首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

2.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

3.
In the last century, conversion of native North American grasslands to Juniperus virginiana forests or woodlands has dramatically altered ecosystem structure and significantly increased ecosystem carbon (C) stocks. We compared soils under recently established J. virginiana forests and adjacent native C4-dominated grassland to assess changes in potential soil nitrogen (N) transformations and plant available N. Over a 2-year period, concentrations of extractable inorganic N were measured in soils from forest and grassland sites. Potential gross N ammonification, nitrification, and consumption rates were determined using 15N isotope-dilution under laboratory conditions, controlling for soil temperature and moisture content. Potential nitrification rates (Vmax) and microbial biomass, as well as soil physical and chemical properties were also assessed. Extractable NH4+ concentrations were significantly greater in grassland soils across the study period (P  0.01), but analysis by date indicated that differences in extractable inorganic N occurred more frequently in fall and winter, when grasses were senescent but J. virginiana was still active. Laboratory-based rates of gross N mineralization (ammonification) and nitrification were greater in grassland soils (P  0.05), but only on one of four dates. Potential nitrification rates (Vmax) were an order of magnitude greater than gross nitrification rates in both ecosystems, suggesting that nitrification is highly constrained by NH4+ availability. Differences in plant uptake of N, C inputs, and soil microclimate as forests replace grasslands may influence plant available N in the field, as evidenced by seasonal differences in soil extractable NH4+, and total soil C and N accumulation. However, we found few differences in potential soil N transformations under laboratory conditions, suggesting that this grassland-to-forest conversion caused little change in mineralizable organic N pools or potential microbial activity.  相似文献   

4.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

5.
《Soil & Tillage Research》2007,92(1-2):186-198
The influence of two organic wastes, cotton gin crushed compost (CC) and beet vinasse (BV) applied for 5 years on a Typic Xerofluvent under dryland conditions near to Sevilla city (Guadalquivir River Valley, Andalusia, Spain) on soil erodibility (K factor of the USLE and RUSLE) and soil loss was studied. CC and BV were applied at rates of 1780, 5340, and 10,680 kg ha−1 (expressed as organic matter content). When CC was applied to the soil, erodibility factor (K) is correlated with soil loss, highlighting a decrease in K and soil loss when increased the dose of CC applied to the soil. In this respect, K decreased 17% in CC-amended soils respect to control soil at the end of the experiment, and soil loss decreased 36% in CC-amended soils respect to control soil at the end of the experiment and for 45 min and 60 mm h−1. However, when BV was applied, soil physical and biological properties decreased. K decreased 6.4% in BV-amended soils respect to control soil at the end of the experiment, and soil loss increased 59.7% in BV-amended soils respect to control soil at the end of the experimental period and for 45 min and 60 mm h−1. We think that this is because the higher level of Na+ (and possibly of fulvic acids) in BV increased the exchangeable sodium percentage (ESP) and reduced structural stability of BV-amended soil, leading to higher soil loss. This explains the relatively higher soil loss in BV-amended soils. These results contradict many previous reports in which soil organic matter prevented soil loss. For this reason, the equation of soil erodibility (K factor of USLE and RUSLE) must have in consideration other aspects such as the chemical composition of the soil organic matter as well as the soil structural stability.  相似文献   

6.
《Soil & Tillage Research》2007,92(1-2):22-29
Sustainable agricultural use of cultivated desert soils has become a concern in Hexi Corridor in Gansu Province of China, because loss of topsoil in dust storms has been recently intensified. We chose four desert sites to investigate the effects of cultivation (cropping) on (i) soil organic C and its size fractions and (ii) soil aggregate stability (as a measure of soil erodibility). These parameters are of vital importance for evaluating the sustainability of agricultural practices.Total organic C as well as organic C fractions in soil (coarse organic C, 0.1–2 mm; young organic C, 0.05–0.1 mm; stable organic C, <0.05 mm) generally increased with the duration of the cultivation period from 0 (virgin soil, non-cultivated) to more than 30 years (p < 0.05). Compared to total organic C in virgin soils (2.3–3.5 g kg−1 soil), significantly greater values were found after 10 to >20 years of cultivation (6.2–7.1 g kg−1 soil). The increase in organic C in desert soils following prolonged cultivation was mainly the consequence of an increase in the coarse organic C. The increase in total organic C in soil was also dependent on clay content [total organic C = 0.96 + 0.249 clay content (%) + 0.05 cultivation year, R2 = 0.48, n = 27, p < 0.001]. This indicates that clay protected soil organic C from mineralization, and also contributed to the increase in soil organic C as time of cultivation increased.There was a significant positive correlation between aggregate stability and total organic C across all field sites. The water stability of aggregates was low (with water-stable aggregate percentage ∼4% of dry-sieved aggregates of size 1–5 mm). There was no consistent pattern of increase in the soil aggregate stability with time of cultivation at different locations, suggesting that desert soils might remain prone to wind erosion even after 50 years of cultivation. Alternative management options, such as retaining harvested crop residues on soil surface and excluding or minimizing tillage, may permit sustainable agricultural use of desert soils.  相似文献   

7.
Green manure Sesbania sesban (S. sesban) and the nitrification inhibitor encapsulated calcium carbide (ECC) have been used to improve N supply and management in rice–wheat production systems in India. However, the ecological impact of combined use of these materials is largely unknown. We conducted a net-house pot culture experiment for 2 years, to investigate the effects of S. sesban and ECC on mineral N availability (NH4+ and NO3), soil enzyme activities (dehydrogenase and nitrate reductase) and populations (MPN) of nitrifying organisms under a rice–wheat cropping system. Green manure S. sesban and ECC (+ECC or –ECC) were applied along with urea in various combinations to hybrid rice under flooded conditions. For wheat, it was urea alone or urea + ECC. Soil samples were studied at 10 days after top dressing, i.e. 40 days after rice transplanting and 35 days after wheat sowing, for above characteristics. The mineral-N in soil revealed the significant effect of combined use of S. sesban and ECC to enhance NH4+ and total mineral-N (NH4+ + NO3) contents. Dehydrogenase and nitrate reductase activities and population (MPN) of ammonia oxidizing bacteria (AOB) revealed a significant reduction in soils, whereas nitrite oxidizing bacteria (NOB) remained almost unaffected (P > 0.05) in response to application of ECC with S. sesban and urea. Our results suggest that slow release of acetylene (C2H2) from ECC has reduced ammonia mono-oxygenase with reducing population of AOB, and has the potential to retard the enzyme activities in favor of C and N conservations in a semi-arid agro-ecosystem.  相似文献   

8.
We investigated CH4 oxidation in afforested soils over a 200-year chronosequence in Denmark including different tree species (Norway spruce, oak and larch) and ages. Samples of the top mineral soil (0–5 cm and 5–15 cm depth) were incubated and analyzed for the abundance of the soil methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) and archaea (AOA) based on quantitative PCR (qPCR) on pmoA and amoA genes. Our study showed that CH4 oxidation rates and the abundance of MOB increased simultaneously with time since afforestation, suggesting that the methanotrophic activity is reflected in the abundance of this functional group.The development of forest soils resulted in increased soil organic carbon and reduced bulk density, and these were the two variables that most strongly related to CH4 oxidation rates in the forest soils. For the top mineral soil layer (0–5 cm) CH4 oxidation rates did not differ between even aged stands from oak and larch, and were significantly smaller under Norway spruce. Compared to the other tree species Norway spruce caused a decrease in the abundance of MOB over time that could explain the decreased oxidation rates. However, the cause for the lower abundance remains unclear. The abundance of ammonia-oxidizers along the chronosequence decreased over time, oppositely to the MOB. However, our study did not indicate a direct link between CH4 oxidation rates and ammonia-oxidizers. Here, we provide evidence for a positive impact of afforestation of former cropland on CH4 oxidation capacity in soils most likely caused by an increased population size and activity of MOB.  相似文献   

9.
Contradictory effects of simultaneous available organic C and N sources on nitrous oxide (N2O), carbon dioxide (CO2) and nitric oxide (NO) fluxes are reported in the literature. In order to clarify this controversy, laboratory experiments were conduced on two different soils, a semiarid arable soil from Spain (soil I, pH=7.5, 0.8%C) and a grassland soil from Scotland (soil II, pH=5.5, 4.1%C). Soils were incubated at two different moisture contents, at a water filled pore space (WFPS) of 90% and 40%. Ammonium sulphate, added at rates equivalent to 200 and 50 kg N ha?1, stimulated N2O and NO emissions in both soils. Under wet conditions (90% WFPS), at high and low rates of N additions, cumulative N2O emissions increased by 250.7 and 8.1 ng N2O–N g?1 in comparison to the control, respectively, in soil I and by 472.2 and 2.1 ng N2O–N g?1, respectively, in soil II. NO emissions only significantly increased in soil I at the high N application rate with and without glucose addition and at both 40% and 90% WFPS. In both soils additions of glucose together with the high N application rate (200 kg N ha?1) reduced cumulative N2O and NO emissions by 94% and 55% in soil I, and by 46% and 66% in soil II, respectively. These differences can be explained by differences in soil properties, including pH, soil mineral N and total and dissolved organic carbon content. It is speculated that nitrifier denitrification was the main source of NO and N2O in the C-poor Spanish soil, and coupled nitrification–denitrification in the C-rich Scottish soil.  相似文献   

10.
Addition of organic manure over thousands of years has resulted in the development of very fertile soils in parts of the Loess Plateau in Northwest China. This region also suffers from serious soil erosion. For that reason, afforestation of arable soils has taken place. The dynamics of soil organic matter in these soils affected by a very specific management and by land use changes is largely unknown. Therefore, we measured C mineralization in a 35-days incubation experiment and analyzed amounts and properties of water-extractable organic carbon (WEOC) in 12 topsoils of this region. The soils differed in land use (arable vs. forest) and in amounts of added organic manure. Afforestation of arable soils resulted in a distinct stabilization of organic C as indicated by the smallest C mineralization (0.48 mg C g−1 C d−1) and the highest C content (2.3%) of the studied soils. In the soils exposed to intensive crop production without regular addition of organic manure we found the largest C mineralization (0.85 mg C g−1 C d−1) and the lowest contents of organic C (0.9%). Addition of organic manure over a time scale of millennia resulted in high organic C contents (1.8%) and small C mineralization (0.55 mg C g−1 C d−1). The content of WEOC reflected differences in C mineralization between the soils quite well and the two variables correlated significantly. Water-extractable organic C decreased during C mineralization from the soil illustrating its mainly labile character. Carbon mineralization from soils was particularly large in soils with small specific UV absorbance of WEOC. We conclude that amounts and properties of WEOC reflected differences in the stability of soil organic C. Both afforestation of arable land and the long-term addition of organic manure may contribute to C accumulation and stabilization in these soils.  相似文献   

11.
The aim of this study was to compare the turnover time of labile soil carbon (C), in relation to temperature and soil texture, in several forest ecosystems that are representative of large areas of North America. Carbon and nitrogen (N) stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five AmeriFlux sites along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. With one exception, forest floor and mineral soil C stocks increased from warm, southern sites (with fine-textured soils) to cool, northern sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic C stock similar to the southern sites. A two-compartment model was used to calculate the turnover time of labile soil organic C (MRTU) and the annual transfer of labile C to stable C (k2) at each site. Moving from south to north, MRTU increased from approximately 5 to 14 years. Carbon-13 enrichment factors (ε), that described the rate of change in δ13C through the soil profile, were associated with soil C turnover times. Consistent with its role in stabilization of soil organic C, silt-clay content was positively correlated (r = 0.91; P  0.001) with parameter k2. Latitudinal differences in the storage and turnover of soil C were related to mean annual temperature (MAT, °C), but soil texture superseded temperature when there was too little silt and clay to stabilize labile soil C and protect it from decomposition. Each site had a relatively high proportion of labile soil C (nearly 50% to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil C are at risk of decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils.  相似文献   

12.
Long-term field experiments are expected to provide important information regarding soil properties affected by conservation management practices. Several studies have shown that soil enzyme activities are sensitive in discriminating among soil management effects. In this study we evaluated the long-term effect of direct drilling (DD) under a crop rotation system (cereals–sunflower–legumes), on the stratification of soil organic matter content and on biochemical properties in a dryland in southwest Spain. The results were compared to those obtained under conventional tillage (CT). Soil biochemical status was evaluated by measuring the enzymatic activities (dehydrogenase, β-glucosidase, alkaline phosphatase and arylsulphatase) during the flowering period of a pea crop. Soil samples were collected in May 2007 at three depths (0–5, 5–10 and 10–20 cm).Total organic carbon (TOC) contents and values of soil enzyme activities were higher in soils subjected to DD than to CT, specifically at 0–5 cm depth. Although a slight decrease of TOC and enzymatic activities with increasing soil depth was observed, no significant differences were found among different depths of the same treatment. This could be related to the high clay content of the soil, a Vertisol. Enzyme activities values showed high correlation coefficients (from r = 0.799 to r = 0.870, p < 0.01) with TOC. Values of activity of the different enzymes were also correlated (p < 0.01).Values of stratification ratios did not show significant differences between tillage practices. The high clay content of the soil is responsible for this lack of differences because of the protection by clay mineral of TOC and soil enzymes activities.Long-term soil conservation management by direct drilling in a dryland farming system improved the quality of a clay soil, especially at the surface, by enhancing its organic matter content and its biological status.  相似文献   

13.
Soils found in semiarid areas of the Mediterranean Basin are particularly prone to degradation due to adverse climatic conditions with annual rainfall <300 mm and high temperatures being responsible for the scant vegetal growth and the consequent lack of organic matter. A three-year field experiment was conducted to test the potential of two organic amendments (sludge and compost) to improve soil quality and plant growth in a semiarid degraded Mediterranean ecosystem. Since little is known about N dynamics in such assisted ecosystems, we investigated the effects of this practice on key processes of the global N cycle. Besides soil chemical and biological parameters and vegetation cover, we measured absolute and specific potential nitrification and denitrification rates and quantified the size of the ammonia oxidising and denitrifying bacterial populations via quantitative PCR (amoA and nirS genes). At the end of the experiment soil fertility, microbial activity and plant growth had improved in treated plots. Amendments increased the amount of ammonia oxidisers and denitrifiers in soil, but the relative proportion of these groups varied in relation to the total microbial community, being higher in the case of ammonia oxidisers but not in the case of denitrifiers. As a consequence, significantly higher potential nitrification and denitrification rates were measured on a global basis in amended soils. Yet specific activities (potential rate/gene copy numbers) were lower for ammonia oxidisers in amended soils and for denitrifiers in sludge treated soils than those observed in control plots. Organic amendments influenced resource availability, the size and the activity patterns of microbial populations involved in long-term N dynamics. Therefore N cycling processes may play a key role to assist sustainable restoration practices in semiarid degraded areas.  相似文献   

14.
The primary aim of the study was to determine the long-term (12 years) effects of leguminous cover crops like Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides and Pueraria phaseoloides on important soil biochemical and biological properties and their interrelationships in the organic (fresh litter layer, F and fermented + humus layer, F + H) and mineral (0–10 and 10–20 cm) layers of soils of a 19-year-old coconut plantation.The total biomass production (above-ground) for the 12-year period varied significantly between the cover crops and ranged from 34.86 (calopo) to 90.43 (pueraria) Mg ha–1. Total N and C additions at the cover cropped (CC) site for the 12-year period were 0.97–3.07 Mg ha–1 and 16.90–43.34 Mg ha–1, respectively. Irrespective of layers, the levels of organic C, total N, organic substrates viz., dissolved organic C and N, labile organic N, water soluble carbohydrates, and light fraction organic matter-C and were markedly higher in the CC site compared to the control. Consequently, the levels of microbial biomass-C (CMIC), -N (NMIC) and -P (PMIC), net N mineralization rates, CO2 evolution, metabolic quotient (qCO2) and the activities of l-asparaginase, l-glutaminase and β-glucosaminidase were significantly higher in the CC site compared to the corresponding levels in the control site. Between layers, the levels of various chemical, biochemical and microbial parameters were consistently higher in the organic layers compared to the mineral layers at all the sites including control. Among the ratios of various microbial indices, the ratios of CMIC: organic C and CMIC: PMIC did not differ significantly between the layers and sites. However, the ratio of CMIC: NMIC was relatively higher in the mineral layers and control site. The variation in individual soil properties between layers and sites reflected the concomitant changes occurring in soil organic matter content. Apparently, microbial activity was limited by the supply of biologically available substrates in the mineral layers and the control site. Contrarily, the more direct supply of nutrients from decomposing plant litter and the indirect supply of nutrients from the mineralization of organic matter led to significantly higher levels of microbial biomass in the organic layers.  相似文献   

15.
Little is know on the impact of biosolids application on soil organic matter (SOM) stability, which contributes to soil C sequestration. Soil samples were collected in 2006 at plow layer from fields that received liquid and dry municipal biosolids application from 1972 to 2004 at the cumulative rate of 1416 Mg ha−1 in mined soil and 1072 Mg ha−1 in nonmined soil and control fields that received chemical fertilizer at Fulton County, western Illinois. The biosolids application increased the soil microbial biomass C (SMBC) by 5-fold in mined soil and 4-fold in nonmined soil. The biosolids-amended soils showed a high amount of basal respiration and N mineralization, but low metabolic quotient, and low rate of organic C and organic N mineralization. There was a remarkable increase in mineral-associated organic C from 6.9 g kg−1 (fertilizer control) to 26.6 g kg−1 (biosolids-amended) in mined soil and from 8.9 g kg−1 (fertilizer control) to 23.1 g kg−1 (biosolids-amended) in nonmined soil. The amorphous Fe and Al, which can improve SOM stability, were increased by 2–7 folds by the long-term biosolids application. It is evident from this study that the biosolids-modified SOM resists to decomposition more than that in the fertilizer treatment, thus long-term biosolids application could increase SOM stability.  相似文献   

16.
Soil samples taken from a sewage irrigation area, a partial sewage irrigation area and a ground water irrigation area (control area) were studied with the methods of Biolog and FAME. It was found that the microbial utilization of carbon sources in sewage irrigation areas was much higher than that of control area (P < 0.05). With the increasing of the amount of sewage irrigation, microbial functional diversity slightly increased by the Biolog analysis; however, the amount of epiphyte decreased by the FAME analysis. The results also showed that the Cr, Zn contents were positively correlated with the values of AWCD and the microbial diversity, while Hg content showed negative correlation with the microbial parameters (AWCD of 72 h and Shannon index). Our studies suggested that sewage irrigation resulted in an obvious increase of heavy metals content in soil (P < 0.05), although the maximum heavy metals concentrations were much lower than the current standard of China. Other soil basic characteristics such as cation exchange capacity (CEC), total nitrogen (Nt) and organic matter in sewage irrigation areas obviously increased (P < 0.05). Therefore, it is demonstrated that long-term sewage irrigation had influenced soil microorganisms and soil quality in the studied soils. As a result, it is important to monitor the changes in agricultural soils. Furthermore, our results also confirmed that the methods of Biolog and FAME are effective tools for the assessment of soil microbial structure/function and soil health.  相似文献   

17.
Although warming and plant diversity losses have important effects on aboveground ecosystem functioning, their belowground effects remain largely unknown. We studied the impact of a 3 °C warming and of three plant functional groups (forbs, grasses, legumes) on ammonia-oxidizing bacteria (AOB) diversity (polymerase chain reaction-denaturing gradient gel electrophoresis, PCR-DGGE) and their function (potential nitrification) in artificial grasslands. Warming did not influence AOB diversity and function. Sequencing of 16S rRNA gene fragments retrieved from DGGE gel revealed that they were all related to Nitrosospira-like sequences. Clustering analysis of DGGE profiles resulted in two nodes, separating AOB community structure under legumes from all other samples. Decreased AOB richness (number of DGGE bands) and concurrent increased potential nitrification were also observed under legumes. We hypothesized that ammonium availability was the driving force regulating the link between aboveground and belowground communities, as well as the AOB diversity and function link. The results document that the physiology of AOB might be an important regulator of AOB community structure and function under plant functional groups. This study highlights the major role of the microbial community composition in soil process responses to changes in the functional composition of plant communities.  相似文献   

18.
In a controlled potted experiment, citrus (Poncirus trifoliata) seedlings were inoculated with three species of arbuscular mycorrhizal (AM) fungi, Glomus mosseae, G. versiforme or Gdiaphanum. Two soil-water levels (ample water, −0.10 MPa; drought stress, −0.44 MPa) were applied to the pots 4 months after transplantation. Eighty days after water treatments, the soils and the citrus seedlings were well colonized by the three AM fungi. Mycorrhizal fungus inoculation improved plant biomass regardless of soil-water status but decreased the concentrations of hot water-extractable and hydrolyzable carbohydrates of soils. Mycorrhizal soils exhibited higher Bradford-reactive soil protein concentrations than non-mycorrhizal soils. Mycorrhizas enhanced >2 mm, 1–2 mm and >0.25 mm water-stable aggregate fractions but reduced 0.25–0.5 mm water-stable aggregates. Peroxidase activity was higher in AM than in non-AM soils whether drought stressed or not, whereas catalase activity was lower in AM than non-AM soils. Drought stress and AM fungus inoculation did not affect polyphenol oxidase activity of soils. A positive correlation between the Bradford-reactive soil protein concentrations, soil hyphal length densities, and water-stable aggregates (only >2 mm, 1–2 mm and >0.25 mm) suggests beneficial effects of the AM symbiosis on soil structure. It concluded that AM fungus colonization enhanced plant growth under drought stress indirectly through affecting the soil moisture retention via glomalin's effect on soil water-stable aggregates, although direct mineral nutritional effects could not be excluded.  相似文献   

19.
A short-term incubation study was carried out to investigate the effect of biochar addition to soil on CO2 emissions, microbial biomass, soil soluble carbon (C) nitrogen (N) and nitrate–nitrogen (NO3–N). Four soil treatments were investigated: soil only (control); soil + 5% biochar; soil + 0.5% wheat straw; soil + 5% biochar + 0.5% wheat straw. The biochar used was obtained from hardwood by pyrolysis at 500 °C. Periodic measurements of soil respiration, microbial biomass, soluble organic C, N and NO3–N were performed throughout the experiment (84 days). Only 2.8% of the added biochar C was respired, whereas 56% of the added wheat straw C was decomposed. Total net CO2 emitted by soil respiration suggested that wheat straw had no priming effect on biochar C decomposition. Moreover, wheat straw significantly increased microbial C and N and at the same time decreased soluble organic N. On the other hand, biochar did not influence microbial biomass nor soluble organic N. Thus it is possible to conclude that biochar was a very stable C source and could be an efficient, long-term strategy to sequester C in soils. Moreover, the addition of crop residues together with biochar could actively reduce the soil N leaching potential by means of N immobilization.  相似文献   

20.
Building soil structure in agroecosystems is important because it governs soil functions such as air and water movement, soil C stabilization, nutrient availability, and root system development. This study examined, under laboratory conditions, effects of organic amendments comprised of differing proportions of labile and semi-labile C on microbial community structure and macroaggregate formation in three variously textured soils where native structure was destroyed. Three amendment treatments were imposed (in order of increasing C lability): vegetable compost, dairy manure, hairy vetch (Vicia villosa Roth). Formation of water stable macroaggregates and changes in microbial community structure were evaluated over 82 days. Regardless of soil type, formation of large macroaggregates (LMA, >2000 μm diameter) was highest in soils amended with vetch, followed by manure, non-amended control, and compost. Vetch and manure had greater microbially available C and caused an increase in fungal biomarkers in all soils. Regression analysis indicated that LMA formation was most strongly related to the relative abundance of the fungal fatty acid methyl ester (FAME) 18:2ω6c (r = 0.55, p < 0.001), fungal ergosterol (r = 0.58, p < 0.001), and microbial biomass (r = 0.57, p < 0.001). Non-metric multidimensional scaling (NMS) ordination of FAME profiles revealed that vetch and manure drove shifts toward fungal-dominated soil microbial communities and greater LMA formation in these soils. This study demonstrated that, due to their greater amounts of microbially available C, vetch or manure inputs can be used to promote fungal proliferation in order to maintain or improve soil structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号