香蕉25S rRNA基因为内标,研究灌根接种菌株TR21后对香蕉根系4种抗病相关基因表达的影响。结果表明,PAL、POD、PR-3和PR-1基因在接种后表达水平均表现上调趋势,但PAL和POD基因的表达增幅明显高于PR-3和PR-1基因。PAL和POD基因在接种后12 h表达量最高,与TR21在香蕉根部的定殖规律表现出一致性。系统诱导抗性是枯草芽孢杆菌TR21防治香蕉枯萎病的机制之一。  相似文献   

16.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

17.
A mitogen-activated protein kinase (MAPK) pathway has been demonstrated as a key pathway in plant defense against pathogen attacks. With proteomics approaches, we specifically studied activation events downstream of a MAPK kinase, tMEK2, in tomato. Overexpression of a constitutively activated tomato MAPK kinase gene (tMEK2MUT) enhanced resistance of transgenic tomato lines to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogenesis-related genes, PR1b1, β-1,3-glucanase, and endochitinase were up-regulated by tMEK2MUT. Two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation-time-of-flight-mass spectrometry analysis of total soluble leaf proteins indicated that β-1,3-glucanase and endochitinase are among the up-regulated proteins in these transgenic plants. Co-expression studies using a transient gene expression system have indicated that β-1,3-glucanase and endochitinase genes up-regulated by tMEK2MUT were down-regulated by different specific phosphatases through dephosphorylation of certain downstream signaling molecules. Our observations indicate that increased products of β-1,3-glucanase and endochitinase genes downstream of tMEK2 may play an important role in achieving disease resistance.  相似文献   

18.
19.
Trichoderma spp. are common soil fungi used as biocontrol agents due to their capacity to produce antibiotics, induce systemic resistance in plants and parasitize phytopathogenic fungi of major agricultural importance. The present study investigated whether colonization of Arabidopsis thaliana seedlings by Trichoderma atroviride affected plant growth and development. Here it is shown that T. atroviride promotes growth in Arabidopsis. Moreover, T. atroviride produced indole compounds in liquid cultures. These results suggest that indoleacetic acid-related indoles (IAA-related indoles) produced by T. atroviride may have a stimulatory effect on plant growth. In addition, whether colonization of Arabidopsis roots by T. atroviride can induce systemic protection against foliar pathogens was tested. Arabidopsis roots inoculation with T. atroviride provided systemic protection to the leaves inoculated with bacterial and fungal pathogens. To investigate the possible pathway involved in the systemic resistance induced by T. atroviride, the expression profile of salicylic acid, jasmonic acid/ethylene, oxidative burst and camalexin related genes was assessed in Arabidopsis. T. atroviride induced an overlapped expression of defence-related genes of SA and JA/ET pathways, and of the gene involved in the synthesis of the antimicrobial phytoalexin, camalexin, both locally and systemically. This is the first report where colonization of Arabidopsis roots by T. atroviride induces the expression of SA and JA/ET pathways simultaneously to confer resistance against hemibiotrophic and necrotrophic phytopathogens. The beneficial effects induced by the inoculation of Arabidopsis roots with T. atroviride and the induction of the plant defence system suggest a molecular dialogue between these organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号