首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine if alterations in dietary intake of heifers can influence IGF-I concentrations in plasma and(or) follicular fluid (FFL), size of follicles, and steroid concentrations in FFL (as an indicator of steroidogenic capacity). Cyclic heifers [n = 23; mean +/- SE body weight (BW) = 373 +/- 7 kg] were individually fed for 10 weeks either: a) 1.8% of BW in dry matter (DM) per d (GAIN; n = 7), b) 1.1% of BW in DM per d (MAINT; n = 8) or c) 0.7% of BW in DM per d (LOSE; n = 8). After 10 wk of treatment, heifers were ovariectomized 36-40 hr after the second injection of prostaglandin F2 alpha analog (2 injections 11 d apart), and plasma and ovaries were collected. Heifers weighed 444 +/- 13,387 +/- 8 and 349 +/- 9 kg in the GAIN, MAINT and LOSE groups, respectively, at time of ovariectomy. Mean diameter of follicles greater than or equal to 10 mm was greater (P less than .05) for GAIN (15.6 mm) than for MAINT (11.0 mm) or LOSE (12.5 mm) heifers. Numbers of follicles and concentrations of IGF-I in plasma and FFL did not differ (P greater than .20) between LOSE, MAINT and GAIN heifers. Progesterone concentrations were greater (P less than .05) in small and medium follicles of GAIN than MAINT or LOSE heifers, but were unaffected by diet in large follicles. Estradiol concentrations in FFL in small, medium and large follicles were unaffected (P greater than .20) by dietary treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Experiments were conducted to examine the effects of exogenous GnRH and LH on serum concentrations of progesterone (P4) in the ewe. Ewes in Exp. 1 and 2 were laparotomized on d 2 of an estrous cycle and ewes with corpora lutea (CL) in both ovaries were unilaterally ovariectomized. Ewes with CL in one ovary only were not ovariectomized. While they were anesthetized, ewes (n = 5) were injected with 25 micrograms GnRH (Exp. 1) or 50 ng GnRH (Exp. 2) into the artery supplying the ovary bearing the CL. Control ewes (n = 5 in each experiment) were injected similarly with saline. In Exp. 3, six ewes were injected i.v. (jugular) on d 2 with 100 micrograms oLH (t = 0) and 50 micrograms oLH at 15, 30 and 45 min; six control ewes were injected similarly with saline. Jugular blood was collected from all ewes at frequent intervals after treatment for LH analysis and on alternate days of the cycle through d 10 or 11 for P4 analysis. Treatment with 25 micrograms GnRH increased serum concentrations of LH at 15, 30, 45 and 60 min postinjection (P less than .001) and reduced serum concentrations of P4 on d 7 through 11 (treatment x day interaction; P less than .05). Injection with 50 ng GnRH caused a slight increase in serum concentrations of LH at 15 min but had no effect on serum concentrations of P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Nonpregnant Hereford cows (n = 70) were used to determine the effect of nutrient intake and body condition on reproductive and thyroid function. Body condition scores (BCS; 1 = emaciated; 9 = obese) of cows averaged 5.0 +/- .2 on July 1, and cows were fed for 4 mo either to lose weight and BCS (thin; n = 22), to maintain weight and BCS (moderate; n = 24), or to gain weight and BCS (fat; n = 24). After November 1, cows received a complete ration to maintain weight and BCS. Cows were slaughtered in December (six thin, eight moderate, and eight fat cows) or the subsequent March (16 cows per group). Before slaughter, cows were given two injections of prostaglandin F2 alpha (PGF) 11 d apart. Six days after the second PGF injection, cows were simultaneously treated with 100 micrograms of gonadotropin releasing hormone (GnRH; i.m.) and 100 micrograms of thyrotropin releasing hormone (TRH; i.v.) and serum samples were obtained. The BCS of cows at slaughter (8 d after PGF) averaged 3.4, 5.3, and 7.1 (P less than .01) and carcass energy content averaged 243, 432, and 714 Mcal (P less than .01) for thin, moderate, and fat cows, respectively. Wet ovarian (P less than .001) and corpora lutea (P less than .01) weights were heavier for fat cows. Content of LH in the pituitary gland and concentrations of thyroxine (T4) in serum after GnRH/TRH were not influenced by nutrient intake or BCS. However, thin cows had greater concentrations (P less than .05) of LH in serum after GnRH/TRH than did moderate or fat cows. We conclude that nutrient intake and body energy reserves of beef cows influenced ovarian function and LH in serum after treatment with GnRH.  相似文献   

4.
An experiment was conducted to evaluate the effect of exogenous gonadotropin releasing hormone (GnRH) on ovulation and embryonic survival in pubertal gilts. Gilts were assigned in replicates to a control (n = 10) and treatment (n = 10) group. Treatment consisted of an iv injection of 200 micrograms of GnRH immediately after initial mating on the first day of detected estrus. Control gilts were similarly injected with physiological saline. Blood samples were collected from the anterior vena cava immediately prior to injection, thereafter at 15-min intervals for 90 min, and subsequently, before slaughter on d 30 of gestation. Serum samples were analyzed for luteinizing hormone (LH) and progesterone by radioimmunoassay. Treatment with GnRH increased the quantity of LH released (P less than .05), with highest serum concentrations (ng/ml, means +/- SE) of gonadotropin in treated gilts (17.3 +/- 3.5) occurring at 75 min post-injection. In control gilts, serum concentrations of LH were not affected by injection of saline. Mean number of ovulations in treated gilts was also greater (P less than .05) than that of control animals (14.5 +/- .7 vs 12.1 +/- .6). However, treatment with GnRH did not enhance the number of attached conceptuses (normal and degenerating) present (treated, 10.9 +/- .9 vs control, 10.5 +/- .7) nor the percentage of viable fetuses (treated, 74.7 +/- 6.9 vs control, 83.5 +/- 5.0%) on d 30 of gestation. Although GnRH increased ovulation rate, mean weight of corpora lutea of treated and control gilts did not differ (402.8 +/- 16.3 vs 389.5 +/- 11.3 mg, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
For cows on d 137 (n = 6), 180 (n = 8), 226 (n = 9) and 250 (n = 5) of gestation (Exp. 1), concentrations of insulin and glucose were two- to three-fold less (P less than .01) in fetal venous plasma than in uterine arterial plasma. Concentrations of growth hormone, conversely, were 10- to 20-fold greater (P less than .01) in fetal venous than in uterine arterial plasma. Concentrations of insulin and glucose in maternal and fetal plasmas and concentrations of growth hormone in maternal plasma did not vary with stage of gestation. Concentrations of growth hormone in fetal venous plasma, however, were greater on d 226 and 250 than on d 137 and 180. For cows (n = 6) on d 198 of gestation (Exp. 2), concentrations of insulin and glucose in maternal and fetal plasmas and of growth hormone in maternal plasma remained relatively constant in samples collected every 30 min for 3 h. In contrast, growth hormone concentrations in fetal venous plasma were highly variable and appeared to be episodic, with pulses of 10 to 60 ng/ml in amplitude. No significant correlations were found among concentrations of insulin, glucose and growth hormone in fetal venous plasma. When samples were collected every 15 min for 4 h from cows (n = 5) on d 198 of gestation (Exp. 3), episodes of growth hormone in fetal venous plasma were irregular in amplitude and frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Forty-six beef heifers (16 to 23 mo) of two biological types (small = Red Poll-sired, large = Charolais-sired) were individually fed from d 90 of gestation through parturition to evaluate the effects of nutritional restriction on plasma LH and steroid hormone concentrations. Heifers were allotted to one of two nutritional treatments to achieve a BW reduction (loss, fed at 1% of BW/d) or to maintain initial BW (maintenance, fed 1.5% of BW/d) to parturition. Gonadotropin-releasing hormone (100 micrograms) was injected i.m. three times during gestation (d 130; d 200; d 270) and twice after parturition (d 1 to 14; d 23 to 36). Blood samples were collected at 20-min intervals after GnRH for 4 h. Maternal BW change from d 90 to parturition differed (P less than .01) between loss and maintenance heifers. Mean plasma progesterone concentrations were greater (P less than .05) at d 130 and 270 of gestation in small than in large heifers and were greater (P less than .01) at d 23 to 36 postpartum in maintenance than in loss heifers. Mean concentrations of estrone and estradiol were greater (P less than .05) in large than in small heifers at d 200 of gestation. Mean plasma LH concentrations following GnRH injection were greater (P less than .01) in loss than in maintenance heifers at 200 and 270 d of gestation. Metabolizable and retained energy were related inversely to LH release during mid and late gestation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Effects of pituitary stalk-transection on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) prolactin (PRL) and progesterone were investigated during the estrous cycle of ewes. Pituitary stalk (SS) or sham (SH) transection was performed on day 1 (estrus = day 0) of the estrous cycle. A Teflon or Silastic barrier was placed between the cut ends of the stalk to prevent reorganization of the portal vasculature. Immediately following surgery, pulsatile administration of gonadotropin releasing hormone (GnRH, 200 ng/hr) or .9% NaCl was initiated and continued for the duration of the experiment. Estradiol benzoate (EB, 50 μg im) was administered to all ewes on day 3. Mean concentrations of LH were greater in SS ewes than in SH ewes (P<.05). There was a trend (P=.06) for the concentration of LH to be higher in ewes with Teflon compared with Silastic barriers between the cut ends of the stalk. Infusion of GnRH elevated concentrations of LH in both SS and SH ewes (P<.05). Concentrations of progesterone were reduced (P<.01) in saline-infused SS ewes while infusion of GnRH in SS ewes maintained concentrations of progesterone similar to saline-infused SH ewes. The concentrations of FSH or PRL were unaffected by SS, type of barrier or treatment with GnRH. Administration of EB failed to induce a surge of LH except in a SH ewe infused with GnRH. Ewes were more responsive to infusion of GnRH following SS than after SH as reflected by increased plasma concentrations of LH and progesterone.  相似文献   

8.
The interaction among exogenous estradiol-17 beta, naloxone and gonadotropin releasing hormone (GnRH) in the control of luteinizing hormone (LH) secretion was studied in intact postpartum ewes nursing their offspring. One-half of 30 fall-lambing ewes were implanted subcutaneously with an estradiol-17 beta containing Silastic capsule between postpartum d 1 and 12 which doubled their serum concentrations of estradiol (16.0 +/- .1 vs 8.4 +/- .1 pg/ml). Blood samples were collected from implanted and non-implanted ewes at 15-min intervals for 5 h on d 3, 8, 13, 20 and 28 postpartum. Pre-injection samples were collected for 1 h, and ewes were injected with saline, naloxone (NAL;1 mg/kg) or GnRH (100 micrograms/ewe). When averaged across all days and implant groups, serum LH in the three post-NAL samples was higher (P less than .05) than in the three pre-NAL samples (3.6 +/- 1.2 vs .6 +/- .2 ng/ml). Post-GnRH concentrations of serum LH were lower (P less than .05) in estradiol-implanted ewes than in non-implanted ewes on d 8 and 13, but there were no differences in any LH characteristics on d 20 and 28 after implant removal on d 12. In non-implanted ewes, serum LH responses to GnRH increased (P less than .05) eightfold from d 3 (3.8 +/- 1.4 ng/ml) to d 8 (31.6 +/- 1.4 ng/ml), remained elevated through d 20, but declined by d 28 (10.8 +/- 1.4 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To determine the effects of maternal Se intake and plane of nutrition during mid or late gestation or both on AA concentrations and metabolite concentrations in the dam and fetus, pregnant ewe lambs (n = 64) were assigned to 1 of 8 treatments arranged in a 2 × 2 × 2 factorial array: Se level [initiated at breeding; adequate (ASe; 3.05 μg/kg of BW) or high (HSe; 70.4 μg/kg of BW)] and nutritional level [100% (control; CON) or 60% (restricted; RES) of NRC recommendations] fed at different times of gestation [d 50 to 90 (mid) or d 91 to 132 (late)]. A blood sample was obtained from each ewe and fetus on d 132 of gestation and used to measure circulating concentrations of glucose, NEFA, blood urea N, and AA. The late RES ewes and their fetuses had less (P ≤ 0.03) circulating glucose compared with late CON ewes and fetuses at d 132; however, no effect (P ≥ 0.14) of diet on the fetal:maternal glucose concentration ratio was observed. Late RES ewes had a smaller (P = 0.01) fetal:maternal NEFA ratio compared with late CON ewes. Ewes fed ASe had a greater (P = 0.01) fetal:maternal blood urea N ratio compared with HSe ewes. Fetal:maternal ratios of total circulating AA, total essential AA, and total nonessential AA were each affected (P ≤ 0.03) by the combination of Se treatment and late gestation nutritional level.  相似文献   

10.
Experiments were conducted to characterize the ability of the antiestrogen enclomiphene (ENC) to block the effects of estradiol on secretion of LH in ovariectomized ewes. To determine whether ENC could block an estradiol-induced LH surge, ewes (n = 4/group) were administered 10 to 250 mg ENC followed 30 min later by 25 micrograms estradiol. Ten or 25 mg ENC suppressed the estradiol-induced LH surge in one of four ewes, whereas 100- or 250-mg doses suppressed the LH surge in three and four of four ewes, respectively. In ewes that received a single treatment of 100 mg ENC plus 25 micrograms estradiol, serum concentrations of LH remained below 1 ng/ml for 3 wk. Compared with untreated ewes, the number of pituitary GnRH receptors was elevated (P less than .05) at 12 d and 28 d, but pituitary content of LH had decreased (P less than .05) by 28 d in ewes treated with 100 mg ENC. To determine whether ENC could block the inhibitory effects of estradiol on serum concentrations of LH, ewes received injections of .03, .1, 1 or 10 mg ENC every 4 d. Half the ewes treated with each dose also received estradiol implants. Injection of .03, .1 or 1 mg ENC alone did not affect serum concentrations of LH, whereas the 10-mg dose decreased serum concentrations of LH below 1 ng/ml by wk 1 of treatment. No dose prevented the inhibition of serum concentrations of LH caused by estradiol implants. In ovariectomized ewes, ENC was antagonistic to estradiol; it prevented the positive effects of estradiol required to induce an LH surge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The objectives of this study were to determine 1) the ability of charcoal-extracted bovine follicular fluid (bFF) to suppress endogenous follicle stimulating hormone (FSH) at various stages of the estrous cycle and 2) the effects of suppression of FSH on luteal function and lengths of the current and subsequent estrous cycles. Twenty-six mature ewes were assigned randomly to receive 5 ml of either bFF or saline, subcutaneously, at 8-h intervals on d 1 through 5 (bFF n = 6; saline n = 3), d 6 through 10 (bFF n = 6; saline n = 3) or d 11 through 15 (bFF n = 6; saline n = 2) of the estrous cycle (d 0 = estrus). Blood was collected daily beginning at estrus and continued until the third estrus (two estrous cycles) or 40 d; more frequent samples were collected 2 h prior to initiation of treatment (0600), hourly for the first 8 h of treatment, then every 4 h until 0800 on the first day after treatment, and finally at 1600 and 2400 on that day. Plasma concentrations of FSH were lower (P less than .001) in bFF-treated than in saline-treated ewes. Treatment with bFF reduced (P less than .05) plasma concentrations of progesterone during the current but not during the subsequent estrous cycle. Treatment with bFF did not affect plasma concentrations of estradiol-17 beta. Administration of bFF on d 11 through 15 of the estrous cycle lengthened the interval from the decline in progesterone to estrus and the inter-estrous interval by approximately 3 and 4 d, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Mature beef cows were slaughtered at 5 (n = 6), 10 (n = 6), 20 (n = 6) or 30 (n = 5) d after calving to identify endocrine events that may affect the duration of postpartum anestrus. Additional cows (n = 6) were slaughtered 12 to 14 d after their first postpartum estrus (luteal phase cows). Anterior pituitary concentrations of luteinizing hormone (LH) were low at d 5 (383 +/- 69 micrograms/g), averaged 445 +/- 103 and 682 +/- 207 micrograms/g at d 10 and 20, respectively, and were elevated (P less than .05) by d 30 (1,097 +/- 174 micrograms) to a concentration similar to luteal phase cows (1,208 +/- 148 micrograms/g). Concentrations of follicle-stimulating hormone (FSH) averaged 12.4 +/- 1.1, 9.6 +/- 2, 8.6 +/- 1.8 and 7.4 +/- 3.3 mg/g at d 5, 10, 20 and 30, respectively. Affinity (1.6 +/- .2 X 10(9) M-1) of anterior pituitary receptors for the GnRH (gonadotropin-releasing hormone) analog (DAla6; des-Gly10, [D-Ala6]-LH-RH ethylamide) and weights (2.1 +/- .1 g) of the anterior pituitaries did not differ among groups (P greater than .05). Number of receptors for GnRH averaged 37 +/- 7, 39 +/- 9, 25 +/- 5 and 23 +/- 5 X 10(-14) M/mg protein at d 5, 10, 20 and 30, respectively. Anterior pituitaries from luteal phase cows contained 22 +/- 2 X 10(-14) M/mg protein of receptors for GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Mature Hereford cows (n = 28) were used to determine the effect of percentage body fat on secretion of LH and content of GnRH in the infundibular stalk-median eminence (ISME). Cows were fed to maintain, lose, or gain weight to achieve body condition scores (BCS; 1 = emaciated; 9 = obese) of 3 to 7. Then cows were fed to maintain weight and body condition. Before slaughter, estrus was synchronized using two injections of prostaglandin F2 alpha(PGF) 11 d apart. Five d after the second PGF injection, cows were given 100 micrograms of GnRH (im) and serum samples were obtained. LH was quantified using RIA. The anterior pituitary and ISME were obtained within 45 min of death. Anterior pituitary weight and LH concentration, total GnRH in the ISME, total carcass fat, and percentage carcass fat were determined. BCS of cows at the time of slaughter influenced percentage carcass fat (P less than .001), total GnRH in the ISME (P less than .02), and maximum LH after GnRH treatment (P less than .09), but did not influence pituitary weight or concentration of LH in the pituitary. Content of GnRH in the ISME averaged 76 +/- 12, 32 +/- 14, 27 +/- 13, and 24 +/- 13 ng for cows with BCS of 3, 5, 6, and 7, respectively. BCS was correlated (P less than .001) with percentage carcass fat (r = .94) and total fat in the carcass (r = .92). Total GnRH in the ISME was negatively correlated (P less than .005) with BCS (r = -.54), percentage carcass fat (r = -.55), and total carcass fat (r = -.49).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In three experiments, we examined the effects of suckling, progestogen treatment, hysterectomy or exogenous gonadotropin releasing hormone (GnRH) on ovarian function in autumn-lambing, postpartum ewes. In each experiment, GnRH was injected on approximately d 25 postpartum. Suckling reduced (P less than .01) GnRH-induced release of luteinizing hormone (LH) but not of follicle stimulating hormone (FSH), and reduced (P less than .05) the proportion of ewes that developed corpora lutea in response to GnRH. Suckling had no effect on duration (8.8 d) of GnRH-induced luteal phases. Progestogen prior to GnRH increased (P less than .01) the duration of the first luteal phase (10.1 vs 7.6 d; progestogen-treated ewes vs control ewes), but progestogen did not affect the release of LH or FSH. Progestogen treatment did not alter the interval from parturition to the first detected estrus (42.6 d). The concentration of 13,14-dihydro-15-keto-PGF2 alpha (PGFM) just after lambing was greater than 400 pg/ml of jugular plasma, but concentrations of PGFM declined thereafter. Hysterectomy the day after lambing hastened (P less than .001) the decline in concentrations of PGFM, indicating that prostaglandins from the postpartum uterus probably caused the high concentrations of PGFM in jugular plasma. Hysterectomy reduced (P less than .05) the interval from parturition to detectable luteal function (19.6 vs 25.3 d) and enhanced (P less than .001) luteal production of progesterone. This study of autumn-lambing ewes indicates that the uterus has a negative effect on ovarian function and that suckling and progestogen affect ovarian response to GnRH.  相似文献   

15.
Two experiments were conducted in ovariectomized, pituitary stalk-transected ewes to determine if dopamine (DA), norepinephrine (NE) or serotonin (5-HT) alter secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL). In experiment 1, ewes were infused (iv) with saline (control), DA (66 micrograms/kg/min), NE (6.6 micrograms/kg/min) or 5-HT (6.6 micrograms/kg/min). Treatments did not alter pulse frequency, but 5-HT increased (P less than .05) amplitude of pulses of LH and mean concentrations of LH, DA and NE were without effect on basal secretion of LH. DA but not NE or 5-HT decreased (P less than .05) the release of LH in response to gonadotropin hormone-releasing hormone (GnRH, 25 micrograms, im). Concentrations of FSH were not affected by treatments. Secretion of PRL was reduced (P less than .05) by treatment with DA and NE but not 5-HT. Each amine reduced (P less than .05) the release of PRL in response to thyrotropin-releasing hormone (TRH; 3 micrograms, im). In experiment 2, ewes were given DA at doses of 0, 0.66, 6.6 or 66.0 micrograms/kg/min, iv. No dose altered basal LH, but each dose reduced (P less than .05) basal and TRH-induced release of PRL. Key findings from these studies include direct pituitary action for: (1) 5-HT enhanced basal secretion of LH, (2) suppression of GnRH-induced secretion of LH by DA. (3) DA and NE inhibition of PRL secretion, and (4) DA, NE and 5-HT inhibition of release of PRL in response to TRH.  相似文献   

16.
Studies were conducted to compare continuous vs pulsatile i.v. infusion of GnRH on serum gonadotropin concentrations and ovulation in seasonally anestrous mares and in cycling mares. Anestrous mares (Exp. 1) received no treatment (control; n = 3), 2, or 20 micrograms of GnRH/h continuous infusion (CI) (n = 4 and n = 6, respectively), or 20 micrograms of GnRH/h pulsatile infusion (PI) (n = 5). After initiation of GnRH infusion, serum LH levels increased earlier, and to a greater extent, in the PI group than in other groups (P less than .05). In contrast, serum FSH concentrations did not differ among groups. The number of days to development of the first 35-mm follicle was not different among GnRH treatment groups; however, mares receiving PI ovulated on d 9.4 of treatment, 2.8 d earlier than those receiving 20 micrograms of GnRH/h CI (P less than .05). Mares given 2 micrograms of GnRH/h CI failed to ovulate spontaneously after 16 d of treatment, but each one ovulated within 2 to 4 d after injection of 2,000 IU of hCG on d 16. Control mares did not ovulate or show any significant follicular development throughout the experiment. Cycling mares (Exp. 2) received no treatment (control; n = 6), 20 micrograms of GnRH/h CI, or 20 micrograms of GnRH/h PI (n = 4) beginning on d 16 of an estrous cycle (d 0 = day of ovulation). Serum LH concentrations in all groups increased after initiation of treatment; however, on the day of ovulation LH concentrations were lower in the CI group than in the PI or control groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mature pregnant crossbred ewes (n = 90) were used in a randomized complete block design and assigned to 1 of 3 winter-feeding systems differing in primary feed source: haylage (HL), limit-fed corn (CN), or limit-fed dried distillers grains (DDGS). Effects of these winter-feeding strategies on ewe and lamb performance were determined. Diets were formulated to meet or exceed NRC (1985) nutrient requirements during gestation and were fed from about d 60 of gestation until parturition. All ewes were fed a common diet postpartum. Every 2 wk during gestation, BW and BCS were collected and diets were adjusted to maintain similar BW gain for ewes fed CN and DDGS vs. HL. At 80 and 122 d of gestation, jugular blood samples were collected at 0, 3, 6, and 9 h postfeeding to measure plasma glucose, insulin, NEFA, and blood urea nitrogen concentrations. At birth, 6 lambs per treatment were killed to measure body composition. At 28 ± 2 d postpartum, milk yield was measured. Lambs were weaned at 61 ± 4 d of age. During mid gestation (d 60 to 115), BW gain of ewes was similar among treatments; however, at d 115 of gestation ewes fed HL had a smaller (P = 0.04) BCS than ewes fed DDGS or CN. Plasma glucose concentrations were greater (P ≤ 0.004) in ewes fed CN than in those fed HL or DDGS just before feeding on d 80 and 122 of gestation, whereas ewes fed DDGS vs. CN or HL had greater (P ≤ 0.04) plasma insulin concentrations at 3 h postfeeding. At parturition, ewe BW was greatest for DDGS, least for HL, and intermediate for CN (P ≤ 0.003). Ewes fed CN and DDGS had greater BCS at parturition than those fed HL, but by weaning, ewes fed DDGS had greater BCS (P ≤ 0.05) than those fed CN or HL. Birth BW tended (P = 0.09) to be heavier for lambs from ewes fed CN and DDGS than from those fed HL prepartum, but there was no difference (P = 0.19) due to ewe gestation diet on lamb BW at weaning. At birth, lamb muscle, bone, organ, and fat measures were not affected (P > 0.13) by treatment. Ewe milk production and lamb preweaning ADG were also similar (P > 0.44) among treatments. Prepartum dam winter feed source did not have detrimental effects on pre- or postpartum ewe performance, but altered prepartum maternal nutrient supply during gestation, which affected birth weight but not preweaning growth or mortality.  相似文献   

18.
This study utilized maternal undernutrition from early to midgestation in the ewe to determine the impact(s) of intrauterine growth restriction on postpartum growth of male offspring and the potential mechanisms involved. Multiparous ewes were fed 50% (nutrient-restricted) or 100% (control-fed) of their nutrient requirements (NRC, 1985) between d 28 and 78 of gestation, and then all ewes were fed 100% of the NRC requirements from d 79 through lambing. Male lambs born to nutrient-restricted (n = 9) and control-fed (n = 9) ewes exhibited similar BW (5.8 vs. 6.0 +/- 0.3 kg) and crown-rump lengths (53.8 vs. 55.4 +/- 1.0 cm) at birth. At 63 and 250 d of postnatal age, wether lambs were subjected to a glucose tolerance test, in which a bolus of glucose was administered i.v. to evaluate changes in glucose and insulin concentrations. After i.v. glucose administration at 63 d of age, lambs from nutrient-restricted ewes exhibited a greater area under the curve for glucose (AUCg; 6,281 vs. 5,242 +/- 429; P < 0.05) and insulin (AUCi; 21.0 vs. 8.6 +/- 1.9; P < 0.001) than lambs from control-fed ewes. After glucose administration at 250 d of age, lambs from nutrient-restricted ewes had greater AUCg (7,147 vs. 5,823 +/- 361; P < 0.01) but a lower AUCi (6.4 vs. 10.2 +/- 1.9; P = 0.05) than lambs from control-fed ewes. Lambs from nutrient-restricted ewes were heavier (26.6 vs. 21.8 +/- 2.3 kg; P < 0.05) and had more backfat (0.30 vs. 0.21 +/- 0.03 cm, P < 0.05) by 4 mo of age than the lambs from control-fed ewes. At slaughter at 280 d of age, lambs from nutrient-restricted ewes remained heavier than lambs from control-fed ewes, had greater (P < 0.05) amounts of kidney and pelvic-area adipose tissue, and tended (P < 0.10) to have reduced LM and semitendinosus muscle weights as a percentage of HCW. These data demonstrate that a bout of maternal undernutrition during early to midgestation in sheep increased BW and fat deposition during adolescence and dysregulated glucose uptake in the absence of any change in birth weight.  相似文献   

19.
The effects of unilateral ovariectomy on ovarian compensatory hypertrophy (OCH), endocrine profiles and the pituitary response to gonadotropin releasing hormone (GnRH) were studied in 46 multiparous suckled sows. On d 20 of lactation (d 0 of experiment), sows were subjected to sham ovariectomy (Sham; n = 23) or unilateral ovariectomy (ULO; n = 23). On d 1 (n = 16), 2 (n = 15) or 8 (n = 15) following initial surgery the remaining ovaries in both Sham and ULO sows were removed. Immediately following removal of the remaining ovaries, GnRH (10 micrograms) was administered to each sow. Peripheral blood samples were taken every 10 min for 80 min beginning 20 min prior to GnRH administration. No difference in ovarian weight was observed between ULO and Sham sows until d 8, when ovarian weight was greater (P less than .05) for the remaining ovary from ULO sows (3.96 +/- .21 vs 5.91 +/- .39 g). Ovarian follicular fluid weights from ULO sows were greater (P less than .05) than Sham sows on both d 2 and 8. On d 1, plasma concentrations of follicle stimulating hormone (FSH) were greater (P less than .05) in ULO sows than in Sham sows (2.9 +/- .2 vs 2.1 +/- .1 ng/ml). Plasma FSH concentrations, however, did not differ between Sham and ULO sows on either d 2 or 8. Ovarian venous concentrations of estradiol-17 beta were also greater (P less than .05) in ULO sows compared with Sham sows on d 2 but not d 8.  相似文献   

20.
The objectives of our experiments were 1) to determine the effect of N-methyl-D,L-aspartate (NMA), an agonist of the neuroexcitatory amino acids aspartate and glutamate, on growth hormone (GH) release in ovariectomized ewes, and 2) to determine the effect of naloxone, an opioid antagonist, on the GH response to NMA. Jugular blood was collected via venipuncture at 12-min intervals for 2 h before and 2 h after i.v. injection of NMA. In Exp. 1, ewes received either 0, 6, 12 or 24 mg NMA/kg BW dissolved in .9% saline solution (n = 4 per treatment). Growth hormone concentrations were similar (P greater than .1) between groups prior to injection (9.8 +/- .7 ng/ml; mean +/- SEM) and were unaffected (P greater than .1) by saline treatment. In contrast, 6, 12 or 24 mg NMA/kg BW increased mean GH concentration by 210% (P less than .04), 273% (P less than .02) and 234% (P less than .02), respectively. In Exp. 2, ewes received NMA (6 mg/kg BW) 5 min after either saline (n = 4) or naloxone (1 mg/kg BW; n = 4) pretreatment. Serum GH concentrations averaged 7.0 +/- 1.1 ng/ml before pretreatment and increased similarly (238%; P greater than .1) in both groups following NMA. In summary, NMA increased GH concentrations in ovariectomized ewes by some mechanism that does not involve opioid receptors that are antagonized by naloxone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号