首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
A comparison of rates of germination and appressorium formation by an isolate of Colletotrichum gloeosporioides on mango leaves, fruit surfaces and cellophane membranes showed that behaviour was broadly similar on all three substrates. Frequency of appressorium formation was slightly higher on cellophane membranes, and both hyaline and melanized appressoria were formed. Only melanized appressoria were formed on mango surfaces. In vitro experiments on membranes showed comparative differences in physiological behaviour with temperature for two Philippine isolates of C. gloeosporioides . The most stimulatory temperature for production of appressoria differed in isolates I-2 and I-4 (25 and 20°C, respectively). At 30°C more appressoria became melanized than at lower temperatures, but the frequency of formation of penetration pegs was highest at 25°C. Conidia of C. gloeosporioides germinated on cellophane membranes at relative humidities as low as 95%, but the percentage of conidia germinating and forming appressoria increased as the RH approached 100%. Approximately 18% of conidia of C. gloeosporioides I-2 held at 62 and 86% RH for 4 weeks retained viability, and some were capable of forming appressoria when placed at 100% RH. These results have implications for epidemiological models for disease control.  相似文献   

2.
3.
核盘菌侵入油菜超微结构及侵染机制的研究   总被引:8,自引:0,他引:8  
杨谦 《植物病理学报》1994,24(3):245-249
 通过电子显微镜观察核盘菌在油菜叶片上侵染过程,发现该菌首先在叶片上形成复合附着器。每个分枝末端一般生出一个侵染钉。侵染钉侵入叶表面腊质、角质层和表皮细胞壁时.不仅靠附着器产生的压力,而且供助于酶对寄主表面的软化、消解作用。该菌通过角质层和表皮细胞壁侵入油菜叶片,尚未发现通过气孔侵入的现象。侵入叶片后,该菌的继续生长,导致了油菜组织的溃烂。然后菌丝在腐烂的叶片上集结形成菌核。  相似文献   

4.
ABSTRACT Ultrastructural studies of the infection of susceptible and resistant cultivars of Sorghum bicolor by Colletotrichum sublineolum were conducted. Initial penetration events were the same on both susceptible and resistant cultivars. Germ tubes originating from germinated conidia formed globose, melanized appressoria, that penetrated host epidermal cells directly. Appressoria did not produce appressorial cones, but each penetration pore was surrounded by an annular wall thickening. Inward deformation of the cuticle and localized changes in staining properties of the host cell wall around the infection peg suggests that penetration involves both mechanical force and enzymic dissolution. In compatible interactions, penetration was followed by formation of biotrophic globular infection vesicles in epidermal cells. Filamentous primary hyphae developed from the vesicles and went on to colonize many other host cells as an intracellular mycelium. Host cells initially survived penetration. The host plasma membrane invaginated around infection vesicles and primary hyphae and was appressed tightly to the fungal cell wall, with no detectable matrix layer at the interface. Necrotrophic secondary hyphae appeared after 66 h and ramified through host tissue both intercellularly and intracellularly, forming hypostromatic acervuli by 114 h. Production of secondary hyphae was accompanied by the appearance of electron-opaque material within infected cells. This was thought to represent the host phytoalexin response. In incompatible interactions, infection vesicles and primary hyphae were formed in epidermal cells by 42 h. However, they were encrusted with electron-opaque material and appeared dead. These observations are discussed in relation to the infection processes of other Colletotrichum spp. and the host phytoalexin response.  相似文献   

5.
The effects of rice blast fungicides known to inhibit melanisation or penetration on the adhesion of Pyricularia oryzae to the leaf surface of barley were investigated. Adhering appressoria were counted after shaking inoculated leaves vigorously with water. On untreated leaves, appressoria began to adhere at the time when appressorial melanisation was initiated. The number of adhering appressoria then increased gradually, and most were melanised. On chlobenthiazone-treated leaves, appressoria were not melanised and were easily detached from the surface. Similar results were obtained with tricyclazole. However, after treatment with tetrachlorophthalide or pentachlorobenzyl alcohol, which are also known to prevent penetration of P. oryzae, melanised appressoria still remained after shaking in water. It is suggested that appressorial melanisation in P. oryzae is involved in appressorial adhesion. The antipenetrant action of the melanin biosynthesis inhibitors chlobenthiazone and tricyclazole may be ascribed to the lack of adhesive intensity necessary to support the mechanical shearing of the cuticle of rice plants.  相似文献   

6.
Melanin biosynthesis by appressoria was studied in relation to their penetrating ability using tricyclazole [5-methyl-1,2,4-triazolo(3,4-b)benzothiazole], pp 389 [4,5-dihydro-4-methyltetra-zolo(1,5-a)quinazolin-5-one], and pyroquilon [1,2,5,6-tetrahydropyrrolo(3,2,1-i,j)quinolin-4-one], and color mutants of Colletotrichum lagenarium. Tricyclazole at 100 μM inhibited melanin biosynthesis by appressoria of C. lagenairum 104-T, and caused accumulation of 3,4-dihydro-4,8-dihydroxy-1(2H)naphthalenone (DDN) in the culture medium. By contrast, DDN was not detected in culture media of tricyclazole-treated mutant 8015, which is defective in the enzyme involved in the conversion of scytalone to 1,3,8-trihydroxynaphthalene (1,3,8-THN). Vermelone restored melanization of appressoria of albino mutant 79215 and of the parent strain 104-T treated with tricyclazole, pp 389, and pyroquilon; however, scytalone restored melanization only in appressoria of albino mutant 79215. These results indicate that tricyclazole, pp 389, and pyroquilon inhibit the conversion of 1,3,8-THN to vermelone in the melanin biosynthetic pathway of appressoria of C. lagenarium. Colorless appressoria formed in the presence of the three melanin-inhibiting chemicals germinated laterally on nitrocellulose membranes and rarely penetrated the membranes. On the other hand, when pigmented appressoria were restored by application of vermelone in the presence of the three chemicals, lateral germination of the appressoria was largely suppressed, and the membranes were effectively penetrated. From these results, it is concluded that the major effect of tricyclazole, pp 389, and pyroquilon on appressoria of C. lagenarium, causing failure of penetration, is the inhibition of melanization. Effects of the chemicals on other metabolic functions can be precluded as significant factors affecting the penetration process.  相似文献   

7.
ABSTRACT The germination and sporulation of Colletotrichum acutatum were characterized over time on strawberry leaves (cv. Tristar) and plastic coverslips incubated at 26 degrees C under continuous wetness. Conidia germinated within 3 h after inoculation and formed melanized appressoria with pores by 9 h after inoculation. Host penetration was not observed up to 7 days after inoculation. Production of secondary conidia on conidial and hyphal phialides began within 6 h after inoculation. Secondary conidiation was responsible for up to a threefold increase in the total number of conidia within 7 days after inoculation. Primary conidia and hyphae began to collapse 48 h after inoculation, whereas melanized appressoria remained intact. These findings suggest that appressoria and secondary conidia of C. acutatum produced on symptomless strawberry foliage may be significant sources of inoculum for fruit infections.  相似文献   

8.
This study showed that Colletotrichum acutatum penetrates the cuticle layer of Capsicum spp. fruits by forming a previously uncharacterized structure from appressoria. This unusual structure was localized in the cuticle layer. The structure, formed within 24 h post‐inoculation (hpi), was a highly branched, well‐differentiated hypha which penetrated the epidermal cell at 72 hpi. The novel structure, with abnormally thick walls (about 250 nm), often formed multiple branches in the affected chilli pepper. This dendroid structure, probably required for penetration, was formed exclusively in the cuticle layer of chilli pepper fruits and was not found when C. acutatum was inoculated onto pepper petals, mango leaves, or fruits of tomato and aubergine. Colletotrichum acutatum produced similar dendroid structures within resistant chilli pepper fruits, but eventually these structures turned dark brown and no further infection in the epidermal cells occurred, implicating the presence of inhibitors of the formation and development of the dendroid penetration structure in the resistant line.  相似文献   

9.
ABSTRACT The early infection and colonization processes of Colletotrichum acutatum on leaves and petals of two almond cultivars with different susceptibility to anthracnose (i.e., cvs. Carmel and Nonpareil) were examined using digital image analysis of light micrographs and histological techniques. Inoculated tissue surfaces were evaluated at selected times after inoculation and incubation at 20 degrees C. Depth maps and line profiles of the digital image analysis allowed rapid depth quantification of fungal colonization in numerous tissue samples. The results showed that the early development of C. acutatum on petals was different from that on leaf tissue. On petals, conidia germinated more rapidly, germ tubes were longer, and fewer appressoria developed than on leaves. On both tissues, penetration by the pathogen occurred from appressoria and host colonization was first subcuticular and then intracellular. On petals, colonizing hyphae were first observed 24 h after inoculation and incubation at 20 degrees C, whereas on leaves they were seen 48 to 72 h after inoculation. Intercellular hyphae were formed before host cells became necrotic and macroscopic lesions developed on petals >/=48 h and on leaves >/=96 h after inoculation. Histological studies complemented data obtained by digital image analysis and showed that the fungus produced infection vesicles and broad hyphae below the cuticle and in epidermal cells. In both tissues, during the first 24 to 48 h after penetration fungal colonization was biotrophic based on the presence of healthy host cells adjacent to fungal hyphae. Later, during intercellular growth, the host-pathogen interaction became necrotrophic with collapsed host cells. Quantitative differences in appressorium formation and host colonization were found between the two almond cultivars studied. Thus, on the less susceptible cv. Nonpareil fewer appressoria developed and host colonization was reduced compared with that on cv. Carmel.  相似文献   

10.
ABSTRACT Initial infection processes and the subsequent colonization of leaves and young stems of peach by Tranzschelia discolor were studied. On leaves where multiple disease cycles of peach rust occur during the growing season, urediniospores germinated after 4 h of wetness. Germ tubes became septate and formed appressoria only over leaf stomata beginning 18 h after inoculation. No appressoria, however, formed over stomata of positive replicas of leaf surfaces indicating nonthigmotropic responses of germ tubes. On young, primary-growth stems (ca. 8 weeks old), stomata were mostly closed, less frequent than on leaves, and recessed from the surface of the cuticle of the epidermis. Although appressoria formation was not observed on inoculated stems, germ tube growth of urediniospores was directional toward stomata. Penetration of stem tissue is apparently a less common event that was reflected by a lower occurrence of stem lesions compared with that of leaf lesions in our potted plant inoculation studies and previous field observations. Still, stem lesions are important as sources of primary inoculum each spring and were reproduced in this study for the first time. Fungal colonization of leaves and stems was subepidermal-intercellular and haustoria were commonly found within mesophyll or cortical cells, respectively. No fungal colonization was observed in cambial stem tissue. Vascular tissue was also not colonized and delimited lesions in leaves and stems. Morphological host responses were not observed in infections on either leaves or young stems. In older stems (>32 weeks old), however, the infection was delimited by a wound periderm after uredinial formation. Furthermore, with continued secondary growth, stems recovered and fungal lesions became part of the bark tissue of woody branches. Thus, the fungus must infect primary-growth branches each year to establish stem lesions.  相似文献   

11.
12.
The infection of three resistant and two susceptible inbred lines of Pisum sativum by Mycosphaerella pinodes is described for the first time. Two types of resistance, one expressed in epicotyls and one in leaves, were found in all three resistant lines. On epicotyls of susceptible lines, abundant appressoria and penetrations occurred after a short period of hyphal growth. On epicotyls of resistant lines, hyphae grew extensively but rarely formed appressoria, and these failed to penetrate the cuticle. Attempted penetration was associated with the rapid death of 2–6 epicotyl cells, resembling a hypersensitive reaction. In contrast, resistance of leaves, which was only expressed after penetration, involved localization of the fungus by a mechanism involving delayed leaf cell death. It is suggested that a combination of these two types of resistance might provide effective protection against M. pinodes.  相似文献   

13.
A detailed study of conidial germination, germ-tube growth and the formation of infection structures in Phoma clematidina , the causal agent of clematis wilt, is described for two clematis varieties differing in disease resistance. On both the resistant and susceptible varieties, the fungus entered leaves and stems by direct penetration of the cuticle, often, but not always, following the formation of infection structures. More germ tubes per conidium were formed on the susceptible host, but these germ tubes were on average shorter than on the resistant host. Although germ tubes regularly entered the plant via trichomes, stomata were not found to be sites of entry. Following penetration of the cuticle of resistant plants, germ-tube growth was sometimes restricted to the subcuticular region, and halo formation occurred at the sites where penetration was attempted. Subcuticular growth and halo formation were not observed on susceptible plants. These observations may partly explain the resistance of small-flowered clematis varieties to P. clematidina .  相似文献   

14.
Northern corn leaf blight (NCLB) caused by Setosphaeria turcica is a major foliar disease of maize. The early-stage infection events of this pathogen on maize leaves are unclear. We investigated the optimum temperature for conidial germination and appressorium formation, and characterized penetration and growth of S. turcica in maize leaf sheath and onion epidermis cells, including use of histological staining to assess plant cell viability. The results showed that the optimum temperature for conidial germination and appressorium formation was 20°C. On the maize leaf sheath, the appressoria were formed by germinated conidia, and penetration on the epidermal cells occurred at 8 h postinoculation (hpi). Round vesicles developed beneath the appressoria. Between 16 and 24 hpi, the branched invasive hyphae invaded three to five adjacent cells at most infection sites. The invasive hyphae tended to move along the cell wall and crossed from one cell to another. In the onion epidermis cells, the appressoria formed at 8 hpi, and in most cases the epidermal cells were penetrated through the juncture of the cell walls. At 16–24 hpi, the primary hyphal terminus swelled to a vesicle. The maize leaf sheath cells died at 8 hpi, whereas the onion cells did not. Our findings documented in detail the penetration and invasive hyphal growth in maize leaf sheath and onion epidermis, as well as viability of plant cells, at the early stages of infection, and provide a foundation for elucidating the underlying mechanism of S. turcica–maize interactions.  相似文献   

15.
ABSTRACT Venturia pirina (the pear scab pathogen) and V. inaequalis (the apple scab pathogen) were detected as ascospores discharged from apple leaf litter in New Zealand (spring 1998). Pseudothecia of both species were located on dead apple leaves; however, only those of V. inaequalis were associated with scab lesions. V. pirina was identified by rDNA sequence analyses, because morphological characters could not distinguish this fungus from V. asperata (a rare saprophyte on apple) and other Venturia spp. pathogenic on rosaceous fruit trees. Species-specific polymerase chain reaction primers designed to the 18S end of the internal transcribed spacer 1 region differentiated Venturia fruit tree pathogens reliably. V. pirina field isolates were pathogenic on pear, but only weak saprophytes on apple. In rare instances, when appressoria of V. pirina appeared to penetrate the cuticle of apple leaves, epidermal cells responded with a localized hypersensitive response (HR). To our knowledge, this is the first report of induction of HR-like events by V. pirina on its nonhost, apple, and also the first record of sexual reproduction of V. pirina on apple. It is assumed that V. pirina pseudothecia formed from saprophytic lesions in senescing apple leaves when active defense mechanisms such as HR were no longer induced.  相似文献   

16.
ABSTRACT Grape berries are highly susceptible to powdery mildew 1 week after bloom but acquire ontogenic resistance 2 to 3 weeks later. We recently demonstrated that germinating conidia of the grape powdery mildew pathogen (Uncinula necator) cease development before penetration of the cuticle on older resistant berries. The mechanism that halts U. necator at that particular stage was not known. Several previous studies investigated potential host barriers or cell responses to powdery mildew in berries and leaves, but none included observation of the direct effect of these factors on pathogen development. We found that cuticle thickness increased with berry age, but that ingress by the pathogen halted before formation of a visible penetration pore. Cell wall thickness remained unchanged over the first 4 weeks after bloom, the time during which berries progressed from highly susceptible to nearly immune. Autofluorescent polyphenolic compounds accumulated at a higher frequency beneath appressoria on highly susceptible berries than on highly resistant berries; and oxidation of the above phenolics, indicated by cell discoloration, developed at a significantly higher frequency on susceptible berries. Beneath the first-formed appressoria of all germinated conidia, papillae occurred at a significantly higher frequency on 2- to 5-day-old berries than on 30- to 31-day-old fruit. The relatively few papillae observed on older berries were, in most cases (82.8 to 97.3%), found beneath appressoria of conidia that had failed to produce secondary hyphae. This contrasted with the more abundantly produced papillae on younger berries, where only 35.4 to 41.0% were located beneath appressoria of conidia that had failed to produce secondary hyphae. A pathogenesis-related gene (VvPR-1) was much more highly induced in susceptible berries than in resistant berries after inoculation with U. necator. In contrast, a germin-like protein (VvGLP3) was expressed within 16 h of inoculation in resistant, but not in susceptible berries. Our results suggest that several putative barriers to infection, i.e., cuticle and cell wall thickness, antimicrobial phenolics, and two previously described pathogenesis-related proteins, are not principal causes in halting pathogen ingress on ontogenically resistant berries, but rather that infection is halted by one or more of the following: (i) a preformed physical or biochemical barrier near the cuticle surface, or (ii) the rapid synthesis of an antifungal compound in older berries during the first few hours of the infection process.  相似文献   

17.
Light, scanning electron and fluorescent microscopy were used to observe the infection process of Botrytis elliptica on leaves of oriental lily (cv. Star Gazer). At 20 °C and 100% relative humidity, conidia germinated on both adaxial and abaxial foliar surfaces, but germ tubes failed to invade epidermal cells on the adaxial surface. On abaxial surfaces, short (< 20 m) swollen germ tube appressoria penetrated through stomatal openings (19%), through the epidermis near guard cells (52%), or directly through epidermal cells (29%). Esterase activity was detected on germ tubes and conidia after 6 h of incubation, and deformation of the cuticle on abaxial surfaces of lily was observed surrounding infection sites. By 3 h after inoculation, almost 70% of the conidia had germinated, but no penetration was observed. At 6 h after inoculation, almost one-third of germinated conidia had penetrated epidermal cells, and water-soaked lesions were associated with 20% of the penetrations. By 9 h after inoculation, approximately 60% of the germinated conidia had penetrated plant tissues, and water-soaked lesions were associated with 60% of the infections. Fluorescent microscopy with a specific fungal stain allowed assessment of successful infection and visualization of sub-epidermal hyphae. We conclude that penetration of abaxial foliar surfaces of oriental lilies by B. elliptica occurs via short swollen germ tube appressoria mostly near stomata.  相似文献   

18.
The formation of lesions on ray florets of gerbera flowers caused by single conidia ofBotrytis cinerea was studied in two cultivars infected by two isolates of the pathogen. No differences in reaction after inoculation with conidia of either isolate were seen on either cultivar. The conidia produced usually one germ tube not longer than 10 m, but conidia with five germ tubes were also seen. Direct penetration of germ tubes through the upper cuticle of ray florets was observed. No appressoria or other specialised structures were observed before penetration, and degradation of the cuticle did not occur. Germination of conidia and subsequent flower infection was dependent on the availability of free water, but not on the addition of external nutrients.Between 18 to 25°C, fungal development usually stopped after cuticle penetration, two to four cells around the site of penetration becoming necrotic. This number did not increase when inoculated flowers were subsequently placed at 4°C, conditions conductive for the formation of spreading lesions. When flowers were incubated constantly at 4°C, lesions became visible 3 days after inoculation as a group of 10 to 14 cells. Initially from a vesicle-like structure, mycelium spread subcuticularly or in the lumen of epidermal cells resulting in the death of 40 to 50 cells at 18 days after inoculation. Ungerminated conidia and conidial germlings which has not yet penetrated the cuticle did not cause any visible symptoms in underlying epidermal cells.  相似文献   

19.
Experiments were conducted to test the hypothesis that recognition of the physical structure of epicuticular leaf waxes by Erysiphe graminis may be important to the development of normal germlings and the formation of functional appressoria. Comparisons of germination rates and characteristics of germling development by E. graminis f.sp. avenae , and in one experiment by f.sp. hordei , were made between intact cereal leaves and leaves from which the epicuticular waxes had been stripped away.
Overall, fungal development was very similar on intact and wax-free leaves: although germination rates were slightly, but significantly, lower, and lengths of appressorial germ tubes slightly greater, on stripped than intact leaves, a very similar proportion of germlings formed apparently normal appressoria in both cases. This was true for f.sp. avenae on first- and fifth-formed leaves of susceptible and adult plant resistant oats, and on barley and wheat first leaves, and for f.sp. hordei on first leaves of barley, oat and wheat. The appressoria formed on stripped leaves not only appeared normal, but also formed haustoria with at least the same frequency as on intact leaves; in several experiments, a higher proportion formed haustoria in stripped than intact leaves. Wax removal did not affect the adult plant resistance of oat cv. Maldwyn, which limits haustorium formation by appressoria, indicating that epicuticular wax was not involved in this resistance. It is concluded that the physical structure of epicuticular wax is not involved in the recognition processes leading to normal germling development.  相似文献   

20.
When portions of the cuticle of barley coleoptile surfaces were removed mechanically, prior to inoculation with Blumeria graminis, the tip cells of appressoria prematurely collapsed prior to attempted penetration. Mild chemical removal of the cuticle by ether also caused premature appressorial tip collapse. Recoating the cuticleless surface with exogenous cuticle decreased the frequency of collapse. By removing the cuticle mechanically or chemically, the available moisture on the coleoptile surface increased greatly, and exposure to this moist condition before attempted penetration was linked to premature appressorial tip collapse. However, when the cuticle of the coleoptile surface was removed thoroughly by rinsing in ether thrice for 5 min each, subsequent inoculation revealed no premature appressorial collapse, although moisture at the coleoptile surface was abundant. After removing the cuticle from the coleoptile surface mechanically, treatment of coleoptiles with 0.3 M mannitol greatly decreased the penetration attempts and the frequency of premature appressorial collapse, despite the abundant available moisture on the coleoptile surface. These results suggest that cuticle components of coleoptiles are needed for fungal penetration, and also protect the appressoria against excessive surface moisture when attempting penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号