首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine if alterations in dietary intake of heifers can influence IGF-I concentrations in plasma and(or) follicular fluid (FFL), size of follicles, and steroid concentrations in FFL (as an indicator of steroidogenic capacity). Cyclic heifers [n = 23; mean +/- SE body weight (BW) = 373 +/- 7 kg] were individually fed for 10 weeks either: a) 1.8% of BW in dry matter (DM) per d (GAIN; n = 7), b) 1.1% of BW in DM per d (MAINT; n = 8) or c) 0.7% of BW in DM per d (LOSE; n = 8). After 10 wk of treatment, heifers were ovariectomized 36-40 hr after the second injection of prostaglandin F2 alpha analog (2 injections 11 d apart), and plasma and ovaries were collected. Heifers weighed 444 +/- 13,387 +/- 8 and 349 +/- 9 kg in the GAIN, MAINT and LOSE groups, respectively, at time of ovariectomy. Mean diameter of follicles greater than or equal to 10 mm was greater (P less than .05) for GAIN (15.6 mm) than for MAINT (11.0 mm) or LOSE (12.5 mm) heifers. Numbers of follicles and concentrations of IGF-I in plasma and FFL did not differ (P greater than .20) between LOSE, MAINT and GAIN heifers. Progesterone concentrations were greater (P less than .05) in small and medium follicles of GAIN than MAINT or LOSE heifers, but were unaffected by diet in large follicles. Estradiol concentrations in FFL in small, medium and large follicles were unaffected (P greater than .20) by dietary treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The objective of the present study was to evaluate changes in concentrations of free insulin-like growth factor (IGF)-I in follicular fluid (FFL) during follicle development in the mare. Mares (n = 14) were classified as either in the follicular phase (n = 8) or luteal phase (n = 6). Follicles (n = 92) were categorized as small (6–15 mm; n = 54), medium (16–25 mm; n = 23) or large (>25 mm; n = 15) and FFL was collected. Free IGF-I levels in FFL in large follicles of follicular phase mares were greater (P < 0.05) than in large follicles of luteal phase mares and small or medium follicles of luteal and follicular phase mares. Free IGF-I concentrations were greater (P < 0.05) in large follicles of luteal phase mares than small but not medium follicles of luteal phase mares. FFL ratio of estradiol:progesterone paralleled changes in free IGF-I. Free IGF-I concentrations were negatively correlated (P < 0.05) with insulin-like growth factor binding protein (IGFBP)-2, -4 and -5 but not IGFBP-3 levels. In addition, free IGF-I concentrations in FFL were positively correlated (P < 0.01) with FFL estradiol, progesterone, androstenedione, estradiol:progesterone ratio, total IGF-I and total IGF-II. We conclude that increases in intrafollicular levels of bioavailable (free) IGF-I are associated with increased steroidogenesis in developing mare follicles.  相似文献   

3.
Sixteen barrows and gilts (sex effects were balanced within treatment, but not included in the model for analysis) were used in a 2 (porcine somatotropin; 2 mg.animal-1.d-1 vs control) X 2 (10% dietary fat vs control) X 4 (time postmortem; 0, 3, 6, and 24 h) factorial treatment array to evaluate the effects of porcine somatotropin (pST) administration and level of dietary fat intake on the functional and textural characteristics of the semimembranosus muscle during the first 24 h postmortem. Porcine somatotropin administration resulted in a decrease (P less than .05) in muscle tenderness, an increase (P less than .05) in chilled carcass weight, and an increase (P less than .08) in longissimus muscle area. The pH values were lower over time with elevated levels of dietary fat, but pST resulted in no alterations in muscle pH. The R-values (the ratio of inosine to adenine nucleotides) were unaffected by pST or by level of dietary fat, but the combination of the two resulted in an increase in moisture binding capabilities. It could be concluded from the present study that pST and increased level of dietary fat result in an alteration of certain functional (tenderness) and textural (water binding ability and cooking losses) characteristics of the porcine semimembranosus muscle.  相似文献   

4.
To determine whether long-term administration of growth hormone (GH)-releasing factor (GRF) and(or) thyrotropin-releasing hormone (TRH) alters ovarian follicular fluid (FFL) concentrations of insulin-like growth factor-I (IGF-I), progesterone, and estradiol (E2), and follicular growth, Friesian x Hereford heifers (n = 47; 346 +/- 3 kg) were divided into the following four groups: control (vehicle; n = 11); 1 micrograms GRF (human [Des NH2 Tyr1, D-Ala2, Ala15] GRF [1-29]-NH2).kg-1 BW.d-1 (n = 12); 1 microgram TRH.kg-1 BW.d-1 (n = 12); or GRF + TRH (n = 12). Daily injections (s.c.) continued for 86 d. On d 89, heifers that had been synchronized were slaughtered and ovaries were removed. Follicles were grouped by magnitude of diameter into the three following sizes: 1 to 3.9 mm (small, n = 55), 4.0 to 7.9 mm (medium, n = 63), and greater than or equal to 8 mm (large, n = 71). Growth hormone-releasing factor and(or) TRH did not affect (P greater than .10) IGF-I concentrations in FFL of any follicle size group. Growth hormone-releasing factor increased (P less than .06) size (means +/- pooled SE) of large follicles (14.7 vs 13.0 +/- .6 mm). Growth hormone-releasing factor also increased (P less than .05) progesterone concentrations 4.4-fold above controls in FFL of medium-sized follicles but had no effect on progesterone in FFL of the small or large follicles. Thyrotropin-releasing hormone did not alter FFL progesterone or E2 concentrations in any follicle size group. We conclude that the GRF and(or) TRH treatments we employed did not affect intra-ovarian IGF-I concentrations, but GRF may alter steroidogenesis of medium-sized follicles and growth of large follicles.  相似文献   

5.
Four experiments using 580 barrows and 580 gilts (Study 1) and seven experiments using 500 barrows and 500 gilts (Study 2) were conducted at various geographical locations in the United States to determine the dose response of a pelleted form of porcine somatotropin (pST) relative to ADG, feed/gain (F/G), and percentage of carcass protein. Average initial weights for Studies 1 and 2 were 67.6 and 72.6 kg, respectively, and four pigs/pen were slaughtered when they achieved weights of 106.5 to 111.0 kg. In Study 1, pigs were implanted subcutaneously with pelleted pST doses of 0, 12, 24, 36, or 48 mg/wk and self-fed a corn-soybean meal diet containing 13.75% CP. Study 2 included two control groups self-fed a diet containing either 13.75 or 17% CP with added lysine. The pST-treated pigs were administered 12, 24, or 36 mg/wk, and all were offered the 17% CP diet. The pST treatments in Study 1 resulted in a linear reduction (P less than .05) in average daily feed intake (ADFI) and a quadratic (P less than .05) improvement in F/G and percentage of carcass protein. The pST treatments in Study 2 resulted in a linear reduction in ADFI (P less than .05), a linear improvement in F/G, and a quadratic increase in the percentage of carcass protein (P less than .05). Average daily gain was not affected in either study with this form of pST. The greatest increase in efficiency of lean gain was observed with the 36-mg dose for both Study 1 (9.4%) and Study 2 (10.8%). In Study 1, the force required to shear cores of the longissimus muscle was increased linearly with pST treatment (P less than .05). There was a similar linear increase in Study 2 with pST treatment (P less than .05); however, there was also an effect of sex (P less than .05) on shear force (gilts greater than barrows) that was similar in magnitude to that observed for pST treatment. Differences in sensory evaluation because of pST were minor and of the same magnitude as those observed between barrows and gilts. It was therefore concluded that weekly administration of pST improved F/G and percentage of carcass protein with no detrimental effects on palatability of cooked lean pork.  相似文献   

6.
To determine if (1) levels of pregnancy-associated plasma protein-A (PAPP-A) mRNA and insulin-like growth factor binding protein (IGFBP) (-2, -3, -4 and -5) mRNAs differ between the dominant and subordinate follicles during the follicular phase of an estrous cycle, and (2) these differences are associated with differences in follicular fluid (FFL) concentrations of steroids (estradiol, androstenedione, and progesterone), total and free IGF-I, or IGFBPs, estrous cycles of non-lactating Holstein dairy cows (n = 16) were synchronized with two injections of prostaglandin (PGF2 alpha) 11 days apart. Granulosa cells and FFL were collected either 24 h or 48 h after the second injection of PGF2 alpha. FFL from dominant follicles had lower concentrations of progesterone (P < 0.08) and higher concentrations of estradiol (P < 0.05), androstenedione (P < 0.0001), estradiol:progesterone ratio (P < 0.0001), free IGF-I (P < 0.0001), and calculated percentage free IGF-I (P < 0.01) than large subordinate follicles. Levels of IGFBP-2, -4, and -5 in FFL were 3.0- (P < 0.05), 2.4- (P < 0.06), and 3.4-fold (P < 0.05) greater, respectively, in subordinate than in dominant follicles. IGFBP-3, IGFBP-4 and PAPP-A mRNA expression and IGF-II concentration did not differ (P > 0.10) between dominant or subordinate follicles. Levels of IGFBP-2 and -5 mRNA were severalfold greater (P < 0.05) in subordinate than dominant follicles. IGFBP-5 mRNA in granulosa cells decreased (P < 0.05) 62% to 92%, between 24h and 48 h post-PGF2 alpha. We conclude that decreased levels of IGFBP-2 and -5 mRNA in granulosa cells may contribute to the decrease in FFL IGFBP-2 and -5 protein levels of preovulatory dominant follicles, and that changes in granulosa cell IGFBP-3 and -4 mRNA and PAPP-A mRNA levels do not occur during final preovulatory follicular development in cattle.  相似文献   

7.
Forty barrows (77.9 +/- 5.5 kg BW) were allotted to one of five treatment groups to examine the effects of various doses of human growth hormone-releasing factor (1-44)NH2 (hGRF) or porcine somatotropin (pST) administered twice daily on serum hormones and metabolites, performance and carcass traits. Barrows were injected s.c. with either a placebo, 10 micrograms hGRF.kg BW-1.12 h-1, 20 micrograms hGRF.kg BW-1.12 h-1, 20 micrograms pST.kg BW-1.12 h-1 or 40 micrograms pST.kg BW-1.12 h-1 for a 36-d growth trial. Blood samples were collected from 13 barrows at intervals for 360 min after injection on d 21. Compared with the placebo, 10 micrograms hGRF.kg-1.12 h-1 increased (P less than .01) serum pST and insulin and decreased (P less than .001) urea N. Injecting 20 micrograms hGRF/kg.12 h-1 elevated (P less than .001) serum pST, insulin and insulin-like growth factor-I (IGF-I) but lowered (P less than .001) urea N. Exogenous pST increased (P less than .001) serum pST, insulin, IGF-I and glucose but decreased (P less than .001) urea N. Growth rate tended to increase, and feed intake and feed/gain decreased, in a dose-related manner in response to hGRF. Also, pigs receiving 10 or 20 micrograms hGRF.kg-1.12 h-1 had reduced (P less than .1) backfat and increased (P less than .1) loineye area and percentage lean in the ham compared with pigs receiving the placebo. At equal doses, pST elicited more dramatic improvements in performance and carcass criteria than did hGRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Exogenous somatotropin alters IGF axis in porcine endometrium and placenta   总被引:1,自引:0,他引:1  
The aim of this study was to examine whether exogenous somatotropin (ST) can alter the insulin-like growth factor (IGF) axis in the porcine epitheliochorial placenta. Crossbred gilts were injected either 6 mg of recombinant porcine ST or vehicle from days 10 to 27 after artificial insemination (term day 116). Control and ST-treated gilts were euthanized on day 28 (8 control/5 treated), day 37 (4 control/6 treated), and day 62 (4 control/6 treated) of gestation. Endometrium and placental tissue samples were collected and subjected to mRNA analyses. In control gilts, somatotropin receptor (STR) and IGF-I mRNA abundance in the endometrium decreased with gestation. Conversely, the amounts of IGF-II mRNA and of IGF binding protein (BP)-2 and -3 mRNA, which were analyzed in endometrium and placental chorion, increased with gestation. The endometrium contained less IGF-II mRNA but more IGFBP-2 and-3 mRNA than the placental chorion. In response to pST treatment, the amounts of endometrial STR and IGF-I mRNA were lower at days 28 and 37, but higher at day 62 of gestation. The content of IGF-II mRNA was higher in the endometrium of pST-treated than control gilts on day 37. The amount of IGFBP-2 mRNA was increased on day 37 in endometrium and placenta of pST-treated gilts, whereas no changes in IGFBP-3 mRNA were observed. The IGF-II/IGFBP-2 ratio was higher in the placenta in response to pST on day 28 of gestation. Results show that pST treatment of pregnant gilts during early gestation alters IGF axis in maternal and fetal placental tissues and suggest pST may exert an effect on fetal growth by altering the relative amount of IGFBPs and IGFs at the fetal-maternal interface.  相似文献   

9.
Twenty cyclic gilts were injected im with either saline (control) or 1,000 IU of human chorionic gonadotropin (hCG) on d 12 of the estrous cycle to determine the effects of hCG on follicular development and steroidogenesis. Blood was collected when gilts were sacrificed on d 13 or 16. Follicles were classified as medium (3 to 6 mm in diameter) or large (greater than 6 mm diameter), dissected from the ovary, measured and weighed. Pieces of follicle wall were incubated 3 h in Krebs Ringer bicarbonate buffer (KRB) on ice in an atmosphere of air or at 37 C in an atmosphere of 95% O2:5% CO2. Unconjugated estrogen and progesterone in blood plasma, follicular fluid and 10,000 X g supernatants of incubated follicular tissue homogenates were quantified by radioimmunoassay. On d 13 follicles on ovaries of control or hCG-injected gilts were less than or equal to 6 mm in diameter. On d 16, one of five control gilts had some large follicles, while all five hCG-treated gilts had large as well as medium follicles. On d 16 follicular fluid of large follicles from hCG-injected gilts contained twofold more estrogen and 40-fold more progesterone than medium follicles on the same ovaries. Tissue from large follicles of hCG-injected gilts produced more progesterone in vitro than did tissue from medium follicles (P less than .05), but estrogen production did not differ. On d 16 medium follicles from control or hCG-injected gilts were larger, contained more estrogen and less progesterone than those recovered on d 13 (P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objectives of this study were to characterize and compare ovarian follicular populations in Gene Pool Control (GPC, randomly selected) and Relax Select line (RS, nine generations of selection for high ovulation rate followed by six generations of random selection) gilts during different stages of the estrous cycle. Thirty-five RS and 23 GPC gilts were allotted randomly within litter for ovary recovery on either d 3, 15 or 19 of the estrous cycle. Surface follicles on the ovaries were classified by size (small, less than 3 mm; medium, 3 to 6.9 mm; large, 7 to 12 mm), and counts were recorded for each ovary. Ovarian weight (OW), number of corpora lutea (CL), follicular fluid volume (FFV) from small, medium and large follicles, residual ovarian weight and follicular fluid weight (FFW) also were recorded. Total numbers of small and medium follicles were greatest on d 15, whereas total number of large follicles and FFW were greatest on d 19. The OW, FFW and follicle numbers of all classes were lowest on d 3. The RS gilts expressed longer interestrous intervals (21.9 vs 20.4 d, P less than .05) and higher ovulation rates (18.5 vs 15.3 CL, P less than .01) than GPC gilts. The left ovary of RS gilts was responsible for most of the ovulation rate advantage (10.3 vs 7.4 CL, P less than .01) Overall, GPC gilts had more total small follicles than RS gilts (P less than .01). The advantage was due primarily to higher numbers of small follicles at d 15.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Previous studies have documented the effectiveness of porcine somatotropin (pST) administered by daily injection in promoting lean tissue growth in lean and obese pigs and the influence of sex and genotype. The present study examined the accretive responses in pigs of different lines and sexes to a slow release formulation of pST (pST-SR). Implants that deliver 2.0 mg of pST/d were implanted in genetically lean and obese barrows and gilts at 65 +/- .7 kg BW (mean +/- SE). Pigs received no, one, or two implants (i.e., doses of 0, 2.0, and 4.0 mg of pST/d). Pigs (four per line x sex x dose) were housed individually and continuously supplied with fresh water and a 19% CP diet containing 1.08% lysine. Pigs were slaughtered on d 0 (four per line x sex) and at the end of the trial (approximately 42 d after implantation) for estimation of initial composition and calculation of accretion rates. Blood samples were collected at d 0, 7, 14, 28, and 42 to measure endocrine and metabolite responses to pST-SR. Sustained-release pST elevated (P < .05) circulating pST throughout the trial with peak concentrations at d 7. On d 7, serum pST concentrations in the pigs given 2.0 mg of pST-SR per day were 16-fold greater than those in control pigs, and in pigs given 4.0 mg of pST-SR per day pST concentrations were 33-fold greater than in controls. Elevated serum pST resulted in increased (P < .05) serum concentrations of insulin-like growth factor (IGF)-I, IGF-II, insulin, and glucose and in reduced (P < .05) concentrations of urea nitrogen and IGF binding protein (IGFBP)-2. Gain was not influenced by pST-SR dose; however, feed consumption was reduced (P < .05) and efficiency of gain was increased (P < .05). Accretion of all body components except cold carcass weight, cecum, and untrimmed Boston butt and ham were changed (P < .05) with pST-SR administration. Heart and stomach were the only components of the carcass and offal whose accretion was not affected by line or sex. Increases in accretion of carcass components (< 75%) induced by sustained-release pST were considerably less than those measured in the organs (liver, 157%; lungs, 748%). The pST-SR treatment resulted in elevated serum concentrations of pST and its mediators and improved efficiency and composition of gain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
To determine influences of insulin and body condition on follicular growth, prepuberal gilts (n = 16) treated with pregnant mare's serum gonadotropin (PMSG) were used in a 2 X 2 factorial experiment with main effects of insulin (0 or .4 IU/kg every 12 h beginning at 1800 on the day before PMSG) and backfat depth (moderate, 25 +/- .8; high, 32 +/- .7 mm; P less than .0001). Body weights were similar. Blood sampling was at 6-h intervals for analyses of LH, FSH, growth hormone (GH), glucagon, cortisol, insulin, insulin-like growth factor-I (IGF-I), plasma urea nitrogen (PUN), nonesterified fatty acids (NEFA), testosterone, estradiol-17 beta, and progesterone. Ovaries were removed 75 h after PMSG treatment, and visible small (less than or equal to 3 mm), medium (4 to 6 mm), large (greater than or equal to 7 mm), and macroscopically atretic follicles were counted. Administration of insulin increased IGF-I in fluid of medium follicles (108.8 vs 60.7 ng/ml; SEM = 13.3; P less than .05). Neither insulin nor fatness affected hCG binding by granulosa cells (12.5 +/- 1.6 ng/10(6) cells) or numbers of large (16.7 +/- 2.6) and medium (10.4 +/- 2.3) follicles. However, insulin increased the number of small follicles (58.9 vs 29.9; SEM = 9.7; P less than .05) and reduced the number of atretic follicles (3.8 vs 11.3; SEM = 1.1; P less than .05). The predominant effect of insulin on reducing number of atretic follicles was in the small size class (.6 vs 6.9; SEM = .6, P less than .01). Follicular fluid estradiol and progesterone were not affected by treatments; however, testosterone concentrations in large follicles were lower in gilts with higher backfat (32.5 vs 59.9 ng/ml; SEM = 4.0; P less than .05). Systemic LH, FSH, glucagon, cortisol, PUN, NEFA, estradiol, and testosterone were not affected by insulin or level of feeding. However, GH was lower in gilts that had higher backfat (overall average of 3.2 vs 2.8 ng/ml; SEM = .1; P less than .05). Insulin reduced atresia and altered intrafollicular IGF-I independently of body condition and without sustained effects on other hormones.  相似文献   

13.
The dose-dependent effects of porcine somatotropin (pST) on cellular aspects of skeletal muscle growth, muscle composition and measures of pork quality were investigated in growing barrows and gilts. Eighty crossbred pigs weighing 46 kg were assigned randomly to receive daily subcutaneous injections of 0, 30, 60, 120 or 200 micrograms pST/kg BW until they weighed 100 kg. Semitendinosus muscle weights were increased with pST dose (linear, P less than .001) by 21%. Percentage of type I and type II muscle fibers was not changed with pST, but cross-sectional area of type I and type II fibers was increased in parallel with muscle weight. Percentage of moisture increased (P less than .01) and percentage of lipid decreased (P less than .01) as pST dose increased. The pH of the longissimus 24 h postmortem increased (P less than .01) .1 to .2 units with increasing pST dose, but subjective evaluation for color, firmness and wateriness of the longissimus indicated no discernible treatment effect. Gardner color difference meter "Rd" and "A" values decreased (P less than .01) with a pST dose of 60 micrograms/kg or more, signifying a slightly darker and less red color, respectively, of the longissimus muscle. Weight loss of loin chops 2.54 cm thick cooked to 71 degrees C (20.3% to 23.7%) and shear force of cores 1.27 cm in diameter (2.89 to 3.76 kg) were not related to pST treatment or dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ninety-six pigs were used to investigate the relationship of diet (control vs fat-supplemented with equal energy:protein ratios), porcine somatotropin (pST) administration (non-treated; 2 mg/d, daily injection; and 2 mg/d, 6-wk implant), and sex (barrows and gilts) to performance and carcass characteristics. Diet and pST treatments were initiated at 87 kg of BW and continued for 38 d. Both the fat-supplemented diet (P less than .001) and pST treatment (P less than .0001) improved feed efficiency. The effects of diet were accounted for by differences in energy density of the diets. Across diets, pST improved gain:feed ratio by 29 and 16% in pigs treated by daily injection and the implant, respectively; the two modes of delivery resulted in different responses (P less than .01). Circulating insulin-like growth factor I (IGF-I) levels, determined from blood samples drawn on d 35, were increased 2.5-fold above those of controls in pigs treated by either daily injection or the implant. However, the elevation of glucose and decrease in blood urea nitrogen concentrations in response to pST were of a greater magnitude in pigs treated by daily injection. Similarly, reductions in backfat thickness and the rate of backfat accretion determined by ultrasound were greater in response to the daily injection of pST than in response to the implant. Lean meat ratio, calculated from measurements with a Fat-O-Meater probe, was increased by 6 and 13% by the implant and daily injection, respectively. It is concluded that although the use of an implant that delivers pST on a continuous basis was as effective as the same dose administered as a bolus injection for increasing IGF-I levels, it was less effective in improving feed efficiency and carcass quality.  相似文献   

15.
Thirty-four gilts in two experiments were fed altrenogest for 18 d to block spontaneous growth of ovulatory follicles after luteolysis. They were injected with estradiol or charcoal-extracted porcine follicular fluid (pFF) to determine 1) whether gonadotropin secretion could be depressed and 2) whether exposure to reduced levels of gonadotropins would result in decreased numbers of medium follicles (3 to 6 mm in diameter). Gilts in Exp. 1 received treatments in a 2 X 2 X 2 factorial arrangement starting 48 h before the last feeding of altrenogest. Corn oil or estradiol (2 micrograms/kg body weight), 5 ml of charcoal-extracted porcine serum (pS) or pFF were injected im four times at 8-h intervals and gilts were sacrificed 24 or 96 h after last feeding of altrenogest. In Exp. 2, gilts received one of four treatments consisting of 1) pS, injected iv nine times at 8-h intervals starting 48 h before the last feeding of altrenogest; 2) pFF, with injection protocol the same as for pS; 3) estradiol injected im three times and 4) four times at 8-h intervals starting 0 and 24 h, respectively, before the last feeding of altrenogest. Compared with pS or corn oil, estradiol increased (P less than .001) plasma estrogen and decreased (P less than .05) plasma luteinizing hormone (LH) without a significant effect on plasma follicle stimulating hormone (FSH). Estradiol, compared with corn oil, decreased (P less than .01) the number of medium follicles from 24.8 to 0/gilt and decreased (P less than .05) the weight of ovarian follicular fluid from 4.2 to 2.1 g/gilt at 72 h after the first injection. Five milliliters of pFF had no significant effect on plasma gonadotropins or number of medium follicles. However, 20 ml of pFF, compared with pS, decreased (P less than .05) plasma FSH from 45 ng/ml to 9 ng/ml 32 h after the first injection, had no effect on plasma LH, decreased (P less than .01) the number of medium follicles from 29.2 to 2.2/gilt and decreased (P less than .01) follicular fluid weight from 3.9 to 1.6 g/gilt by 72 h after the first injection. These results indicate that estradiol or a non-steroidal component of follicular origin can decrease secretion of gonadotropins and suppress recruitment of medium follicles in the pig.  相似文献   

16.
Two hundred and twenty-four pigs (112 boars, 112 gilts) housed in pens of seven pigs per pen were used in a 2 x 2 x 2 factorial design, with the factors of vaccination with a gonadotropin-releasing factor (GnRF) vaccine (Improvac; 0 or 2 mL at 13 and 17 wk of age), porcine somatotropin (pST; 0 or 5 mg/d from 17 wk of age), and gender. Pigs were weighed and feed intake was measured from 17 wk of age until slaughter at 21 wk of age. Body composition was estimated by dual-energy X-ray absorptiometry in two focus pigs per pen at 17 and 21 wk of age. Testes and ovary weights at slaughter were decreased by Improvac treatment (P < 0.001), but were not altered by pST treatment (P > 0.44). Daily gain was lower for gilts than boars (1,128 vs. 1,299 g/d, P < 0.001) and was increased by pST (1,172 vs. 1,255 g/d, P = 0.003) and Improvac (1,150 vs. 1,276 g/d, P < 0.001) treatments. Feed intake (as-fed basis) was lower in gilts than in boars (2,774 vs. 3,033 g/d, P = 0.002), was decreased by pST (3,037 vs. 2,770 g/ d, P = 0.002), and was increased by Improvac treatment (2,702 vs. 3,105 g/d, P < 0.001). As a result of the differences in feed intake and daily gain, feed conversion efficiency (gain:feed) was lower for gilts than for boars (0.403 vs. 0.427 P = 0.025), was improved by pST (0.385 vs. 0.452, P < 0.001), but was unchanged by Improvac treatment (0.423 vs. 0.410, P = 0.22). Carcass weight was lower in gilts than in boars (75.3 vs. 77.0 kg, P = 0.012), was unchanged by pST treatment (75.9 vs. 76.4 kg, P = 0.40), and was increased by Improvac treatment (75.1 vs. 77.2 kg, P = 0.003). Lean tissue deposition rate was lower in gilts than in boars (579 vs. 725 g/d, P < 0.001), was increased by pST (609 vs. 696 g/d, P < 0.001) and by Improvac treatment (623 vs. 682 g/d, P = 0.014). Fat deposition rate tended to be lower in gilts than in boars (214 vs. 247 g/d, P = 0.063), decreased by pST treatment (263 vs. 198 g/d, P < 0.001), and increased by Improvac treatment (197 vs. 264 g/d, P < 0.001). For pigs treated with both pST and Improvac, daily gain and lean tissue deposition rate was greater than for pigs that received either treatment alone, whereas fat deposition rate and feed intake did not differ from untreated control pigs. In conclusion, Improvac increased growth rate through increased lean and fat deposition, but concomitant use of Improvac and pST increased lean gain above either alone, while negating the increase in fat deposition in pigs treated with Improvac.  相似文献   

17.
The objective of this study was to determine the effects of maternal treatment with porcine somatotropin (pST) during early gestation on embryonic survival, fetal development, and internal environment for fetal growth. Sixty-two crossbred gilts received daily injections of either 3 mL of a placebo (control, n = 31) or 6 mg of pST (n = 31) from d 10 to 27 of gestation. Representative gilts were slaughtered on d 28, 37, and 62 of gestation. The remaining gilts were allowed to farrow. It was found that embryonic survival was not influenced by pST treatment (P > 0.10). However, pST affected the growth and composition of the maternal (endometrium) and fetal (chorion) parts of the placenta. Thus, endometrial RNA concentration tended to be increased by pST at d 37 (P = 0.15), and it was increased at d 62 (P < 0.05) of gestation, which is indicative of increased capacity for protein synthesis. At birth, placental chorion weight (P < 0.10) and contents of DM and protein (P < 0.05) were increased due to pST treatment, but no effects were detectable up to d 62 of gestation. Maternal pST treatment was effective at increasing nutrient supply to the embryo as suggested from elevated glucose concentrations in amniotic and allantoic fluids (P < 0.05) at d 28 of gestation. With regard to prenatal growth, embryonic DNA concentration was slightly elevated at d 28 (P < 0.10), but pST did not induce any changes in average embryonic, fetal, or neonatal weights. However, within litters, the birth weights of piglets in the 25% lowest weight group (LW) were increased by pST treatment vs control LW pigs (1,241+/-55 vs 1,099+/-59 g, P < 0.10). Thirty-eight neonates from 15 litters divided among the three weight groups were examined for body composition. The weight of the intestinal tract was increased above average after maternal pST treatment (P < 0.01). Additionally, the amounts of tissues such as bone (P = 0.12) and s.c. fat (P = 0.06), and of protein, fat (P = 0.10), and ash (P < 0.05) were increased, whereas the relative body composition remained unchanged by pST (P > 0.10). On average, muscle protein concentration was elevated due to pST (P < 0.01), and, in LW piglets, plasma IGF-I concentration was increased (P < 0.10). The results suggest that maternal somatotropin is a critical factor in early pregnancy capable of influencing placental nutrient transfer and placental growth. It thereby selectively improves the growth conditions for the smaller littermates.  相似文献   

18.
During the past 15 years, many investigators have examined the effects of somatotropin (ST) on growth and lactation in farm animals. Throughout this period, concerns about potential effects of ST on reproduction have been expressed. The objective of the present review will be to focus on the effects of exogenous ST on the hypothalamic-pituitary-gonadal axis. Plasma progesterone is increased when recombinant bovine (rb)ST is given to cattle, early in lactation, and also to sheep. Also, the release of progesterone from cultured swine and human luteal cells is increased by ST. Treatment with rbSt increases the numbers of small follicles, but does not increase the ovulatory rate of ruminants. Doses of ST similar to those used to increase milk production do not affect the secretion of testosterone or spermatogenesis in rams or bulls. Stimulatory and inhibitory effects of exogenous ST on reproductive function of gilts have been reported. Daily injections of porcine ST (pST) delayed puberty and expression of estrus after puberty. Daily administration of pST increased the number of small follicles, but not of medium follicles, whereas administration of pST by using a sustained release implant increased the number of medium follicles. Size and weight of reproductive organs and concentration of testosterone are not affected when pST is administered for at least 42 d. However, pST enhanced testicular development and spermatogenesis when given to neonatal boars. In summary, administration of exogenous ST at doses known to alter milk production and carcass composition may have subtle positive and/or negative effects on the reproductive systems of cattle and swine; however, these effects appear to be transient.  相似文献   

19.
The object of this study was to investigate the role of epidermal growth factor (EGF) and IGF-I in the regulation of preantral follicular growth, antrum formation, and granulosal cell proliferation/ apoptosis. Porcine preantral follicles were manually dissected and cultured for up to 8 d in Waymouth's (Exp. 1) or alpha-minimum Eagle's essential medium (Exp. 2 and 3) supplemented with 10 microg/mL of transferrin, 100 microg/mL of L-ascorbic acid, and 2 mU/mL of ovine FSH, in the presence (Exp. 1 and 3) or absence (Exp. 2) of 7.5% fetal calf serum. According to the experimental protocol, IGF-I (0, 1, 10, or 100 ng/mL; Exp. 1), or IGF-I (50 ng/mL), EGF (10 ng/mL) and EGF+IGF-I (Exp. 2 and 3) were added to the culture media. In Exp. 1, follicles exhibited a concentration-dependent response (P < 0.05) to IGF-I, with the highest rates of granulosal cell proliferation, follicular integrity, and recovery rate of cumulus cell-oocyte complexes and lowest incidence of apoptosis occurring at the highest IGF-I dose. In Exp. 2 serum-free medium, granulosal cell proliferation was low (1 to 5%), irrespective of whether EGF and/or IGF-I were present and cellular apoptosis was increased (P < 0.05) on d 4 and 8 in the EGF+IGF-I group compared with the addition of either factor alone. In Exp. 3, granulosal cell proliferation was high in all follicles cultured in serum-containing medium for the first 3 d, but fell sharply (P < 0.05) on d 4, except in media containing IGF-I. Collectively, EGF and IGF-I increased granulosal cell proliferation, decreased apoptosis, and promoted follicular antrum formation. These results may provide useful information for developing a preantral follicular culture system in which the oocytes are capable of fertilization and embryonic development.  相似文献   

20.
Sixteen crossbred sows (Yorkshire x Duroc) were used to determine the effect of recombinantly derived porcine somatotropin (pST) on lactational performance and the pattern of plasma metabolites and growth rate of nursing pigs. Daily s.c. injections of either pST (8.22 mg.sow-1.d-1) or excipient were administered at 1000 on d 12 through d 29 of lactation. Jugular cannulas were inserted in three sows/treatment and hourly blood samples were collected on d 11 to 13 and d 28 to 29 of lactation to determine the effect of treatment on plasma concentrations of somatotropin, glucose and nonesterified fatty acids in plasma. Milk production and weight of nursing pigs were determined pretreatment (d 9 and 10) and on d 16, 22 and 28. Milk production of sows receiving pST progressively increased above that of control sows and was 22% greater on d 28. Milk composition was not affected by treatment with pST (P greater than .10), so that the increase in yields of milk fat, lactose and solids paralleled the increases in milk yield. Total milk protein yield tended to be higher in sows receiving pST, but protein yield was greater (P less than .10) only on d 28. Pigs suckling sows treated with pST weighed .34 kg more at the end of the lactation period (P less than .05). Sows receiving pST consumed less feed (P less than .05) during the treatment period, and, as a result, lost more weight (P less than .10) and backfat (P less than .05) than control sows. Average concentrations of plasma somatotropin were elevated approximately 2.5-fold above baseline levels by exogenous pST. No acute alterations in plasma glucose or nonesterified fatty acids were observed in response to pST treatment, however, sows receiving pST had a chronic elevation of plasma glucose on d 29 of lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号