首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Soil biology & biochemistry》2001,33(12-13):1599-1611
Aggregate dynamics and their relationship to the microbial community have been suggested as key factors controlling SOM dynamics. Dry–wet (DW) cycles are thought to enhance aggregate turnover and decomposition of soil organic matter (SOM), particularly in tilled soils. The objective of this study was to evaluate the effects of DW cycles on aggregate stability, SOM dynamics, and fungal and bacterial populations in a Weld silt loam soil (Aridic Paleustoll). Samples, taken from 250 μm sieved air-dried soil (i.e. free of macroaggregates > 250 μm), were incubated with 13C-labeled wheat residue. In one set of soil samples, fungal growth was suppressed using a fungicide (Captan) in order to discern the effect of dry–wet cycles on fungal and bacterial populations. Aggregate formation was followed during the first 14 d of incubation. After this period, one set of soil samples was subjected to four DW cycles, whereas another set, as a control, was kept at field capacity (FC). Over 74 d, total and wheat-derived respiration, size distribution of water stable aggregates and fungal and bacterial biomass were measured. We determined native and labeled C dynamics of three particulate organic matter (POM) fractions related to soil structure: the free light fraction (LF), and the coarse (250–2000 μm) and fine (53–250 μm) intra-aggregate POM fraction (iPOM). In the fungicide treated soil samples, fungal growth was significantly reduced and no large macroaggregates (> 2 mm) were formed, whereas without addition of fungicide, fungi represented the largest part of the microbial biomass (66%) and 30% of the soil dry weight was composed of large macroaggregates. During macroaggregate formation, labeled free LF-C significantly decreased whereas labeled coarse iPOM-C increased, indicating that macroggregates are formed around fresh wheat residue (free LF), which is consequently incorporated and becomes coarse iPOM. The first drying and wetting event reduced the amount of large macroaggregates from 30 to 21% of the total soil weight. However, macroaggregates became slake-resistant after two dry-wet cycles. Fine iPOM-C was significantly lower in soil after two dry–wet cycles compared to soil kept at FC. We conclude that more coarse iPOM is decomposed into fine iPOM in macroaggregates not exposed to DW cycles due to a slower macroaggregate turnover. In addition, when macroaggregates, subjected to dry–wet cycles, became slake-resistant (d 44) and consequently macroaggregate turnover decreased, fine iPOM accumulated. In conclusion, differences in fine iPOM accumulation in DW vs. control macroaggregates are attributed to differences in macroaggregate turnover.  相似文献   

2.
《Applied soil ecology》2001,16(3):229-241
Changes in the proportions of water-stable soil aggregates, organic C, total N and soil microbial biomass C and N, due to tillage reduction (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions were studied in a tropical rice–barley dryland agroecosystem. The values of soil organic C and total N were the highest (11.1 and 1.33 g kg−1 soil, respectively) in the minimum tillage and residue retained (MT+R) treatment and the lowest (7.8 and 0.87 g kg−1, respectively) in conventional tillage and residue removed (CT−R) treatment. Tillage reduction from conventional to minimum and zero conditions along with residue retention (MT+R,ZT+R) increased the proportion of macroaggregates in soil (21–42% over control). The greatest increase was recorded in MT+R treatment and the smallest increase in conventional tillage and residue retained (CT+R) treatment. The lowest values of organic C and total N (7.0–8.9 and 0.82–0.88 g kg−1 soil, respectively) in macro- and microaggregates were recorded in CT−R treatment. However, the highest values of organic C and total N (8.6–12.6 and 1.22–1.36 g kg−1, respectively) were recorded in MT+R treatment. The per cent increase in the amount of organic C in macroaggregates was greater than in microaggregates. In all treatments, macroaggregates showed wider C/N ratio than in microaggregates. Soil microbial biomass C and N ranged from 235 to 427 and 23.9 to 49.7 mg kg−1 in CT−R and MT+R treatments, respectively. Soil organic C, total N, and microbial biomass C and N were strongly correlated with soil macroaggregates. Residue retention in combination with tillage reduction (MT+R) resulted in the greatest increase in microbial biomass C and N (82–104% over control). These variables showed better correlations with macroaggregates than other soil parameters. Thus, it is suggested that the organic matter addition due to residue retention along with tillage reduction accelerates the formation of macroaggregates through an increase in the microbial biomass content in soil.  相似文献   

3.
《Applied soil ecology》2001,16(3):195-208
Soil structure mediates many biological and physical soil processes and is therefore an important soil property. Physical soil processes, such as aggregation, can be markedly influenced by both residue quality and soil microbial community structure. Three experiments were conducted to examine (i) the temporal dynamics of aggregate formation and the water stability of the obtained aggregates, (ii) the effect of residue quality on aggregation and microbial respiration, and (iii) the effect of fungi and bacteria on aggregation.In the first experiment, 250 μm sieved air-dried soil, mixed with wheat straw, was incubated for 14 days to allow formation of water-stable macroaggregates (>250 μm). Aggregate stability was measured by wet sieving after four different disruptive treatments: (i) soil at field capacity; (ii) soil air-dried and slowly wetted; (iii) soil air-dried and quickly wetted; (iv) 8 mm sieved soil, air-dried and immersed in water (slaking). After 14 days of incubation, maximum aggregation for soil sieved at field capacity was reached; however, these newly formed aggregates were not yet resistant to slaking.During the second experiment, the effect of low-quality residue (C/N: 108) (with or without extra mineral nitrogen) and high-quality residue (C/N: 19.7) (without extra mineral nitrogen) on macroaggregate formation and fungal and bacterial populations was tested. After 14 days, aggregation, microbial respiration, and total microbial biomass were not significantly different between the low-quality (minus mineral nitrogen) and high-quality residue treatment. However, fungal biomass was higher for the low-quality residue treatment compared to the high-quality residue treatment. In contrast, bacterial populations were favored by the high-quality residue treatment. Addition of mineral N in the low-quality residue treatment resulted in reduced macroaggregate formation and fungal biomass, but had no effect on bacterial biomass. These observations are not conclusive for the function of fungal and/or bacterial biomass in relation to macroaggregate formation. In order to directly discern the influence of soil microflora on aggregation, a third experiment was conducted in which a fungicide (captan) or bactericide (oxytetracycline) was applied to selectively suppress fungal or bacterial populations. The direct suppression of fungal growth by addition of fungicide led to reduced macroaggregate formation. However, suppression of bacterial growth by addition of bactericide did not lead to reduced macroaggregate formation. In conclusion, macroaggregate formation was positively influenced by fungal activity but was not significantly influenced by residue quality or bacterial activity.  相似文献   

4.
Earthworms are key regulators of soil structure and soil organic matter (SOM) dynamics in many agroecosystems. They are greatly impacted by agricultural management, yet little is known about how these factors interact to control SOM dynamics. This study sought to explore linkages between agricultural management, earthworms and aggregate associated SOM dynamics through a survey of tomato (Solanum lycopersicum L.) cropping systems in northern California. Earthworms and soil samples were collected between February and April of 2005 from 16 fields under one of three types of residue management: (1) tomato mulch – no postharvest tillage and tomato residues left on the soil surface, (2) cover crop – tomato residues tilled in and leguminous cover crop planted, and (3) bare fallow – tomato residues tilled in and soil surface left exposed throughout the winter. Earthworms were collected via hand-sorting and identified to species, while soils were wet sieved to yield four aggregate size classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm), microaggregates (53–250 μm) and the silt and clay fraction (<53 μm). The combined large and small macroaggregate fraction was then fractionated into coarse particulate organic matter (cPOM; 250 μm), microaggregates within macroaggregates (mM; 53–250 μm) and macroaggregate occluded silt and clay (Msc; <53 μm). The earthworms identified in this survey were composed entirely of exotic species and were dominated by Aporrectodea caliginosa. Earthworm abundance was related to residue management, with the tomato mulch systems averaging 4.5 times greater fresh earthworm biomass than bare fallow (P = 0.024). Aggregate stability and total soil C and N also appeared to be influenced by residue management, such that the tomato mulch system displayed significantly greater mean weight diameters than the bare fallow system (P = 0.049), as well as more than 50% greater total soil C and N (P = 0.049 and P = 0.036; respectively). Earthworm biomass was also found to be positively correlated with total soil C (P = 0.009, R2 = 0.39) and N (P = 0.010, R2 = 0.039) as well as the proportion of macroaggregate C in the cPOM fraction (P = 0.028, R2 = 0.30). Our findings suggest that residue handling and the associated management practices (e.g., tillage, organic vs. conventional agriculture) are important for both earthworm populations and SOM storage. Although earthworms are known to influence SOM in many ways, other factors appear to play a more prominent role in governing aggregate associated SOM dynamics.  相似文献   

5.
Building soil structure in agroecosystems is important because it governs soil functions such as air and water movement, soil C stabilization, nutrient availability, and root system development. This study examined, under laboratory conditions, effects of organic amendments comprised of differing proportions of labile and semi-labile C on microbial community structure and macroaggregate formation in three variously textured soils where native structure was destroyed. Three amendment treatments were imposed (in order of increasing C lability): vegetable compost, dairy manure, hairy vetch (Vicia villosa Roth). Formation of water stable macroaggregates and changes in microbial community structure were evaluated over 82 days. Regardless of soil type, formation of large macroaggregates (LMA, >2000 μm diameter) was highest in soils amended with vetch, followed by manure, non-amended control, and compost. Vetch and manure had greater microbially available C and caused an increase in fungal biomarkers in all soils. Regression analysis indicated that LMA formation was most strongly related to the relative abundance of the fungal fatty acid methyl ester (FAME) 18:2ω6c (r = 0.55, p < 0.001), fungal ergosterol (r = 0.58, p < 0.001), and microbial biomass (r = 0.57, p < 0.001). Non-metric multidimensional scaling (NMS) ordination of FAME profiles revealed that vetch and manure drove shifts toward fungal-dominated soil microbial communities and greater LMA formation in these soils. This study demonstrated that, due to their greater amounts of microbially available C, vetch or manure inputs can be used to promote fungal proliferation in order to maintain or improve soil structure.  相似文献   

6.
The origin and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. The present study aimed to elucidate and quantify the carbon (C) flow from both root and shoot litter residues into soil organic, extractable, microbial and fungal C pools. Using the shift in C stable isotope values associated with replacing C3 by C4 plants we followed root- vs. shoot litter-derived C resources into different soil C pools. We established the following treatments: Corn Maize (CM), Fodder Maize (FM), Wheat + maize Litter (WL) and Wheat (W) as reference. The Corn Maize treatment provided root- as well as shoot litter-derived C (without corn cobs) whereas Fodder Maize (FM) provided only root-derived C (aboveground shoot material was removed). Maize shoot litter was applied on the Wheat + maize Litter (WL) plots to trace the incorporation of C4 litter C into soil microorganisms. Soil samples were taken three times per year (summer, autumn, winter) over two growing seasons. Maize-derived C signal was detectable after three to six months in the following pools: soil organic C (Corg), extractable organic C (EOC), microbial biomass (Cmic) and fungal biomass (ergosterol). In spite of the lower amounts of root- than of shoot litter-derived C inputs, similar amounts were incorporated into each of the C pools in the FM and WL treatments, indicating greater importance of the root- than shoot litter-derived resources for the soil microorganisms as a basis for the belowground food web. In the CM plots twice as much maize-derived C was incorporated into the pools. After two years, maize-derived C in the CM treatment contributed 14.1, 24.7, 46.6 and 76.2% to Corg, EOC, Cmic and ergosterol pools, respectively. Fungi incorporated maize-derived C to a greater extent than did total soil microbial biomass.  相似文献   

7.
A 67-day incubation experiment was carried out with a soil initially devoid of any organic matter due to heating, which was amended with sugarcane sucrose (C4-sucrose with a δ13C value of ?10.5‰), inorganic N and an inoculum for recolonisation and subsequently at day 33 with C3-cellulose (δ13C value of ?23.4‰). In this soil, all organic matter is in the microbial biomass or in freshly formed residues, which makes it possible to analyse more clearly the role of microbial residues for decomposition of N-poor substrates. The average δ13C value over the whole incubation period was ?10.7‰ in soil total C in the treatments without C3-cellulose addition. In the CO2 evolved, the δ13C values decreased from ?13.4‰ to ?15.4‰ during incubation. In the microbial biomass, the δ13C values increased from ?11.5‰ to ?10.1‰ at days 33 and 38. At day 67, 36% of the C4-sucrose was left in the treatment without a second amendment. The addition of C3-cellulose resulted in a further 7% decrease, but 4% of the C3-cellulose was lost during the second incubation period. Total microbial biomass C declined from 200 μg g?1 soil at day 5 to 70 μg g?1 soil at day 67. Fungal ergosterol increased to 1.5 μg g?1 soil at day 12 and declined more or less linearly to 0.4 μg g?1 soil at day 67. Bacterial muramic acid declined from a maximum of 35 μg g?1 soil at day 5 to a constant level of around 16 μg g?1 soil. Glucosamine showed a peak value at day 12. Galactosamine remained constant throughout the incubation. The fungal C/bacterial C ratio increased more or less linearly from 0.38 at day 5 to 1.1 at day 67 indicating a shift in the microbial community from bacteria to fungi during the incubation. The addition of C3-cellulose led to a small increase in C3-derived microbial biomass C, but to a strong increase in C4-derived microbial biomass C. At days 45 and 67, the addition of N-free C3-cellulose significantly decreased the C/N ratio of the microbial residues, suggesting that this fraction did not serve as an N-source, but as an energy source.  相似文献   

8.
《Applied soil ecology》2011,48(3):153-159
In this study, we investigated the effects of plant residue decomposition and biological aggregating agents (microbial extracellular polysaccharides and fungal hyphae) on soil aggregate stability and determined the microbial population at different stages of soil aggregate stabilization. Experiments were conducted in a 40 days incubation period with the following six treatments: the control (soil only), soil + fungicide, soil + bactericide, soil + maize residues, soil + maize residues + fungicide, and soil + maize residues + bactericide. The maize residues treatments greatly enhanced the formation of macroaggregates. In the residue treatments, the addition of fungicide led to a significant suppression of fungal biomass and activity as well as a reduction of soil aggregate stability, which demonstrated the profound influence of fungal activity on aggregate formation. The addition of bactericide also significantly reduced soil aggregate stability, indicating that bacterial activity also played an important role in the macroaggregate formation. However, the effect of microbial extracellular polysaccharides on soil aggregate stability was not significant, which might be attributable to the fast wet sieving method used for aggregate separation. For the treatments of soil + residues and soil + residues + bactericide, the temporal variations of soil aggregate formation with two peak values suggested that other factors, such as hydrophobic compounds and phenolic acids, might be involved in the soil aggregate stabilization process.  相似文献   

9.
《Applied soil ecology》2006,31(1-2):53-61
Two soils from a secondary tropical forest at La Union, Philippines, predominantly vegetated with Swietenia marcrophylla and Gmelina arborea were amended with different leaf litter types (Eucalyptus camaldulensis, S. macrophylla, G. arborea, and Calliandra calothyrsus) and incubated in the laboratory for 49 days at 25 °C. The experiment was carried out to elucidate the reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio. This has been measured repeatedly in tropical forest soils. In the non-amended soils, the microbial biomass C-to-N ratio of 12.1 exceeded the soil organic C-to-total N ratio of 11, while the ergosterol-to-microbial biomass C ratio of 0.14% and the ATP-to-microbial biomass C ratio of 4.1 μmol g−1 were both low. At the end of the incubation, the addition of the different leaf litter types led generally to a decrease in the microbial biomass C-to-N ratio and to an increase in the ATP-to-microbial biomass C ratio, adenylate energy charge (AEC) and especially to an increase in the ergosterol-to-microbial biomass C ratio. The increase in the ATP-to-microbial biomass C ratio and the decrease in the microbial biomass C-to-N ratio were positively related to the N concentration in the leaf litter, the increase in the ergosterol-to-microbial biomass ratio negatively. The reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio are P deficiency and probably a reduced access of soil microorganisms to N containing organic components at low soil organic C levels.  相似文献   

10.
The substrate availability for microbial biomass (MB) in soil is crucial for microbial biomass activity. Due to the fast microbial decomposition and the permanent production of easily available substrates in the rooted top soil mainly by plants during photosynthesis, easily available substrates make a very important contribution to many soil processes including soil organic matter turnover, microbial growth and maintenance, aggregate stabilization, CO2 efflux, etc. Naturally occurring concentrations of easily available substances are low, ranging from 0.1 μM in soils free of roots and plant residues to 80 mM in root cells. We investigated the effect of adding 14C-labelled glucose at concentrations spanning the 6 orders of magnitude naturally occurring concentrations on glucose uptake and mineralization by microbial biomass. A positive correlation between the amount of added glucose and its portion mineralized to CO2 was observed: After 22 days, from 26% to 44% of the added 0.0009 to 257 μg glucose C g?1 soil was mineralized. The dependence of glucose mineralization on its amount can be described with two functions. Up to 2.6 μg glucose C g?1 soil (corresponds to 0.78% of initial microbial biomass C), glucose mineralization increased with the slope of 1.8% more mineralized glucose C per 1 μg C added, accompanied by an increasing incorporation of glucose C into MB. An increased spatial contact between micro-organisms and glucose molecules with increasing concentration may be responsible for this fast increase in mineralization rates (at glucose additions <2.6 μg C g?1). At glucose additions higher than 2.6 μg C g?1 soil, however, the increase of the glucose mineralization per 1 μg added glucose was much smaller as at additions below 2.6 μg C g?1 soil and was accompanied by decreasing portions of glucose 14C incorporated into microbial biomass. This supports the hypothesis of decreasing efficiency of glucose utilization by MB in response to increased substrate availability in the range 2.6–257 μg C g?1 (=0.78–78% of microbial biomass C). At low glucose amounts, it was mainly stored in a chloroform-labile microbial pool, but not readily mineralized to CO2. The addition of 257 μg glucose C g?1 soil (0.78 μg C glucose μg?1 C micro-organisms) caused a lag phase in mineralization of 19 h, indicating that glucose mineralization was not limited by the substrate availability but by the amount of MB which is typical for 2nd order kinetics.  相似文献   

11.
《Soil biology & biochemistry》2012,44(12):2441-2449
High rates of atmospheric nitrogen (N) deposition have raised questions about shifting patterns of nutrient limitation in northern hardwood forests. Of particular interest is the idea that increased supply of N may induce phosphorus (P) limitation of plant and microbial processes, especially in acid soils where P sorption by Al is high. In this study, we established field plots and plant-free laboratory mesocosms with P and Ca additions to test the hypotheses that 1) microbial biomass and activity are limited by P in the northern hardwood forest soils at the Hubbard Brook Experimental Forest in NH USA; 2) elevated Ca increases inherent P availability and therefore reduces any effects of added P and 3) P effects are more marked in the more carbon (C) rich Oie compared to the Oa horizon. Treatments included P addition (50 kg P ha−1), Ca addition (850 kg Ca ha−1) and Ca + P addition (850 kg Ca ha−1 and 50 kg P ha−1). The P treatments increased resin-available P levels and reduced phosphatase activity, but had no effect on microbial biomass C, microbial respiration, C metabolizing enzymes, potential net N mineralization and nitrification in the Oie or Oa horizon of either field plots or plant free mesocosms, in either the presence or absence of Ca. Total, prokaryote, and eukaryote PLFA were reduced by P addition, possibly due to reductions in mycorrhizal fungal biomass. These results suggest that increased N deposition and acidification have not created P limitation of microbial biomass and activity in these soils.  相似文献   

12.
Soil microorganisms secrete enzymes used to metabolize carbon (C), nitrogen (N), and phosphorus (P) from the organic materials typically found in soil. Because of the connection with the active microbial biomass, soil enzyme activities can be used to investigate microbial nutrient cycling including the microbial response to environmental changes, transformation rates and to address the location of the most active biomass. In a 9-year field study on global change scenarios related to increasing N inputs (ambient to 15 g N m−2 yr−1) and precipitation (ambient to 180 mm yr−1), we tested the activities of soil β-glucosidase (BG), N-acetyl-glucosaminidase (NAG) and acid phosphomonoesterase (PME) for three soil aggregate classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm) and microaggregates (<250 μm). Results showed higher BG and PME activities in micro-vs. small macroaggregates whereas the highest NAG activity was found in the large macroaggregates. This distribution of enzyme activity suggests a higher contribution of fast-growing microorganisms in the micro-compared with the macroaggregates size fractions. The responses of BG and PME were different from NAG activity under N addition, as BG and PME decreased as much as 47.1% and 36.3%, respectively, while the NAG increased by as much as 80.8%, which could imply better adaption of fungi than bacteria to lower soil pH conditions developed under increased N. Significant increases in BG and PME activities by as much as 103.4 and 75.4%, respectively, were found under water addition. Lower ratio of BG:NAG and higher NAG:PME underlined enhanced microbial N limitation relative to both C and P, suggesting the repression of microbial activity and the accompanied decline in their ability to compete for N with plants and/or the accelerated proliferation of soil fungi under elevated N inputs. We conclude that changes in microbial activities under increased N input and greater water availability in arid- and semi-arid grassland ecosystems where NPP is co-limited by N and water may result in substantial redistribution of microbial activity in different-sized soil particles. This shift will influence the stability of SOM in the soil aggregates and the nutrient limitation of soil biota.  相似文献   

13.
《Applied soil ecology》2011,47(3):405-412
The nutrient-specific effects of tillage on microbial activity (basal respiration), microbial biomass (C, N, P, S) indices and the fungal cell-membrane component ergosterol were examined in two long-term experiments on loess derived Luvisols. A mouldboard plough (30 cm tillage depth) treatment was compared with a rotary harrow (8 cm tillage depth) treatment over a period of approximately 40 years. The rotary harrow treatment led to a significant 8% increase in the mean stocks of soil organic C, 6% of total N and 4% of total P at 0–30 cm depth compared with the plough treatment, but had no main effect on the stocks of total S. The tillage effects were identical at both sites, but the differences between the sites of the two experiments were usually stronger than those between the two tillage treatments. The rotary harrow treatment led to a significant increase in the mean stocks of microbial biomass C (+18%), N (+25%), and P (+32%) and to a significant decrease in the stocks of ergosterol (−26%) at 0–30 cm depth, but had no main effect on the stocks of microbial biomass S or on the mean basal respiration rate. The mean microbial biomass C/N (6.4) and C/P (25) ratios were not affected by the tillage treatments. In contrast, the microbial biomass C/S ratio was significantly increased from 34 to 43 and the ergosterol-to-microbial biomass C ratio significantly decreased from 0.20% to 0.13% in the rotary harrow in comparison with the plough treatment. The microbial biomass C-to-soil organic C ratio varied around 2.1% in the plough treatment and declined from 2.6% at 0–10 cm depth to 2.0 at 20–30 cm depth in the rotary harrow treatment. The metabolic quotient qCO2 revealed exactly the inverse relationships with depth and treatment to the microbial biomass C-to-soil organic C ratio. Rotary harrow management caused a reduction in the microbial turnover in combination with an improved microbial substrate use efficiency and a lower contribution of saprotrophic fungi to the soil microbial community. This contrasts the view reported elsewhere and points to the need for more information on tillage-induced shifts within the fungal community in arable soils.  相似文献   

14.
《Soil biology & biochemistry》2001,33(7-8):913-919
A reliable and simple technique for estimating soil microbial biomass (SMB) is essential if the role of microbes in many soil processes is to be quantified. Conventional techniques are notoriously time-consuming and unreproducible. A technique was investigated that uses the UV absorbance at 280 nm of 0.5 M K2SO4 extracts of fumigated and unfumigated soils to estimate the concentrations of carbon, nitrogen and phosphorus in the SMB. The procedure is based on the fact that compounds released after chloroform fumigation from lysed microbial cells absorb in the near UV region. Using 29 UK permanent grassland soils, with a wide range of organic matter (2.9–8.0%) and clay contents (22–68%), it was demonstrated that the increase in UV absorbance at 280 nm after soil fumigation was strongly correlated with the SMB C (r=0.92), SMB N (r=0.90) and SMB P (r=0.89), as determined by conventional methods. The soils contained a wide range of SMB C (412–3412 μg g−1 dry soil), N (57–346 μg g−1 dry soil) and P (31–239 μg g−1 dry soil) concentrations. It was thus confirmed that the UV absorbance technique described was a rapid, simple, precise and relatively inexpensive method of estimating soil microbial biomass.  相似文献   

15.
Many tropical soils include sesquioxides, which influence the stability of soil organic matter (OM) and aggregation to an extent that is not fully characterized. The present study was carried out on a range of 18 topsoil samples (0–10 cm) from low-activity clay (LAC) soils from sub-Saharan Africa and Brazil, and aimed: (i) at characterizing the size distributions of water-stable aggregates and organic constituents, (ii) at studying how these distributions were affected by texture and sesquioxides, and (iii) how they interacted.The distributions of stable aggregates were generally dominated by macroaggregates (> 200 μm), and those of organic constituents by fine OM (< 20 μm). Aggregation was not clearly affected by soil texture, while total soil carbon (Ct) and the amount of carbon (C) as fine OM increased with soil content in clay plus fine silts (< 20 μm). Stable macroaggregation correlated with Ct and with C amount as fine OM, but each of them correlated more closely with citrate-bicarbonate-dithionite-extractable aluminium (Al), which was not expected. Stable macroaggregation also correlated with C amounts as coarse- and medium-sized OM (> 200 and 20–200 μm, respectively), but each of them correlated more closely with oxalate-extracted Al. These results suggested that for the LAC tropical soils under study OM and aggregate stability depended closely on Al-containing sesquioxides, on Al-substituted crystalline hematite and goethite especially. These sesquioxides also seemed to play a dominant role in the relations between aggregation and OM. As far as soils rich in sesquioxides are concerned, this confirmed that OM is not the main aggregating agent, and suggested that physical protection within aggregates is not necessarily the main mechanism for OM stabilization. However, as soil sesquioxide content cannot be managed easily, the effect of land use on soil OM and aggregation was determinant at the local scale: indeed, for a given location, stable macroaggregation, Ct and C amount as fine OM generally decreased with land use intensification (i.e. cultivation, tillage, reduced surface cover).  相似文献   

16.
Cultivation is known to influence the organic matter status and structural stability of soil. We investigated the effects of 69 yr of cultivation on the nature, distribution and activity of microbial biomass (MB) in different aggregate size classes of an Orthic Brown Chernozemic soil. Cultivation decreased MB content, its activity and enzyme activity in soil. Microaggregate (<0.25mm) size classes in both native and cultivated soils contained lower organic-C, MB-C, fungal biomass, arylsulfatase, acid phosphatase and respiratory activities as compared to macroaggregates. However, the negative effects of cultivation were more pronounced on macroaggregate size classes. Nutrient ratios of both whole aggregates and microbial biomass were narrower in aggregates from cultivated soil as compared to native soil. In both native and cultivated soils, mineralization of C. N and S was greater in macroaggregates as compared to that in microaggregates. The greatest effect of cultivation on nutrient and microbial characteristics was observed in the 0.25 to 1.00 mm dia size classes. These results suggest that microbial biomass, especially fungal biomass, plays an important role in the formation of macroaggregates and is the labile organic matter that serves as the primary source of C and nutrients released following cultivation.  相似文献   

17.
Maintaining the productivity of tropical pastures is a major challenge for the sustainable management of tropical landscapes around the globe. To address this issue, we examined linkages between soil organic matter (SOM), aggregation, and phosphorus (P) dynamics by comparing productive vs. degraded pastures in the deforested Amazon Basin of Colombia. Paired plots of productive (dominated by planted Brachiaria spp.) vs. degraded pasture were identified on nine farms in the Department of Caquetá and sampled during the rainy season of 2011. Aboveground pasture biomass production and nutrient content were measured. Surface soils (0–10 cm) were also fractionated by wet sieving, and C, 13C, N and P contents were analyzed for the bulk soil and various aggregate size classes. Productive pastures yielded more than double the aboveground biomass compared to degraded pastures (during a 35 day regrowth period following cutting), with over 60% higher N and P contents in this material. Similar trends were observed for the standing litter biomass and nutrient contents. Soil aggregate stability was found to differ between pasture types, with a mean weight diameter of 3590 vs. 3230 μm in productive vs. degraded pastures, respectively. Productive pastures were found to have 20% higher total soil C and N contents than degraded pastures. While there was no difference in total P content between pasture types, organic P was found to be nearly 40% higher in soils of productive vs. degraded pastures. Differences in total SOM between pasture types were largely explained by a higher C content in the large macroaggregate fraction (>2000 μm), and more specifically in the microaggregates (53–250 μm) occluded within this fraction. These findings confirm the role of microaggregates within macroaggregates as a preferential site for the physical stabilization of SOM, and furthermore, suggest that it may serve as a useful diagnostic fraction for evaluating management impacts on SOM in tropical pasture systems. Similar to trends observed for C and N, total P content was 25% higher in the microaggregates within large macroaggregates of productive vs. degraded pasture soils. This correspondence between C and total P contents in large macroaggregate fractions, along with elevated levels of organic P in productive pastures, suggests that this P is likely in an organic form and that there is a close link between soil structure, SOM dynamics and the maintenance of organic P in these soils. Given the potential relevance of organic P for efficient P cycling in these soils, our findings offer critical new insight for the management of SOM and aggregate-associated P pools in tropical pasture systems.  相似文献   

18.
《Applied soil ecology》2007,35(2):281-290
As a result of many decades of fire suppression and atmospheric deposition the deciduous forests of eastern North America have changed significantly in stem density, basal area, tree size-frequency distribution, and community structure. Consequently, soil organic matter quality and quantity, nutrient availability, and microbial activity have likely been altered. This study evaluated the effects of four alternative forest ecosystem restoration strategies on soil microbial activity, microbial functional diversity, soil organic C, and soil N status in two mixed-oak (Quercus spp.) forests in southern Ohio, USA. The soils of these forests were sampled during the fourth growing season after application of (1) prescribed fire, (2) thinning of the understory and midstory to pre-settlement characteristics, (3) the combination of fire and thinning, and (4) an untreated control. Prescribed fire, with or without thinning, resulted in increased bacterial but not fungal activity when assessed using Biolog®. In contrast, assays of acid phosphatase and phenol oxidase activity indicated greater microbial activity in the thinning treatment than in the other three treatments. Functional diversity of both bacteria and fungi was affected by restoration treatment, with the bacterial and fungal assemblages present in the thin + burn sites and the fungal assemblage present in the thinned sites differing significantly from those of the control and burned sites. Treatments did not result in significant differences in soil organic C content among experimental sites; however, the soil C:N ratio was significantly greater in thinned sites than in sites given the other three treatments. Similarly, there were no significant differences in dissolve inorganic N, dissolved organic N, or microbial biomass N among treatments. Bacterial and fungal functional diversity was altered significantly. Based on Biolog® utilization treatments the bacterial assemblage in the thin-only treatment appeared to be relatively N-limited and the fungal assemblage relatively C-limited, whereas in the thin + burn treatment this was reversed. Although effects of restoration treatments on soil organic matter and overall microbial activity may not persist through the fourth post-treatment year, effects on microbial functional diversity are persistent.  相似文献   

19.
《Soil biology & biochemistry》2001,33(12-13):1581-1589
The activity and biomass of soil microorganisms were measured in soils from 25 different arable sites in the Pacific region of Nicaragua with the objective of elucidating their interrelationship with soil textural and soil chemical properties. All soils developed from recent volcanic deposits but differ in their particle size distribution. Short-term phosphorus fixation capacity varied widely and was, on average, 11% of added P. In contrast, long-term P fixation capacity varied within a small range of around 55%. Mean basal respiration was 8.6 μg CO2–C d−1 g−1 soil, average contents of biomass C, biomass P, and ergosterol as an indicator of fungal biomass were 116, 1.95, and 0.34 μg g−1 soil, respectively. They were all, except biomass P, significantly lower in the sandy than in the loamy soils. The mean biomass C-to-soil C ratio was 0.69%, the mean metabolic quotient 95 mg CO2–C d−1 g−1 biomass C, the mean ergosterol-to-biomass C ratio 0.31% and the mean biomass C-to-P ratio 107. The very low ergosterol-to-biomass C ratio indicates that fungi contribute only a relatively small percentage to the microbial biomass. The biomass C-to-P ratio exceeded considerably the soil C-to-total P ratio. Metabolic quotient qCO2 and ergosterol-to-biomass C were both negatively correlated with biomass C-to-soil C ratio and clay content, indicating positive correlations between qCO2 and ergosterol-to-biomass C ratio and between biomass C-to-soil C ratio and clay content. Key problems of soil fertility and soil quality in Nicaragua are low availability of soil organic matter and phosphorus to soil microorganisms, which are magnified by a low percentage of fungi, probably reducing the ability of soil to provide nutrients for plant growth.  相似文献   

20.
Changes in soil microbial biomass, enzyme activities, microbial community structure and nitrogen (N) dynamics resulting from organic matter amendments were determined in soils with different management histories to gain better understanding of the effects of long- and short-term management practices on soil microbial properties and key soil processes. Two soils that had been under either long-term organic or conventional management and that varied in microbial biomass and enzyme activity levels but had similar fertility levels were amended with organic material (dried lupin residue, Lupinus angustifolius L.) at amounts equivalent to 0, 4 and 8 t dry matter lupin ha?1. Microbial biomass C and N, arginine deaminase activity, fluorescein diacetate hydrolysis, dehydrogenase enzyme activity and gross N mineralisation were measured in intervals over an 81-day period. The community structure of eubacteria and actinomycetes was examined using PCR–DGGE of 16S rDNA fragments. Results suggested that no direct relationships existed between microbial community structure, enzyme activities and N mineralisation. Microbial biomass and activity changed as a result of lupin amendment whereas the microbial community structure was more strongly influenced by farm management history. The addition of 4 t ha?1 of lupin was sufficient to stimulate the microbial community in both soils, resulting in microbial biomass growth and increased enzyme activities and N mineralisation regardless of past management. Amendment with 8 t lupin ha?1 did not result in an increase proportional to the extra amount added; levels of soil microbial properties were only 1.1–1.7 times higher than in the 4 t ha?1 treatment. Microbial community structure differed significantly between the two soils, while no changes were detected in response to lupin amendment at either level during the short-term incubation. Correlation analyses for each treatment separately, however, revealed differences that were inconsistent with results obtained for soil biological properties suggesting that differences might exist in the structure or physiological properties of a microbial component that was not assessed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号