首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Applied soil ecology》2011,48(3):210-216
Labile soil organic matter (SOM) can sensitively respond to changes in land use and management practices, and has been suggested as an early and sensitive indicator of SOM. However, knowledge of effects of forest vegetation type on labile SOM is still scarce, particularly in subtropical regions. Soil microbial biomass C and N, water-soluble soil organic C and N, and light SOM fraction in four subtropical forests were studied in subtropical China. Forest vegetation type significantly affected labile SOM. Secondary broadleaved forest (SBF) had the highest soil microbial biomass, basal respiration and water-soluble SOM, and the pure Cunninghamia lanceolata plantation (PC) the lowest. Soil microbial biomass C and N and respiration were on average 100%, 104% and 75%, respectively higher in the SBF than in the PC. The influence of vegetation on water-soluble SOM was generally larger in the 0–10 cm soil layer than in the 10–20 cm. Cold- and hot-water-soluble organic C and N were on average 33–70% higher in the SBF than in the PC. Cold- and hot-soluble soil organic C concentrations in the coniferous-broadleaved mixed plantations were on average 38.1 and 25.0% higher than in the pure coniferous plantation, and cold- and hot-soluble soil total N were 51.4 and 14.1% higher, respectively. Therefore, introducing native broadleaved trees into pure coniferous plantations increased water-soluble SOM. The light SOM fraction (free and occluded) in the 0–10 cm soil layer, which ranged from 11.7 to 29.2 g kg−1 dry weight of soil, was strongly affected by vegetation. The light fraction soil organic C, expressed as percent of total soil organic C, ranged from 18.3% in the mixed plantations of C. lanceolata and Kalopanax septemlobus to 26.3% in the SBF. In addition, there were strong correlations among soil organic C and labile fractions, suggesting that they were in close association and partly represented similar C pools in soils. Our results indicated that hot-water-soluble method could be a suitable measure for labile SOM in subtropical forest soils.  相似文献   

2.
Carbon fluxes in sodic and saline soils were investigated by measuring the soil microbial biomass (SMB) and soil respiration rates under controlled conditions over 12 weeks. Gypsum (10 t/ha) and organic material, as kangaroo grass (10 t/ha), were incorporated in an acidic and an alkaline saline–sodic soils. Cumulative soil respiration rates were lowest in the sodic and saline soils without amendment, while the highest rates were found in those soils that had organic material addition. The addition of gypsum decreased the cumulative respiration rates in the 0–5 cm layer compared to the addition of organic material and the addition of organic material and gypsum. Similarly, the SMB was lowest in the sodic and saline soils without amendment and highest in the soils which had organic material addition, while the effects of gypsum addition were not significant. The low levels of respiration and SMB were attributed to the low soil organic carbon (SOC) levels that result from little or no C input into the soils of these highly degraded landscapes as the high salinity and high sodicity levels have resulted in scarcity or absence of vegetation. Following the addition of organic material to the sodic and saline soils, SMB levels and respiration rates increased despite adverse soil environmental conditions. This suggests that a dormant population of salt-tolerant SMB is present in these soils, which has become adapted to such environmental conditions over time and multiplies rapidly when substrate is available.  相似文献   

3.
《Applied soil ecology》2007,35(3):610-621
Green manuring practices can influence soil microbial community composition and function and there is a need to investigate the influence compared with other types of organic amendment. This study reports long-term effects of green manure amendments on soil microbial properties, based on a field experiment started in 1956. In the experiment, various organic amendments, including green manure, have been applied at a rate of 4 t C ha−1 every second year. Phospholipid fatty acid analysis (PLFA) indicated that the biomass of bacteria, fungi and total microbial biomass, but not arbuscular mycorrhizal (AM) fungi, generally increased due to green manuring compared with soils receiving no organic amendments. Some differences in abundance of different microbial groups were also found compared with other organic amendments (farmyard manure and sawdust) such as a higher fungal biomass and consequently a higher fungal/bacterial ratio compared with amendment with farmyard manure. The microbial community composition (PLFA profile) in the green manure treatment differed from the other treatments, but there was no effect on microbial substrate-utilization potential, determined using the Biolog EcoPlate. Protease and arylsulphatase activities in the green manure treatment were comparable to a mineral fertilized treatment receiving no additional C, whereas acid phosphatase activity increased. It can be concluded that green manuring had a beneficial impact on soil microbial properties, but differed in some aspects to other organic amendments which might be attributed to differences in quality of the amendments.  相似文献   

4.
Eight fertilization strategies were compared in a field trial on Alfisol in Belgium (humid temperate climate): cattle slurry (CSL); farmyard manure (FYM); vegetable, fruit and garden waste compost (VFG); high C/N farm compost (FCP1); low C/N farm compost (FCP2); exclusively mineral fertilizer (MIN N); no fertilization (NF+), no fertilization and no crop (NF?). After five growing seasons, VFG resulted in the highest soil organic C (1.46% SOC) and total N contents (0.117%TN). SOC and TN contents of the MIN N plots, on the other hand, remained unchanged and were even similar to those of NF+ plots, despite greater biomass production on the MIN N plots than on the NF+ plots. Application of organic matter mostly increased dehydrogenase, β-glucosidase and β-glucosaminidase activity, but only FYM raised the activity of all three enzymes significantly compared to MIN N. Of the five organic amendments tested, only VFG suppressed Rhizoctonia solani (65% suppressiveness). Plots treated with FCP1, on the other hand, were highly conducive to R. solani (28.3% suppressiveness). Suppressiveness against R. solani probably depended on the maturity and cellulose content of the organic amendments. Highest microbial biomass C contents were found in the VFG plots. PLFA 16:1ω5c contents sensitively reacted to the different treatments and were significantly higher in VFG than in MIN N plots (3.84 and 2.20 nmol g?1 dry soil, respectively). Finally, a soil quality index was developed using stepwise canonical discriminant analysis. β-glucosaminidase and β-glucosidase activity, and TN content were the most important parameters of the index. According to this index, FYM resulted in a significantly higher soil quality than the other treatments. We conclude that farmyard manure seems to be the preferred organic amendment for maintaining soil quality in arable fields under temperate climatic conditions.  相似文献   

5.
Little is know on the impact of biosolids application on soil organic matter (SOM) stability, which contributes to soil C sequestration. Soil samples were collected in 2006 at plow layer from fields that received liquid and dry municipal biosolids application from 1972 to 2004 at the cumulative rate of 1416 Mg ha−1 in mined soil and 1072 Mg ha−1 in nonmined soil and control fields that received chemical fertilizer at Fulton County, western Illinois. The biosolids application increased the soil microbial biomass C (SMBC) by 5-fold in mined soil and 4-fold in nonmined soil. The biosolids-amended soils showed a high amount of basal respiration and N mineralization, but low metabolic quotient, and low rate of organic C and organic N mineralization. There was a remarkable increase in mineral-associated organic C from 6.9 g kg−1 (fertilizer control) to 26.6 g kg−1 (biosolids-amended) in mined soil and from 8.9 g kg−1 (fertilizer control) to 23.1 g kg−1 (biosolids-amended) in nonmined soil. The amorphous Fe and Al, which can improve SOM stability, were increased by 2–7 folds by the long-term biosolids application. It is evident from this study that the biosolids-modified SOM resists to decomposition more than that in the fertilizer treatment, thus long-term biosolids application could increase SOM stability.  相似文献   

6.
We evaluated the in situ net nitrogen (N) mineralization in a soil cropped to maize and fertilized for 11 years with cattle slurry or farmyard manure, both common on livestock farms of the Po River valley in Northern Italy. The net N mineralization of the tilled soil layer was measured in six consecutive incubation periods after manure application, for a total of 12 weeks, using the polyethylene buried bags technique. Results showed that net N mineralization was followed by N immobilization and finally, by mineralization whose rate increase until maize flowering. On average, net N mineralization was 70.4 kg N ha−1, with the majority being released during the last measurement period. The time and extent of net N mineralization and plant N uptakes were not affected by fresh manure application. Instead, the effect of past management increased the maximum net N mineralization rate obtained with farmyard manure. The buried bag technique probably underestimates the total amount of mineralized N available for crop growth because it excludes the presence of the plant.  相似文献   

7.
《Soil & Tillage Research》2007,92(1-2):39-47
Manure is a source of plant nutrients and can make a valuable contribution to soil organic matter (SOM). Two experimental sites were studied on a Halpic Phaeozem soil near Bad Lauchstadt in Germany. The first experiment, called the static experiment, commenced in 1902. The impact of fresh farmyard manure (FYM) (0, 20 and 30 t ha−1 2 year−1) combined with P, K and N fertiliser application on total organic C (CT), labile C (CL), non-labile C (CNL), total N (NT), mean weight diameter (MWD) and unsaturated hydraulic conductivity (Kunsat) was investigated. The second experiment commenced in 1984 and investigated the effect of extreme rates of fresh FYM applications (0, 50, 100 and 200 t ha−1 year−1) and cropping, or a continuous tilled fallow on the same soil properties. At both sites a nearby grassland site served as a reference. On the static experiment, FYM application increased all C fractions, particularly CL, where application of 30 t ha−1 2 year−1 increased CL by 70% compared with no FYM application. Fertiliser additions to the static experiment had a positive influence on C fractions while NT increased from both FYM and fertiliser application. MWD increased as a result of FYM application, but did not reach that of the grassland site. Both fertiliser and FYM application increased Kunsat (10 mm tension) on the static experiment. In the second experiment application of 200 t ha−1 year−1 of FYM increased concentrations of CL by 173% and of CNL by 80%, compared with no FYM application to make them equivalent to, or greater than the grassland site. A continuously tilled fallow resulted in significant decreases in all C fractions, NT and MWD compared with the cropped site, while Kunsat (10 mm tension) was increased on the 0 and 50 t ha−1 year−1 treatments as a result of a recent tillage. There was no difference in Kunsat between the cropped and the continuous tilled fallow at FYM applications of 100 and 200 t ha−1 year−1. There were similar significant positive correlations of all C fractions and NT with MWD on both experimental sites but the relationships were much stronger on the extreme FYM experiment. Weaker relationships of C fractions and NT with Kunsat (10 mm tension) occurred for the static experimental site but these were not significant for the extreme FYM experimental site. The strongest relationship between C fractions and Kunsat was with CL. This research has shown that applications of FYM can increase SOM and improve soil physical fertility. However, the potential risk of very high rates of FYM on the environment need to be taken into consideration, especially since the application of organic materials to soils is likely to increase in the future.  相似文献   

8.
《Soil & Tillage Research》2007,92(1-2):57-67
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

9.
Earthworms are key regulators of soil structure and soil organic matter (SOM) dynamics in many agroecosystems. They are greatly impacted by agricultural management, yet little is known about how these factors interact to control SOM dynamics. This study sought to explore linkages between agricultural management, earthworms and aggregate associated SOM dynamics through a survey of tomato (Solanum lycopersicum L.) cropping systems in northern California. Earthworms and soil samples were collected between February and April of 2005 from 16 fields under one of three types of residue management: (1) tomato mulch – no postharvest tillage and tomato residues left on the soil surface, (2) cover crop – tomato residues tilled in and leguminous cover crop planted, and (3) bare fallow – tomato residues tilled in and soil surface left exposed throughout the winter. Earthworms were collected via hand-sorting and identified to species, while soils were wet sieved to yield four aggregate size classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm), microaggregates (53–250 μm) and the silt and clay fraction (<53 μm). The combined large and small macroaggregate fraction was then fractionated into coarse particulate organic matter (cPOM; 250 μm), microaggregates within macroaggregates (mM; 53–250 μm) and macroaggregate occluded silt and clay (Msc; <53 μm). The earthworms identified in this survey were composed entirely of exotic species and were dominated by Aporrectodea caliginosa. Earthworm abundance was related to residue management, with the tomato mulch systems averaging 4.5 times greater fresh earthworm biomass than bare fallow (P = 0.024). Aggregate stability and total soil C and N also appeared to be influenced by residue management, such that the tomato mulch system displayed significantly greater mean weight diameters than the bare fallow system (P = 0.049), as well as more than 50% greater total soil C and N (P = 0.049 and P = 0.036; respectively). Earthworm biomass was also found to be positively correlated with total soil C (P = 0.009, R2 = 0.39) and N (P = 0.010, R2 = 0.039) as well as the proportion of macroaggregate C in the cPOM fraction (P = 0.028, R2 = 0.30). Our findings suggest that residue handling and the associated management practices (e.g., tillage, organic vs. conventional agriculture) are important for both earthworm populations and SOM storage. Although earthworms are known to influence SOM in many ways, other factors appear to play a more prominent role in governing aggregate associated SOM dynamics.  相似文献   

10.
To understand the dynamics of soil organic matter (SOM) in the Eurasian steppe, several soil and meteorological properties were tested in order to estimate the amounts of potentially mineralizable organic carbon (PMC) and nitrogen (PMN). Total 41 surface soil samples were collected in Ukraine and Kazakhstan from cropland, forest, grassland, and desert ecosystems. The fresh soils were incubated for 133 days under constant temperature and moisture conditions, and the CO2 emissions and the mineral N from the soils were monitored. PMC and PMN were determined by fitting models to the cumulative curves of the CO2 and the mineral N. Tested soil properties included soil pH, sand, silt and clay contents, carbon and nitrogen contents of light fraction (LF, <1.6 g cm?3) and heavy fraction (HF), and C/N ratio of LF and HF. The meteorological properties considered were mean annual temperature and precipitation. Using multiple regression analysis with the stepwise method, PMC was well estimated by carbon content of LF (LFC) and clay content, compared to the simple correlation with organic carbon (OC). Similarly, PMN was better determined by nitrogen content of LF (LFN) and clay content. These results suggest the partially labile nature of clay-associating OM and of LFC and LFN. The higher PMC and PMN in the forest and grassland sites would be attributed to the higher LFC and LFN, while the lower LFC and LFN in cropland sites would suggest the relatively higher contribution of clay-associating OM to PMC and PMN.  相似文献   

11.
A short-term incubation study was carried out to investigate the effect of biochar addition to soil on CO2 emissions, microbial biomass, soil soluble carbon (C) nitrogen (N) and nitrate–nitrogen (NO3–N). Four soil treatments were investigated: soil only (control); soil + 5% biochar; soil + 0.5% wheat straw; soil + 5% biochar + 0.5% wheat straw. The biochar used was obtained from hardwood by pyrolysis at 500 °C. Periodic measurements of soil respiration, microbial biomass, soluble organic C, N and NO3–N were performed throughout the experiment (84 days). Only 2.8% of the added biochar C was respired, whereas 56% of the added wheat straw C was decomposed. Total net CO2 emitted by soil respiration suggested that wheat straw had no priming effect on biochar C decomposition. Moreover, wheat straw significantly increased microbial C and N and at the same time decreased soluble organic N. On the other hand, biochar did not influence microbial biomass nor soluble organic N. Thus it is possible to conclude that biochar was a very stable C source and could be an efficient, long-term strategy to sequester C in soils. Moreover, the addition of crop residues together with biochar could actively reduce the soil N leaching potential by means of N immobilization.  相似文献   

12.
《Soil biology & biochemistry》2001,33(7-8):913-919
A reliable and simple technique for estimating soil microbial biomass (SMB) is essential if the role of microbes in many soil processes is to be quantified. Conventional techniques are notoriously time-consuming and unreproducible. A technique was investigated that uses the UV absorbance at 280 nm of 0.5 M K2SO4 extracts of fumigated and unfumigated soils to estimate the concentrations of carbon, nitrogen and phosphorus in the SMB. The procedure is based on the fact that compounds released after chloroform fumigation from lysed microbial cells absorb in the near UV region. Using 29 UK permanent grassland soils, with a wide range of organic matter (2.9–8.0%) and clay contents (22–68%), it was demonstrated that the increase in UV absorbance at 280 nm after soil fumigation was strongly correlated with the SMB C (r=0.92), SMB N (r=0.90) and SMB P (r=0.89), as determined by conventional methods. The soils contained a wide range of SMB C (412–3412 μg g−1 dry soil), N (57–346 μg g−1 dry soil) and P (31–239 μg g−1 dry soil) concentrations. It was thus confirmed that the UV absorbance technique described was a rapid, simple, precise and relatively inexpensive method of estimating soil microbial biomass.  相似文献   

13.
This study aimed at assessing the potential of near-infrared reflectance spectroscopy (NIRS) for determining the distribution of soil organic matter (SOM) in particle size fractions, which has rarely been attempted. This was done on sandy soils from Burkina Faso (three sites) and Congo-Brazzaville (one site). Over the total sample set, NIRS accurately predicted carbon (C) and nitrogen (N) concentrations (g kg?1 fraction) in the fraction <20 μm. When considering Burkina Faso only, predictions were improved in general; those of C and N amounts (g kg?1 soil) became accurate for the fraction <20 μm but not for the coarser fractions, probably due to heterogeneous SOM repartition. However, most SOM being <20 μm in general, NIRS could be considered promising for determining SOM size distribution.  相似文献   

14.
《Applied soil ecology》2006,34(3):258-268
The potential negative impact of agricultural practices on soil and water quality is of environmental concern. The associated nutrient transformations and movements that lead to environmental concerns are inseparable from microbial and biochemical activities. Therefore, biochemical and microbiological parameters directing nitrogen (N) transformations in soils amended with different animal manures or inorganic N fertilizers were investigated. Soils under continuous corn cultivation were treated with N annually for 5 years at 56, 168, and 504 kg N ha−1 in the form of swine effluent, beef manure, or anhydrous ammonia. Animal manure treatments increased dehydrogenase activity, microbial biomass carbon (Cmic) and N (Nmic) contents, and activities of amidohydrolases, including l-asparaginase, urease, l-glutaminase, amidase, and β-glucosaminidase. Soils receiving anhydrous ammonia demonstrated increased nitrate contents, but reduced microbiological and biochemical activities. All treatments decreased Cmic:organic C (Corg) ratios compared with the control, indicating reduced microbial C use efficiency and disturbance of C equilibrium in these soil environments. Activities of all enzymes tested were significantly correlated with soil Corg contents (P < 0.001, n = 108), but little correlation (r = 0.03, n = 36) was detected between Cmic and Corg. Activities of amidase and β-glucosaminidase were dominated by accumulated enzymes that were free of microbial cells, while activities of asparaginase and glutaminase were originated predominately from intracellular enzymes. Results indicated that soil microbial and biochemical activities are sensitive indicators of processes involved in N flow and C use efficiency in semiarid agroecosystems.  相似文献   

15.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

16.
Soil organic matter (SOM) status was evaluated using the relationships between two independent soil variables, i.e., C respiration and the weight of particulate organic matter POM (4000–50 μm) under different vegetation covers and ecosystems of central Belgium. A positive relationship was found between the weight of the finest POM fraction, i.e., fine POM fraction (250–50 μm) and C respiration after 1 week (R2 = 0.34, n = 120, p < 0.0001) and 2 weeks (R2 = 0.28, n = 120, p < 0.0001) of incubation. Therefore, we assumed that the C respiration and the weight of fine POM might be used to evaluate the SOM status under different vegetation covers and ecosystems.  相似文献   

17.
Addition of organic manure over thousands of years has resulted in the development of very fertile soils in parts of the Loess Plateau in Northwest China. This region also suffers from serious soil erosion. For that reason, afforestation of arable soils has taken place. The dynamics of soil organic matter in these soils affected by a very specific management and by land use changes is largely unknown. Therefore, we measured C mineralization in a 35-days incubation experiment and analyzed amounts and properties of water-extractable organic carbon (WEOC) in 12 topsoils of this region. The soils differed in land use (arable vs. forest) and in amounts of added organic manure. Afforestation of arable soils resulted in a distinct stabilization of organic C as indicated by the smallest C mineralization (0.48 mg C g−1 C d−1) and the highest C content (2.3%) of the studied soils. In the soils exposed to intensive crop production without regular addition of organic manure we found the largest C mineralization (0.85 mg C g−1 C d−1) and the lowest contents of organic C (0.9%). Addition of organic manure over a time scale of millennia resulted in high organic C contents (1.8%) and small C mineralization (0.55 mg C g−1 C d−1). The content of WEOC reflected differences in C mineralization between the soils quite well and the two variables correlated significantly. Water-extractable organic C decreased during C mineralization from the soil illustrating its mainly labile character. Carbon mineralization from soils was particularly large in soils with small specific UV absorbance of WEOC. We conclude that amounts and properties of WEOC reflected differences in the stability of soil organic C. Both afforestation of arable land and the long-term addition of organic manure may contribute to C accumulation and stabilization in these soils.  相似文献   

18.
The study examined the interrelationships between chemical and microbiological quality indicators of soil and their ability to differentiate plots under contrasting fertilization regimes. The study was based on a long-term field experiment established on an Udic Ustocrepts in 1966. The soil was cropped with maize (Zea mays L.) and winter wheat (Triticum aestivum L.) and received no organic fertilization (control), wheat straw and maize stalk (crop residue) or cattle manure (manure) in combination with increasing levels of mineral N (N0 and N200). To asses whether seasonal fluctuations of measured properties might mask the effects of fertilization, soil samples were collected four times within a growing season. Manure amendment increased soil TOC and TN, while crop residue amendment had no significant effects. Mineral N increased TN only in April, while in September it decreased water extractable organic C (WEOC). Data of diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) gave evidence for a higher relative contribution of the aliphatic peak at 2930 cm−1 and a lower relative contribution of the aromatic peaks at 1620 cm−1 and 1520 cm−1 under manure. Manure amendment stimulated enzymatic activities, increased microbial biomass carbon (Cmic) and total phospholipids (PLFAs), and reduced the metabolic quotient (qCO2). Patterns of PLFAs indicated that manure amendment increased the ratio of Gram-positive to Gram-negative bacteria. Crop residue amendment had no significant effects, while in September mineral N inhibited protease activity and reduced the Gram-positive to Gram-negative ratio. Microbial-related parameters fluctuated over time but their seasonality did not hamper the identification of fertilization-induced effects. The selected properties proved to be valuable indicators of long-term changes of soil quality and were strongly interrelated: changes in soil organic matter content and composition induced by manure amendment were accompanied by changes in abundance and function of the soil microbial community. Partial least square analysis obtained relating DRIFTS spectra to measured soil properties produced accurate predictive models for TOC and PLFAs, and moderately accurate models for Cmic, showing the potential of DRIFTS to be used as a rapid soil testing technique for soil quality monitoring.  相似文献   

19.
《Pedobiologia》2014,57(4-6):263-269
Nitrogen (N) availability is an important factor that determines ecosystem productivity and respiration, especially in N-limited alpine ecosystems. However, the magnitude of this response depends on the timing and amounts of N input. Moreover, we have only a limited understanding of the potential effects of the timing of N fertilization on ecosystem carbon (C) and N processes, and activities of the soil microbes. A nitrogen fertilization experiment was conducted in an alpine meadow on the Tibetan Plateau to determine how plant productivity and ecosystem respiration (RE) respond to the timing and amount of N application. In this study, half of the N was added either in the early spring (ES), before the growing season, or in the late fall (LF), after the growing season. All treatments received the other half of the N in mid-July. Three N levels (10, 20, 40 kg N hm−2 yr−1) were used for each of two N treatments, with no N addition used as a control. Plant aboveground biomass, ecosystem respiration (RE) and soil respiration (RS) were measured for the 2011 and 2012 growing seasons. The LF treatment enhanced ecosystem CO2 efflux compared with the ES treatment at high N addition levels, resulting from an increase of soil dissolved organic C (DOC) and soil microbial activity. The ES treatment resulted in increased plant aboveground biomass when compared with LF during both growing seasons, although this increase accounted for little variation in ecosystem and soil respiration. Overall, the ES treatment is likely to increase the ecosystem C pool, while the LF treatment could accelerate ecosystem C cycling, especially for the high N treatment. Our results suggest that supplying N during the early stage of the growing season benefits both forage production and soil C sequestration in this alpine ecosystem.  相似文献   

20.
Isothermal microcalorimetry measures the thermal flows occurring in systems with very high precision and may be used to quantify carbon (C) assimilation and resource-use efficiencies in soils. We determined the thermodynamic efficiency of soil microbial communities located in soils which had received contrasting long-term management regimes (53 y) with respect to organic matter and nitrogen (N) inputs, viz. farmyard manure, sewage sludge, straw and calcium nitrate, calcium nitrate only, or ammonium sulphate. Two thermodynamic efficiency indices were considered: (i) total thermodynamic efficiency of soil microbial communities (ηeff), i.e. general heat production released following substrate addition, per unit heat energy input to the soil system, and (ii) a specific thermodynamic efficiency index of energy retained in the soil system (ηsoil). The latter index provides quantitative data on how much C is assimilated and energy retained in the soil system. Further, we derived a ‘substrate-induced heat production’ (SIHP) index, which adjusts for size of the microbial biomass. Optimised concentrations of water or glucose plus water were added to the soil samples and resultant thermal signatures and C mineralisation were determined over a 48-h incubation period at 25 °C. The thermal signatures were further related to the microbial community profiles of the soils. The phenotypic structural and functional diversity profiles of the microbial communities in soils were assessed by phospholipid fatty acid and multi-substrate induced respiration methods at the start of the experiment, confirming significant differences between all five treatments in community composition and functional capabilities. Both the total and specific thermodynamic efficiency indices of the soil microbial communities exposed to long-term stress by heavy metal toxicity (sewage sludge) and low pH ((NH4)2SO4) were significantly smaller in magnitude than those under the three conventional (i.e. Ca(NO3)2, Straw + Ca(NO3)2, farmyard manure) input regimes (P < 0.05). The SIHP index however, was highest in the treatments receiving long-term inorganic inputs, indicating more heat production per unit biomass, than that found in all three organic input regimes. These differences in efficiencies were reflected in both the phenotypic and functional profiles of the communities. These indices may provide quantification of C assimilation and resource-use efficiency under different land-use and management scenarios, and potentially allow evaluation of the role of soils in governing the terrestrial C balance by studying the fate and regulation of C in soil systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号