首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
2.

Background

Exclusive feeding of an iodine‐restricted diet has been proposed as a method for controlling clinical manifestations of hyperthyroidism in hyperthyroid cats.

Objectives

To determine the effect of feeding an iodine‐restricted diet on TT4 concentrations and clinical signs in cats with spontaneous hyperthyroidism.

Animals

Forty‐nine client‐owned cats with spontaneous hyperthyroidism.

Methods

Retrospective case series. Hyperthyroid cats were exclusively fed a commercially available iodine‐restricted diet. Clinical response was assessed by change in weight and heart rate and serum TT4, blood urea nitrogen (BUN), and creatinine concentrations at various times during dietary management (21–60 days, 60–180 days).

Results

Serum TT4 normalized in 20/48 cats (42%) and 39/47 cats (83%) at 21–60 days and 61–180 days, respectively. Cats in which the TT4 concentrations were still above reference range at 21–60 days had a significantly higher starting TT4 than those that normalized their TT4 levels during the same time period (P = .038). Body weight did not significantly increase (P = .34) nor heart rate decrease (P = .64) during the study. There was a significant decrease in serum creatinine (P = .028). Cats in the low reference range for serum TT4 concentrations did not have a significant increase in body weight (P = .41) nor creatinine (P = .54) when compared to those with high reference range.

Conclusions and Clinical Importance

Restricted‐iodine diets were effective at maintaining serum TT4 concentrations within reference ranges for a majority of cats with spontaneous hyperthyroidism over 1 year, although not all clinical signs of hyperthyroidism improved.  相似文献   

3.
4.

Background

In humans, measurement of serum thyroid‐stimulating hormone (TSH) concentration is commonly used as a first‐line discriminatory test of thyroid function. Recent reports indicate that canine TSH (cTSH) assays can be used to measure feline TSH and results can help diagnose or exclude hyperthyroidism.

Objectives

To investigate the usefulness of cTSH measurements as a diagnostic test for cats with hyperthyroidism.

Animals

Nine hundred and seventeen cats with untreated hyperthyroidism, 32 euthyroid cats suspected of having hyperthyroidism, and 131 clinically normal cats.

Methods

Prospective study. Cats referred to the Animal Endocrine Clinic for suspected hyperthyroidism were evaluated with serum T4, T3, free T4 (fT 4), and TSH concentrations. Thyroid scintigraphy was used as the gold standard to confirm or exclude hyperthyroidism.

Results

Median serum TSH concentration in the hyperthyroid cats (<0.03 ng/mL) was significantly (< .001) lower than concentrations in clinically normal cats (0.05 ng/mL) or euthyroid cats with suspected thyroid disease (0.06 ng/mL). Only 18 (2.0%) hyperthyroid cats had measurable TSH concentrations (≥0.03 ng/mL), whereas 114 (69.9%) of the 163 euthyroid cats had detectable concentrations. Combining serum TSH with T4 or fT 4 concentrations lowered the test sensitivity of TSH from 98.0 to 97.0%, but markedly increased overall test specificity (from 69.9 to 98.8%).

Conclusions and Clinical Importance

Serum TSH concentrations are suppressed in 98% of hyperthyroid cats, but concentrations are measurable in a few cats with mild‐to‐moderate hyperthyroidism. Measurement of serum TSH represents a highly sensitive but poorly specific test for diagnosis of hyperthyroidism and is best measured in combination with T4 and fT 4.  相似文献   

5.
正确测定甲状腺过氧化物酶 (TPO)的活性参照Hosoya提供的方法 ,对TPO活性的测定方法做了一定的改进 ,其准确度和精确度均有了一定的提高  相似文献   

6.
7.
8.
Levothyroxine administration has been suggested to be an effective treatment for canine von Willebrand disease (vWd), but evidence supporting this treatment is lacking. Effects of levothyroxine administration were evaluated in 8 euthyroid Doberman Pinschers with plasma von Willebrand factor (vWf) concentrations < 15%, characteristic of type 1 vWd. Levothyroxine (0.04 mg/kg PO q12h) and placebo were administered for 30 days in a 2-period, 2-treatment, double-blinded, crossover design with a 30-day washout period between treatments. Buccal mucosal bleeding time (BMBT), plasma vWf concentration (vWf: Ag), vWf collagen binding activity (vWf:CBA), factor VIII coagulant activity (FVIII:C), and serum concentrations of total thyroxine (T4), free thyroxine (fT4), 3,5,3'-triiodothyronine (T3), and thyroid-stimulating hormone (TSH) were measured on days 0, 2, and 30 of each treatment period. The 8 dogs (1 male, 7 females) had markedly low plasma vWf:Ag (mean, 8.9%; reference range, 70-180%) and vWf:CBA (mean, 11.1%; reference range, >70%). Response to placebo versus levothyroxine treatment was not significantly different between groups at day 0, 2, or 30 for BMBT, vWf:Ag, vWf:CBA, and FVIII:C. Serum T4, fT4, and T3 concentrations were significantly higher and serum TSH significantly lower in the levothyroxine-treated group than in the placebo group at days 2 and 30. Administration of levothyroxine at 0.04 mg/kg caused laboratory evidence of hyperthyroidism but did not affect plasma FVIII:C and vWf:Ag concentrations or vWf-dependent collagen binding and BMBT. The results of this study failed to identify a direct action of levothyroxine supplementation on plasma vWf concentration or activity in euthyroid Doberman Pinschers with vWd.  相似文献   

9.
Background: Glomerular filtration rate (GFR) is decreased in humans with hypothyroidism, but information about kidney function in dogs with hypothyroidism is lacking.
Hypothesis: Hypothyroidism influences GFR in dogs. The objective of this study was to assess GFR in hypothyroid dogs before implementation of thyroxine supplementation and after re-establishing euthyroidism.
Animals: Fourteen hypothyroid dogs without abnormalities on renal ultrasound examination or urinalysis.
Methods: Blood pressure and GFR (measured by exogenous creatinine clearance) were measured before treatment (T0, n = 14) and at 1 month (T1, n = 14) and at 6 months (T6, n = 11) after beginning levothyroxine supplementation therapy (20 μg/kg/d, PO). The response to therapy was monitored at T1 by measuring serum total thyroxine and thyroid stimulating hormone concentrations. If needed, levothyroxine dosage was adjusted and reassessed after 1 month. Statistical analysis was performed using a general linear model. Results are expressed as mean ± standard deviation.
Results: At T0, the average age of dogs in the study group was 6.3 ± 1.4 years. Their average body weight decreased from 35 ± 18 kg at T0 to 27 ± 14 kg at T6 ( P < .05). All dogs remained normotensive throughout the study. GFR increased significantly with levothyroxine supplementation; the corresponding results were 1.6 ± 0.4 mL/min/kg at T0, 2.1 ± 0.4 at T1, and 2.0 ± 0.4 at T6 ( P < .01).
Conclusion: GFR was <2 mL/min/kg in untreated hypothyroid dogs. Re-establishment of a euthyroid state increased GFR significantly.  相似文献   

10.
11.
Background: Hypothyroidism has been implicated in the development of multiple peripheral mono‐ and polyneuropathies in dogs. The objectives of this study were to evaluate the clinical and electrophysiologic effects of experimentally induced hypothyroidism on the peripheral nervous system of dogs. Hypothesis: Chronic hypothyroidism will induce peripheral nerve sensorimotor dysfunction. Animals: Eighteen purpose‐bred, female dogs. Methods: Prospective, longitudinal study: Hypothyroidism was induced by radioactive iodine administration in 9 dogs, and the remaining 9 served as untreated controls. Neurological examinations were performed monthly. Electrophysiologic testing consisting of electromyography (EMG); motor nerve conduction studies of the sciatic‐tibial, radial, ulnar, and recurrent laryngeal nerves; sciatic‐tibial and ulnar F‐wave studies; sensory nerve conduction studies of the tibial, ulnar, and radial nerves; and evaluation of blink reflex and facial responses were performed before and 6, 12, and 18 months after induction of hypothyroidism and compared with controls. Results: Clinical evidence of peripheral nervous dysfunction did not occur in any dog. At 6 month and subsequent evaluations, all hypothyroid dogs had EMG and histologic evidence of hypothyroid myopathy. Hypothyroid dogs had significant (P≤ .04) decreases in ulnar and sciatic‐tibial compound muscle action potentials over time, which were attributed to the concurrent myopathy. No significant differences between control and hypothyroid dogs were detected in electrophysiologic tests of motor (P≥ .1) or sensory nerve conduction velocity (P≥ .24) or nerve roots (P≥ .16) throughout the study period, with values remaining within reference ranges in all dogs. Conclusion: Chronic hypothyroidism induced by thyroid irradiation does not result in clinical or electrophysiologic evidence of peripheral neuropathy, but does cause subclinical myopathy.  相似文献   

12.
Basal serum thyroxine (T4) concentration and the thyrotropin-releasing hormone (TRH) stimulation test were used to assess thyroid function in 36 critically ill cats examined between July 1996 and October 1998. Of the 36 cats. hyperthyroidism (as underlying or complicating disease) was suspected in 22 based on clinical signs, palpable thyroid nodules, and abnormal thyroid gland histology (study group). Hyperthyroidism was not suspected in the remaining 14 cats, which served as the control group. Based on serum T4 concentrations, suppression of thyroid function was documented in 14 (64%) cats of the study group and in 10 (71%) cats of the control group. The TRH stimulation test revealed an increase in serum T4 of less than 50% of the baseline concentration in 18 (82%) cats of the study group, and in 6 (43%) cats of the control group. In conclusion, based on the results of serum T4 determinations and the TRH stimulation tests, it was not possible to differentiate between cats with clinical and histologic evidence of thyroid dysfunction (hyperthyroidism) and cats with severe nonthyroidal illnesses.  相似文献   

13.
14.
BACKGROUND: Intensive vaccination protocols have been suggested as partially responsible for an increased prevalence of autoimmune diseases in dogs in recent years. The aim of this study was to determine whether repeated routine vaccination in dogs is associated with an increased prevalence of thyroiditis. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a prospective experimental study with 20 healthy purpose-bred Beagles. Five dogs were vaccinated with a multivalent vaccine and a rabies vaccine. Five dogs received only the multivalent vaccine, and 5 dogs received only the rabies vaccine. Five dogs were unvaccinated controls. The multivalent vaccine was administered at 8, 10, 12, 16, 20, 26, and 52 weeks of age and every 6 months thereafter. The rabies vaccine was administered at 16 and 52 weeks of age and then once a year. Blood samples were collected 1 week before euthanasia for evaluation of thyroid profiles and measurement of antibodies directed against canine thyroglobulin. Dogs were euthanized at 5.5 years of age, and the thyroid glands were evaluated histopathologically. Thyroiditis was present in 8 of 20 (40%) dogs at postmortem examination. No association was found between a dog being vaccinated and the prevalence of thyroiditis at postmortem examination. However, the power of the study to detect such an association was low because of the unexpected high prevalence of thyroiditis in the unvaccinated control dogs. Thyroid function tests were abnormal in 2 of 8 dogs with thyroiditis but were normal in all dogs without thyroiditis. CONCLUSIONS/SIGNIFICANCE: There was no evidence to support an association between routine vaccination and thyroiditis at postmortem examination in beagle dogs after repeated vaccination.  相似文献   

15.
Background: Methimazole suppresses thyroid hormone synthesis and is commonly used to treat feline hyperthyroidism. The degree of variation in thyroid hormone concentrations 24 hours after administration of methimazole and optimal time for blood sampling to monitor therapeutic efficacy have not been determined.
Objective: To assess thyroid hormone concentration variation in serum of normal and hyperthyroid cats after administration of methimazole.
Animals: Four healthy cats and 889 retrospectively acquired feline thyroid hormone profiles.
Methods: Crossover and retrospective studies . In the crossover study, healthy cats were treated with increasing doses of oral methimazole until steady state of thyroid suppression was achieved. Thyroid hormones and thyroid stimulating hormone (TSH) were serially and randomly monitored after methimazole. Paired t -tests and a 3-factor analysis of variance were used to determine differences between thyroid hormone concentrations in treated and untreated cats in the crossover study. Thyroid profiles from methimazole-treated hyperthyroid cats were retrieved from the Diagnostic Center for Population and Animal Health database and reviewed. Linear regression analysis evaluated relationships of dosage (mg/kg), dosing interval (q24h versus q12h), and time after methimazole to all thyroid hormone concentrations.
Results: All serum concentrations of thyroid hormones were significantly suppressed and TSH was significantly increased for 24 hours after administration of oral methimazole in healthy cats ( P < .005). In hyperthyroid cats, there were no significant relationships between thyroid hormone concentrations and time postpill or dosing interval.
Conclusions: Timing of blood sampling after oral methimazole administration does not appear to be a significant factor when assessing response to methimazole treatment.  相似文献   

16.
BACKGROUND: Hyperthyroidism is the most diagnosed endocrine disorder in cats and radioiodine (131I) is the treatment of choice. The dose emission rate and radioactivity in urine, saliva, and on hair and paws are determined by the dose of administered 131I. A dose reduction of therapeutic 131I could possibly be achieved after recombinant human thyrotropin (rhTSH) administration as in humans with nodular goiter. HYPOTHESIS: rhTSH will increase radioiodine uptake in hyperthyroid cats. ANIMALS: Five hyperthyroid cats. METHODS: Twenty-five micrograms rhTSH (day 1) or 2 mL 0.9% sodium chloride (NaCl) (day 9) was injected IV. One hour later, 11.4 +/- 4.1 (mean +/- SD) MBq 123I was injected IV. Radioactive iodine uptake (RAIU) was measured 6, 12, and 24 hours after rhTSH (RAIU-rhTSH) or NaCl (RAIU-blanco) injection. Blood samples for measurement of TT4 were taken before injection of rhTSH or NaCl (TT4(0)) and at the time of imaging. RESULTS: Percentages of RAIU-rhTSH (and RAIU-blanco) at 6, 12, and 24 hours after administration of rhTSH were 34 +/- 18 (31 +/- 21), 46 +/- 20 (38 +/- 18), and 47 +/- 15 (36 +/- 14). There was a statistically significant effect of rhTSH administration on RAIU (P = .043) but not on serum TT4 concentration. Baseline serum TT4(0) concentration influenced RAIU-rhTSH significantly at 6 hours (P = .037). CONCLUSION AND CLINICAL IMPORTANCE: The increased RAIU observed after rhTSH administration in hyperthyroid cats could lead to a lower therapeutic dose of 131I after rhTSH administration in hyperthyroid cats and decreased risk of environmental and owner contamination during and after hospitalization.  相似文献   

17.
Background: Hypothyroidism affects renal function in a manner opposite the effects of hyperthyroidism.
Objective: To evaluate the effects of experimentally induced hypothyroidism on glomerular filtration rate (GFR) and basal plasma creatinine concentration in dogs.
Animals: Sixteen anestrous, female dogs.
Methods: Hypothyroidism was induced by administration of 131I in 8 dogs, and 8 healthy euthyroid dogs acted as controls. Exogenous plasma creatinine clearance (an estimate of GFR) was measured in all dogs before (control period) and 43–50 weeks after induction of hypothyroidism (posttreatment period). Other pharmacokinetic parameters of creatinine were also determined.
Results: No significant difference was observed for basal plasma creatinine concentration and creatinine clearance between control and hypothyroid dogs in the control period. In the posttreatment period, mean ± SD creatinine clearance in the hypothyroid group (2.13 ± 0.48 mL/min/kg) was lower ( P < .001) than that of the control group (3.20 ± 0.42 mL/kg/min). Nevertheless, basal plasma creatinine concentrations were not significantly different between the hypothyroid and control groups (0.74 ± 0.18 versus 0.70 ± 0.08 mg/dL, respectively) because endogenous production of creatinine was decreased in hypothyroid dogs (22 ± 3 versus 32 ± 5 mg/kg/d, P =.001).
Conclusion and Clinical Importance: Hypothyroidism causes a substantial decrease in GFR without altering plasma creatinine concentrations, indicating that GFR evaluation is needed to identify renal dysfunction in such patients.  相似文献   

18.
Background: Retinol-binding protein (RBP) is suggested as a clinically useful marker of renal function in cats.
Hypothesis: Serum and urinary RBP concentrations in hyperthyroid (HT) cats differ from those in healthy (H) cats; radioiodine (131I) treatment influences serum and urinary RBP concentrations in HT cats.
Animals: Ten HT and 8 H cats.
Methods: RBP concentration was evaluated in feline serum and urine samples from a prospective study.
Results: There was a significant ( P = .003) difference in the urinary RBP/creatinine (uRBP/c) ratios of H (−) and untreated HT (1.4 ± 1.5 × 10−2 μg/mg) cats. Serum total thyroxine concentration (1.8 ± 1.9 μg/dL, 24 weeks) and uRBP/c (0.6 ± 1.0 × 10−2 μg/mg, 24 weeks) decreased significantly ( P < .001) in HT cats at all time points after treatment with 131I, and these variables were significantly correlated with one another ( r = 0.42, P = .007). Serum RBP concentrations from HT cats (199 ± 86 μg/L) did not differ significantly ( P = .98) from those of H cats (174 ± 60) and did not change after treatment with 131I (182 ± 124 μg/L, P = .80).
Conclusion and Clinical Importance: The presence of urinary RBP in HT cats is a potential marker of tubular dysfunction that is correlated to thyroid status, although it is independent of circulating RBP concentrations. The decreased uRBP/c combined with the absence of changes in serum RBP after treatment suggests that the suspected tubular dysfunction was partly reversible with treatment of 131I.  相似文献   

19.
Background: Hyperthyroid cats are at risk of developing azotemic chronic kidney disease (CKD) and diagnostic tools currently used to screen for CKD in hyperthyroid cats are either unreliable or impractical.
Hypothesis: Urine N -acetyl-β- d -glucosaminidase index (NAGi) is a good biomarker for azotemic CKD in hyperthyroid cats.
Animals: Twenty-four newly diagnosed nonazotemic hyperthyroid cats and 10 healthy cats.
Methods: All cats were evaluated for hyperthyroidism at baseline. Hyperthyroid cats were treated with methimazole and reevaluated once euthyroid. At the end of the study, cats were divided into 3 groups: healthy cats, nonazotemic, and azotemic euthyroid cats. Baseline group characteristics were compared to predict azotemic CKD. The influence of treatment on NAGi was evaluated.
Results: Baseline NAGi was significantly different among groups ( P = .004). Azotemic cats had a higher median value (13.12 U/g) when compared with healthy cats (1.38 U/g). With NAGi >2.76 U/g, negative and positive predictive values for development of azotemia were 77.7 and 50%, whereas the combination of a urine specific gravity (USG) ≤1.035 and T4 >7.80 μg/dL enhanced predictive values to 88.9 and 83.3%, respectively. NAGi values decreased significantly over time in treated nonazotemic cats.
Conclusions and Clinical Relevance: Baseline NAGi did not differentiate azotemic from nonazotemic euthyroid cats. NAGi could be used to assess renal function during medical therapy allowing the clinician to adjust methimazole dosage accordingly. The combination of USG and T4 could optimize identification of appropriate candidates for permanent treatment of hyperthyroidism.  相似文献   

20.
Bovine thyrotropin (bTSH) stimulation testing has long been considered the gold standard for diagnosis of canine hypothyroidism. Unfortunately, bTSH is no longer commercially available. Recently, the use of recombinant human thyrotropin (rhTSH) to perform thyroid-stimulating hormone (TSH) stimulation testing in dogs was described. The cost of an rhTSH vial (1.1 mg) limits the practical use of this product. The study reported here was performed to determine the effects of storing rhTSH on the post-TSH increase of serum total (TT4) and free (FT4) thyroxine concentrations during TSH stimulation testing in 12 euthyroid Beagles in a crossover trial. Three TSH tests with recombinant human thyrotropin (rhTSH; 91.5 microg IV) were performed on each dog during 3 different periods: 1 with freshly reconstituted rhTSH (fresh); 1 with rhTSH, reconstituted and stored at 4 degrees C for 4 weeks (refrigerated); and 1 with rhTSH, reconstituted and frozen at -20 degrees C for 8 weeks (frozen). Blood samples for determination of TT4 and FT4 concentrations were collected before and 4 and 6 hours after rhTSH administration. There was no significant difference in TT4 or FT4 concentration after stimulation with fresh, refrigerated, and frozen rhTSH. Furthermore, there was no significant difference between TT4 or FT4 serum concentration observed 4 and 6 hours after rhTSH administration. In conclusion, reconstituted rhTSH can be stored at 4 degrees C for 4 weeks and at -20 degrees C for 8 weeks without loss of biological activity, allowing clinicians to perform more TSH response tests per vial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号