首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过混合不同类型的纳米纤维素制备混合气凝胶,分析其性能特征。将桉木纸浆经化学预处理,结合机械研磨法制备得到纤维素纳米纤丝(cellulose nanofibril,CNF),桉木微晶纤维素(MCC)经硫酸水解法制备得到纤维素纳米晶体(cellulose nanocrystal,CNC),通过透射电镜与X射线衍射仪观测发现二者具有不同的长径比和结晶度。利用悬浮滴定、叔丁醇置换、冷冻干燥等方法制备球形CNF气凝胶和CNF/CNC混合气凝胶,采用扫描电镜、傅里叶红外光谱仪、比表面积分析仪、万能力学试验机对气凝胶的微观形貌、化学官能团、比表面积、平均孔径及压缩性能进行表征,结果表明:CNF气凝胶内部呈现三维网络结构,片状与纤丝状交织,比表面积为91.07m~2/g,平均孔径为14.81 nm,受压缩到80%应变时,压缩强度为0.125 MPa;添加不同比例的CNC制备CNF/CNC混合气凝胶,当CNC添加量为25%时,气凝胶内部纤丝结构取代片状结构,孔隙更加均匀,比表面积升至143.09m~2/g,压缩强度增至0.2 MPa,化学官能团和晶型结构未发生明显变化。当CNC添加量过大(50%)时,则会造成各项性能的减弱。  相似文献   

2.
纤维素纳米纤维(cellulose nanofiber,本文缩写为CNF)因其独特的网状结构和性能特点,在增强聚合物制备复合材料方面发展迅速.简述CNF的制备及特征;然后从改善团聚、提高界面相容性的角度,介绍对CNF进行表面衍生化、表面接枝和添加偶联剂等表面化学改性研究及改性后CNF的性能特点;简述利用CNF增强聚乙烯醇、聚乳酸、环氧树脂、酚醛树脂等聚合物的研究进展;最后对CNF增强聚合物复合材料今后的主要研究方向进行展望.  相似文献   

3.
纳米纤维素晶体的制备及表征   总被引:2,自引:0,他引:2  
采用超声波辅助硫酸水解、高速离心取其上清层水溶胶的方法由微晶纤维素(MCC)制备纳米纤维素晶体(NCC),并采用场发射透射电子显微镜(FETEM)、场发射环境扫描电子显微镜(FEGE-SEM)、X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)对所制备NCC的尺寸与形态、结构、组成和光谱性质进行分析。结果表明:FETEM和FEGE-SEM观察所制备纳米纤维素晶体形态相同,呈棒状,直径和长度主要分布在2~24nm和50~450nm;XRD图谱表明NCC仍属于纤维素Ⅰ型,结晶度为77.29%,晶粒尺寸为3~6nm;FTIR分析表明所制备的纳米纤维素晶体仍然具有纤维素的基本化学结构。  相似文献   

4.
研究了一种利用硬脂酸对纳米二氧化钛(Nano-TiO_2)和纤维素纳米纤维(CNF)复合物进行有机表面修饰的新方法,主要包括纳米二氧化钛、纤维素纳米纤维的制备和利用硬脂酸对Nano-TiO_2/CNF复合体系进行有机表面修饰制得超疏水材料三个工艺过程。通过傅里叶变换红外光谱仪(FTIR)和场发射扫描电子镜(SEM)等对所得的样品进行表征,得出硬脂酸中的—COOH基团与TiO_2/CNF复合体系表面的—OH基团发生脱水反应,并将疏水性—CH_3基团引入复合体系中,复合体系表面构建的纳米级粗糙结构协同体系内引入的疏水基团使最终产物具有超疏水性。  相似文献   

5.
以微晶纤维素(MCC)为原料,通过硫酸水解得到纳米纤维素晶体(NCC),再将纳米纤维素晶体与聚乙烯醇复合共混制备聚乙烯醇/纳米纤维素晶体复合膜,研究复合膜的热学性能,同时采用场发射透射电镜(FETEM)、场发射扫描电镜(FE-SEM)、原子力显微镜(AFM)、热重分析(TG)、差示扫描量热仪(DSC)等仪器对纳米纤维素晶体及其复合膜进行表征与分析。结果表明:所制得的纳米纤维素晶体直径约2~24nm,50~450nm长,呈棒状;由FE-SEM图可观察到纳米纤维素晶体与聚乙烯醇具有良好的界面相互作用,但在较大添加量7%时,NCC出现部分团聚,与基体的相容性下降;由TG和DSC分析说明NCC与PVA基体可较好相容,形成了热稳定性较好的复合膜,但当NCC添加量较大时,由于团聚使复合膜热稳定性下降。  相似文献   

6.
以纳米纤维素(CNF)为生物质诱导剂,通过水热合成法制备了碳掺杂氧化锌(C-ZnO),通过XRD、FT-IR、SEM和DRS对C-ZnO进行了表征,并测试了C-ZnO对四环素的光催化降解性能。研究结果表明:纳米纤维素诱导制备C-ZnO时,分散性较好,晶粒尺寸减小,并实现了碳掺杂,能带宽度有所减小。与普通氧化锌相比,C-ZnO对四环素的物理吸附没有影响,但是光催化降解四环素时,降解去除速率较快。当水热温度为200℃、n(Zn~(2+))∶n(OH~-)为1∶4、硝酸锌与纳米纤维素质量比为100∶1时,制得的C-ZnO光照120 min,四环素的去除率高达96.1%。  相似文献   

7.
K-卡拉胶和纳米微晶纤维素(CNC)共混时可以得到凝胶多糖。多糖总质量分数为1%,K-卡拉胶与纳米微晶纤维素的比例为9∶1时,可达到协同相互作用的最大值。研究了pH值和体系盐离子浓度对凝胶强度的影响,并通过FT-IR光谱和Raman光谱对这两种多糖之间的相互作用机理进行了初步的探讨。  相似文献   

8.
以醋酸锌为原料、硫酸水解的纤维素纳米晶(CNC)为模板,通过沉淀法制备CNC负载ZnO纳米复合材料(CNC/ZnO),并进一步经550℃处理,得到CNC/ZnO的碳化产物(C CNC/ZnO)。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT IR)、紫外可见漫反射吸收光谱(UV Vis DRS)对其形貌结构、晶体结构、化学结构和光吸收性能进行表征,并测试其对亚甲基蓝(MB)染料的吸附 光催化性能。结果表明:CNC/ZnO纳米复合材料中,ZnO通过静电作用附着于CNC上,呈棒状及纵横交错排列,分散性得到显著提高;经550℃碳化后,ZnO仍以棒状排列方式沉积于碳化CNC上,排列方式未发生变化。引入CNC模板及碳化处理对ZnO晶体结构及光吸收性能产生重要影响,CNC/ZnO复合材料中,ZnO晶粒尺寸为8.4 nm,高于纯纳米ZnO(6.3 nm),其带隙能(Eg)为3.18 eV;C CNC/ZnO复合材料中,ZnO晶粒尺寸为7.8 nm,Eg值减小至1.75 eV。吸附 光催化性能测试表明:CNC/ZnO纳米复合材料对MB具有良好的吸附性能,黑暗条件下搅拌60 min,对MB的吸附去除率可达58%,开启光照60 min后,其对MB的吸附 光催化去除率增至88%;C CNC/ZnO复合材料对MB具有良好的吸附 光催化协同作用,黑暗下吸附60 min,对MB的吸附去除率为49%,光照60 min后,其对MB的吸附 光催化去除率可达99%。  相似文献   

9.
通过硫酸水解微晶纤维素制备纳米纤维素,分析硫酸浓度、反应温度和水解时间对纳米纤维素得率的影响,采用正交实验优化了实验参数。用场发射环境扫描电镜(ESEM-FEG)和透射电镜(HR-TEM)表征了微晶纤维素与纳米纤维素的形貌,并对其尺寸分布进行了分析。结果表明,当硫酸浓度为56%,反应温度40℃,水解时间90min时,纳米纤维素得率最高,达55.40%;电镜观察纳米纤维素呈棒状,其尺寸较微晶纤维素明显减小,直径2-24nm,长度为50-450nm。  相似文献   

10.
近年来,随着人们对于可再生生物质资源转化利用的日益重视,纳米纤维素因其独特的性质而受到广泛关注。纳米纤维素在高性能复合材料、电子产品、催化材料、生物医用材料和能源等领域的潜在应用引起了学术界和工业界的浓厚兴趣。纳米纤维素与有着近100年发展历史的石油化工产品之间的竞争将是大势所趋。林业行业、建筑业、石化行业和制造业之间的密切合作是将绿色纳米纤维素引入大型消费品市场的关键。纳米纤维素的成本和性能非常具有市场竞争力,其两大主要产品为纤维素纳米纤丝(CNF)和纤维素纳米晶体(CNC)。目前,CNF的制备主要是用化学和酶解等方法对纤维素纤维进行预处理,再通过机械解纤法来分离和减小经过预处理的CNF尺寸。CNC则是利用无机酸、有机酸、氧化、酶解、离子液体、低共熔溶剂(DES)或超临界水法对纯化纤维素处理得到的。CNF和CNC未来的市场发展将取决于新型高效溶剂体系的开发(如固体有机酸和DES等),可大量应用纳米纤维素、有效降低总体生产成本的相关产品(如纳米纤维素复合钻井液、纳米纤维素-水泥复合材料和纳米纤维素改性塑料等)的研发,以及纤维素纳米材料的相关国际标准、生理毒性和使用规范的制订,从而帮助相关部门研发和利用纤维素纳米材料。  相似文献   

11.
几种纤维素酶制剂水解和吸附性能的研究   总被引:3,自引:0,他引:3  
比较了商品纤维素酶和自产纤维素酶在蛋白组分及蛋白组分含量上存在的差异。商品纤维素酶水解稀酸预处理和蒸汽爆破预处理的玉米秸秆,其水解得率均低于自产纤维素酶。以蒸汽爆破的玉米秸秆为碳源制备纤维素酶,添加外源8 IU/g(以纤维素计)的β-葡萄糖苷酶,水解蒸汽爆破的玉米秸秆48 h,纤维素水解得率为90.08%;水解液中纤维二糖的质量浓度从17.06 g/L降低到1.12 g/L,相应葡萄糖质量浓度从21.09 g/L提高到44.01 g/L,可发酵性糖从55.28%提高到97.52%。微晶纤维素对商品酶和自产酶的吸附在30 m in达到平衡,且符合Langmu ir等温吸附方程;由Langmu ir常数分析得知两类酶均来自里氏木霉,且对微晶纤维素的亲和力相差不大。  相似文献   

12.
海绵状纤维素制品的研究进展   总被引:2,自引:0,他引:2  
海绵状纤维素制品指的是以纤维素为基本原料,通过一定方法,制备成一种类似聚氨酯海绵的产品。本文就目前世界上制备海绵状纤维素制品的方法及工业进展作了简要的综述,其中对醋酸纤维素水解法、黄原酸纤维素酯水解法、N-甲基氧化吗啉法进行了较详细的介绍,并指出了各种方法的特点。  相似文献   

13.
采用日立S-150型扫描电镜观测了山杨和速生杨纤维素的形态结构。通过观测发现,漂白浆样和未漂浆样显示了各自的某些特点。同时,探讨了原浆和水解后浆样纤维素形态结构的变化状态。  相似文献   

14.
以造纸浆渣作为原材料,用高碘酸钠氧化法制备二醛基纤维素(DAC),并利用响应面法优化了DAC的制备工艺,最后对二醛基纤维素进行高压均质化处理得到了微纤化纤维素(MFC)。实验结果表明:在反应温度48℃,氧化剂用量50%,反应时间176 min的最优工艺条件下制备的DAC醛基达到947.38μmol/g。高压均质处理60 min得到的MFC平均粒径为532 nm,结晶度为27.13%,仍然保留有纤维素的基本结构,但热稳定性有所降低。在纸浆中添加5%的MFC可使纸页的抗张强度和耐破指数分别提高了81.40%和47.41%,透气度下降约50%,不透明度稍有提高。  相似文献   

15.
不同活化方法对微晶纤维素结构和氧化反应性能的影响   总被引:9,自引:1,他引:9  
分别采用超声波与碱润胀对微晶纤维素进行活化,比较了两种方法对微晶纤维素(MCC)超分子结构和物理特性的影响,并通过与高碘酸钠的反应分析了不同活化方法对微晶纤维素选择性氧化性能的影响,初步探讨了其作用机理。结果表明,超声波作用后微晶纤维素的晶型没有发生改变,晶粒尺寸基本不变,但是超声波能使纤维素分子中的氢键受到破坏,结晶度下降,结构变得疏松,表面和内部结构受到一定的损伤,比表面积和可及度增大,反应活性提高;碱润胀后,微晶纤维素的晶型发生了改变,为纤维素Ⅰ型和Ⅱ型的混合体,但碱润胀有消晶的作用,使晶区发生破裂,晶粒尺寸大幅度下降,比表面积显著增加。两种活化方法都能显著提高纤维素的选择性氧化性能,超声波和碱润胀活化后氧化纤维素(DAC)的醛基含量分别由未活化时的71.3 %提高到85.0 %和88.8 %。  相似文献   

16.
两种硫酸酯化纤维素钠的结构和抗凝血活性研究   总被引:2,自引:0,他引:2  
硫酸微晶纤维素钠(Na-MCS)和硫酸三醋酸纤维素钠盐(Na-CAS)分别是以微晶纤维素和三醋酸纤维素为原料、CISO3-DMF硫酸化方法制备的两种硫酸酯化纤维素钠,对其分别进行了结构和抗凝血活性的研究。红外光谱分析发现,两种硫酸酯化纤维素钠均存在硫酸酯键,元素分析测得其硫酸取代度分别为1.70和0.83,13C NMR进一步揭示了Na-MCS中硫酸酯基的分布为C-6位完全取代和C-2位部分取代,Na-CAS中硫酸酯基的取代仅发生在C-6位。抗凝血活性研究表明,添加Na-MCS和Na-CAS均能延长全血复钙时问、活化部分凝血活酶时问和凝血酶时间,但Na-CAS的抗凝血活性远低于Na-MCS。将抗凝血活性突出的Na-MCS与肝素钠相比,其抗凝血活性更强。  相似文献   

17.
纤维素分解菌的筛选及鉴定   总被引:24,自引:1,他引:23  
从自然界中筛选分离获得具有高效分解纤维素功能的一组混合菌株,经分离纯化得3个菌株D1、D2和D3,利用16S rDNA测序鉴定,这些菌株分别是克雷伯氏菌、假单胞菌和嗜麦芽窄食单胞菌,比较各单个菌株及其相互混合的羧甲基纤维素(CMC)酶相对活性、以及它们对滤纸和香蕉杆的分解效果,发现各单一菌株对纤维素类物质均有一定的降解效果,但混合菌群效果最好,其CMC酶相对活性为0.93cm/d,说明多种微生物的协同作用有助于纤维素类物质分解。  相似文献   

18.
纤维素制备高吸水材料研究进展   总被引:14,自引:0,他引:14  
着眼于高吸水材料在农林业中的应用,综述了以纤维素为原料制备高吸水材料的研究发展现状,指出了最近的研究动向。  相似文献   

19.
微晶纤维素的研究与应用   总被引:4,自引:1,他引:4  
  相似文献   

20.
马来酸乙基纤维素的制备与表征   总被引:1,自引:0,他引:1  
为提高乙基纤维素的进一步应用,以乙基纤维素为原料,马来酸酐为衍生化试剂,制备了马来酸乙基纤维素,通过红外、核磁、X射线衍射、差示扫描量热(DSC)等手段对其结构及性质进行了表征,研究了反应各因素对产物取代度的影响,确定了马来酸乙基纤维素(ECMA)最佳反应条件为:马来酸酐与乙基纤维素中羟基总量物质的量之比为4:1,反应...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号