首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An experiment was conducted to investigate pig performance, carcass quality, and palatability of pork from pigs fed distillers dried grains with solubles (DDGS), high-protein distillers dried grains (HPDDG), and corn germ. Eighty-four pigs (initial BW, 22 +/- 1.7 kg) were allotted to 7 dietary treatments with 6 replicates per treatment and 2 pigs per pen. Diets were fed for 114 d in a 3-phase program. The control treatment was based on corn and soybean meal. Two treatments were formulated using 10 or 20% DDGS in each phase. Two additional treatments contained HP-DDG in amounts sufficient to substitute for either 50 or 100% of the soybean meal used in the control treatment. An additional 2 treatments contained 5 or 10% corn germ, which was calculated to provide the same amount of fat as 10 or 20% DDGS. Results showed that for the entire experiment, pig performance was not affected by DDGS or HP-DDG, but final BW increased (linear, P < 0.05) as corn germ was included in the diets. Carcass composition and muscle quality were not affected by DDGS, but LM area and LM depth decreased (linear, P < 0.05) as HP-DDG was added to the diets. Lean meat percentage increased and drip loss decreased as corn germ was included in the diets (quadratic, P < 0.05). There was no effect of DDGS on fat quality except that belly firmness decreased (linear, P < 0.05) as dietary DDGS concentration increased. Including HP-DDG or corn germ in the diets did not affect fat quality, except that the iodine value increased (linear, P < 0.05) in pigs fed HP-DDG diets and decreased (linear, P < 0.05) in pigs fed corn germ diets. Cooking loss, shear force, and bacon distortion score were not affected by the inclusion of DDGS, HP-DDG, or corn germ in the diets, and the overall palatability of the bacon and pork chops was not affected by dietary treatment. In conclusion, feeding 20% DDGS or high levels of HP-DDG to growing-finishing pigs did not negatively affect overall pig performance, carcass composition, muscle quality, or palatability but may decrease fat quality. Feeding up to 10% corn germ did not negatively affect pig performance, carcass composition, carcass quality, or pork palatability but increased final BW of the pigs and reduced the iodine value of belly fat.  相似文献   

2.
An experiment was conducted to test the hypothesis that inclusion of hybrid rye in diets containing corn and soybean meal (SBM) without or with microbial phytase improves the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P because of the intrinsic phytase activity in hybrid rye. Forty-eight growing barrows (initial body weight: 39.5 ± 7.7 kg) were allotted to six diets. A basal diet containing corn and SBM; a rye-based diet; and a diet containing corn, SBM, and rye were formulated. Each diet was formulated without and with microbial phytase (500 units/kg of diet) for a total of six diets. Fecal samples were collected for 4 d following a 5-d adaptation period according to the marker-to-marker procedure. Results indicated that no interactions between diets and concentration of phytase were observed for any of the response criteria measured. The ATTD and STTD of P and the ATTD of Ca differed (P < 0.05) among diets, but regardless of diet, the concentration of P in feces was reduced (P < 0.05) by adding microbial phytase to the diets. As a consequence, microbial phytase increased (P < 0.05) ATTD and STTD of P, and the ATTD of Ca was also increased (P < 0.05) by the use of microbial phytase. Measured values for the ATTD and STTD of P in the diets containing corn, SBM, and hybrid rye without or with phytase were greater (P < 0.05) than values that were predicted based on the ATTD and STTD of P for the corn–SBM and the hybrid rye diet. The observation that STTD predicted from the individual ingredients underestimated the STTD of P in the mixed diet indicates that the intrinsic phytase in hybrid rye resulted in increased digestibility of the P in the corn and SBM included in the corn–SBM–hybrid rye diet. In conclusion, microbial phytase increased the ATTD and STTD of P and the ATTD of Ca regardless of feed ingredients used in diets fed to pigs. In addition, the intrinsic phytase from hybrid rye increased the ATTD and STTD of P in corn and SBM.  相似文献   

3.
The objectives of this experiment were to determine the apparent ileal digestibility and the standardized ileal digestibility (SID) of CP and AA in bakery meal, corn gluten meal, corn gluten feed, corn germ meal, and hominy feed and to compare these values with the apparent ileal digestibility and SID of CP and AA in corn and distillers dried grains with solubles (DDGS). Eight growing barrows (initial BW: 82.5 ± 5.5 kg) were randomly allotted to an 8 × 8 Latin square design with 8 diets and 8 periods. Diets contained corn, DDGS, bakery meal, corn gluten meal, corn gluten feed, corn germ meal, or hominy feed as the sole source of protein and AA. An N-free diet was used to measure basal endogenous losses of AA and protein. Pigs were fed experimental diets for eight 7-d periods, with ileal digesta being collected on d 6 and 7 of each period. Results indicated that the SID of Lys in corn gluten meal (78.7%) was greater (P < 0.01) than in DDGS, bakery meal, corn germ meal, and hominy feed (46.0, 48.4, 68.4, and 58.8%, respectively). The SID of all indispensable AA except Arg, Leu, and Met in bakery meal were not different from those in DDGS. The SID of Arg, His, Leu, and Met in corn gluten feed were less (P < 0.01) than in corn, but the SID of all other indispensable AA in corn gluten feed were not different from those in corn. However, for most indispensable AA, the SID in corn gluten feed was not different from the SID in DDGS. The SID of all indispensable AA in corn germ meal, except Arg, His, Leu, and Met, were not different from the SID in corn. Likewise, the SID of all indispensable AA in corn germ meal, except Arg and Leu, were not different from those in DDGS. The SID of Ile, Met, Phe, and Val in hominy feed were less (P < 0.01) than in corn, but the SID of the remaining indispensable AA in hominy feed were not different from the SID of indispensable AA in corn. All indispensable AA in hominy feed also had SID values that were not different from the SID values of AA in DDGS, except for Arg and Lys, which had greater (P < 0.01) SID than in DDGS. In conclusion, bakery meal had SID values of most AA that were less than in corn, but corn gluten meal had SID values for most AA that were greater than the SID of AA in corn, bakery meal, and corn coproducts.  相似文献   

4.
Three experiments were conducted to test the hypothesis that the standardized ileal digestibility (SID) of amino acids (AA), concentrations of digestible energy (DE) and metabolizable energy (ME), and the standardized total tract digestibility (STTD) of P in a new source of fermented soybean meal (Fermex 200) are greater than in conventional soybean meal (SBM-CV). In experiment 1, 9 barrows (initial body weight: 9.17 ± 1.03 kg) were surgically fitted with a T-cannula in the distal ileum and allotted to a triplicated 3 × 3 Latin square design. A nitrogen-free diet and 2 diets that contained cornstarch and SBM-CV or Fermex 200 as the sole source of crude protein (CP), and AA were formulated. Results indicated that there were no difference between SBM-CV and Fermex 200 for SID of CP and AA. In experiment 2, 24 growing pigs (initial body weight: 14.19 ± 1.18 kg) were housed individually in metabolism crates. Pigs were allotted to a corn-based diet or 2 diets that contained corn and SBM-CV or corn and Fermex 200. Feces and urine samples were collected using the marker-to-marker approach with 5-d adaptation and 4-d collection periods. Results indicated that the concentration of DE and ME in Fermex 200 were not different from DE and ME in SBM-CV. In experiment 3, 40 barrows (initial body weight: 11.01 ± 1.38 kg) were allotted to 1 of 4 diets with 10 replicate pigs per diet. Four diets were formulated to contain Fermex 200 or SBM-CV and either 0 or 1,000 units/kg of microbial phytase. Pigs were housed individually in metabolism crates. Fecal samples were collected as explained for experiment 2. Results indicated that the STTD of P in Fermex 200 was greater (P < 0.01) than in SBM-CV, but the addition of microbial phytase to the diets increased the ATTD and STTD of P in SBM-CV, but not in Fermex 200 (interaction; P < 0.01). In conclusion, the SID of AA and concentrations of DE and ME in Fermex 200 were not different from values determined for SBM-CV, but the STTD of P was greater in Fermex 200 than in SBM-CV if microbial phytase was not added to the diet.  相似文献   

5.
An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in fermented soybean meal (FSBM) are greater than in conventional soybean meal (SBM-CV) when fed to growing pigs. Four diets were formulated to contain FSBM or SBM-CV and either 0 or 800 units/kg of microbial phytase. The only sources of P in these diets were FSBM and SBM-CV. A P-free diet to estimate basal endogenous losses of P was also formulated. Thirty barrows (initial BW: 14.0 ± 2.3 kg) were placed in metabolism cages and allotted to 5 diets in a randomized complete block design with 6 pigs per diet. Feces were collected for 5 d after a 5-d adaptation period. All samples of ingredients, diets, and feces were analyzed for P, and values for ATTD and STTD of P were calculated. Results indicated that the basal endogenous P losses were 187 mg/kg of DMI. As phytase was added to the diet, the ATTD and STTD of P increased (P < 0.01) from 60.9 to 67.5% and from 65.5 to 71.9%, respectively, in pigs fed FSMB. Likewise, addition of phytase to SBM-CV increased (P < 0.01) the ATTD and STTD of P from 41.6 to 66.2% and from 46.1 to 71.4%, respectively. The ATTD and STTD of P were greater (P < 0.01) in FSBM than in SBM-CV when no phytase was used, but that was not observed when phytase was added to the diet (soybean meal × phytase interaction, P < 0.01). In conclusion, the ATTD and STTD of P in FSBM was greater than SBM-CV when no microbial phytase was added, but when phytase was added to the diets, no differences between FSBM and SBM-CV were observed in the ATTD and STTD of P.  相似文献   

6.
Two experiments were completed to determine the potential for using distillers dried grains with solubles (DDGS) in diets with or without phytase to provide available P, energy, and protein to highly productive lactating sows without increasing their fecal P. In Exp. 1, the dietary treatments were as follows: (1) corn and soybean meal with 5% beet pulp (BP) or (2) corn and soybean meal with 15% DDGS (DDGS). Besides containing similar amounts of fiber, diets were isonitrogenous (21% CP, 1.2% Lys) and isophosphorus (0.8% P). Sixty-one sows were allotted to dietary treatments at approximately 110 d of gestation (when they were placed in farrowing crates) based on genetics, parity, and date of farrowing. Sows were gradually transitioned to their lactation diet. On d 2 of lactation, litters were cross-fostered to achieve 11 pigs/litter. Sows and litters were weighed on d 2 and 18. Fecal grab samples were collected on d 7, 14, and 18 of lactation. Dietary treatment did not affect the number of pigs weaned (10.9 vs. 10.8) or litter weaning weight. On d 14, DDGS sows had less fecal P concentration than BP sows (28.3 vs. 32.8 mg/g; P = 0.04). Fecal Ca of sows fed DDGS decreased for d 7, 14, and 18 (55.6, 51.4, and 47.1 mg/g of DM, respectively; P = 0.05) but not for BP sows. In Exp. 2, the dietary treatments were as follows: (1) corn and soybean meal (CON), (2) CON + 500 phytase units of Natuphos/kg diet, as fed (CON + PHY), (3) corn and soybean meal with 15% DDGS and no phytase (DDGS), or (4) DDGS + 500 FTU of Natuphos/kg of diet, as fed (DDGS + PHY). Sows (n = 87) were managed as described for Exp 1. Litter BW gain (46.0, 46.3, 42.1, and 42.2 kg; P = 0.25) and sow BW loss (8.1, 7.2, 7.4, and 6.3 kg for CON, CON + PHY, DDGS, and DDGS + PHY, respectively; P = 0.97) were not affected by dietary treatment. Fecal P concentration did not differ among dietary treatments but was reduced at d 14 and 18 compared with d 7 (P = 0.001). However, fecal phytate P concentration was decreased by the addition of DDGS when DDGS and DDGS + PHY were compared with the CON sows except on d 7 (P < 0.05). Sows fed CON diet had greater fecal phytate P than sows fed DDGS, and sows fed DDGS + PHY had less fecal phytate P than sows fed DDGS with no phytase (P = 0.001). Although these experiments were only carried out for 1 lactation, these results indicate that highly productive sows can sustain lactation performance with reduced fecal phytate P when fed DDGS and phytase in lactation diets.  相似文献   

7.
An experiment was conducted to test the hypothesis that the requirement for Ca expressed as a ratio between standardized total tract digestible (STTD) Ca and STTD P obtained in short-term experiments may be applied to pigs fed diets without or with microbial phytase from 11 to 130 kg. In a 5-phase program, 160 pigs (body weight: 11.2 ± 1.8 kg) were randomly allotted to 32 pens and 4 corn–soybean meal-based diets in a 2 × 2 factorial design with 2 diet formulation principles (total Ca or STTD Ca), and 2 phytase inclusion levels (0 or 500 units/kg of feed) assuming phytase released 0.11% STTD P and 0.16% total Ca. The STTD Ca:STTD P ratios were 1.40:1, 1.35:1, 1.25:1, 1.18:1, and 1.10:1 for phases 1 to 5, and STTD P was at the requirement. Weights of pigs and feed left in feeders were recorded at the end of each phase. At the conclusion of phase 1 (day 24), 1 pig per pen was euthanized and a blood sample and the right femur were collected. At the end of phases 2 to 5, a blood sample was collected from the same pig in each pen. At the conclusion of the experiment (day 126), the right femur of 1 pig per pen was collected and carcass characteristics from this pig were measured. No interactions were observed between diet formulation principle and phytase inclusion for growth performance in any phase and no differences among treatments were observed for overall growth performance. Plasma Ca and P and bone ash at the end of phase 1 were also not influenced by dietary treatments. However, on day 126, pigs fed nonphytase diets formulated based on total Ca had greater bone ash than pigs fed STTD Ca-based diets, but if phytase was used, no differences were observed between the 2 formulation principles (interaction P < 0.05). At the end of phases 2 and 3, pigs fed diets without phytase had greater (P < 0.05) plasma P than pigs fed diets with phytase, but no differences were observed at the end of phases 4 and 5. A negative quadratic effect (P < 0.05) of phase (2 to 5) on the concentration of plasma Ca was observed, whereas plasma P increased (quadratic; P < 0.05) from phases 2 to 5. However, there was no interaction or effect of diet formulation principle or phytase inclusion on any carcass characteristics measured. In conclusion, STTD Ca to STTD P ratios can be used in diet formulation for growing-finishing pigs without affecting growth performance or carcass characteristics and phytase inclusion ameliorates bone resorption caused by low dietary Ca and P.  相似文献   

8.
A 5 × 5 Latin square design trial was conducted to evaluate rumen fermentation and apparent nutrient digestibility in 5 rumen-cannulated heifers (420 ± 6 kg) fed a barley-based finishing diet supplemented with 20 or 40% wheat or corn dried distillers grains with solubles (DDGS). The composition of the control diet was 88.7% rolled barley grain, 5.5% supplement, and 5.8% barley silage (DM basis). Increasing the quantity of corn DDGS in the ration resulted in a quadratic decrease in DMI (P = 0.04) and OM intake (P = 0.05). Rumen pH, pH duration, and area under rumen pH thresholds of 5.8 or 5.5 were not affected (P > 0.05) by treatment. Inclusion of wheat DDGS resulted in a quadratic increase (P = 0.05) in pH area below the cutoff value of 5.2, with the most pronounced effect at 20% inclusion. Wheat DDGS linearly increased (P = 0.01) rumen NH(3)-N concentrations. Increasing the inclusion rate of wheat and corn DDGS resulted in quadratic (P = 0.05) and linear (P = 0.04) decreases in rumen propionate, whereas butyrate increased quadratically (P < 0.01) and linearly (P < 0.01), respectively. Feeding wheat DDGS linearly decreased (P < 0.01) DM and OM digestibility values. Inclusion of corn DDGS increased the digestibility values of ether extract (P = 0.05; quadratic response) and CP (P < 0.01; linear response). Neutral detergent fiber digestibility increased in a linear fashion (P = 0.01) as both wheat and corn DDGS inclusion increased, whereas ADF digestibility increased linearly (P = 0.03) for wheat and quadratically (P = 0.02) for corn DDGS. Increased inclusion of wheat DDGS resulted in a linear decrease in GE digestibility (P = 0.01), whereas increasing corn DDGS inclusion linearly increased (P < 0.01) the DE content of the diet. Feeding both wheat and corn DDGS linearly increased (P = 0.01) the excretion of N and P. In summary, replacement of barley grain with up to 40% wheat or corn DDGS did not mitigate rumen pH conditions associated with mild to moderate acidosis in heifers fed a barley-based finishing diet. Supplementing corn DDGS increased nutrient digestibility of all nutrients and, as a result, led to greater DE content. Supplementation of wheat DDGS reduced DM and OM digestibility values, with no effect on DE content. Increased N and P excretion by heifers fed DDGS at 20 or 40% of dietary DM presents a challenge for cattle feeders with respect to nutrient management.  相似文献   

9.
An experiment was conducted to test the hypothesis that formulating diets for pigs based on a ratio between standardized total tract digestible (STTD) Ca and STTD P instead of total Ca and STTD P does not decrease Ca retention, but increases P utilization. Forty barrows (59.4 ± 3.8 kg) were individually housed in metabolism crates and allotted to four corn-soybean meal-based diets in a randomized complete block design with two blocks and five pigs per diet in each block. Diets were formulated using a 2 × 2 factorial design with two diet formulation principles (total Ca or STTD Ca) and two inclusion levels of microbial phytase (0 or 500 units per kg of feed). Phytase was assumed to release 0.11% STTD P and 0.16% total Ca. Diets were formulated based on requirements for total Ca and STTD P or a ratio between STTD Ca and STTD P of 1.25:1. Diets were fed for 11 d and fecal and urine samples were collected from feed provided from day 6 to day 10. Interactions (P < 0.05) between diet formulation principle and phytase level were observed for Ca intake, Ca in feces, Ca absorbed, Ca retained, P digestibility, P absorbed, and P in urine. Phytase increased (P < 0.05) the digestibility of Ca in both total Ca and STTD Ca diets. Without phytase, Ca intake, Ca in feces, and Ca absorbed was greater (P < 0.05) from pigs fed total Ca diets than from pigs fed STTD Ca diets, but P absorbed, P digestibility, and P in urine was greater (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. However, in the presence of phytase, no differences between diet formulation principles were observed in these variables. Regardless of phytase, Ca in urine was lower (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. There were no differences in Ca retention between pigs fed STTD Ca diets and total Ca diets, but pigs fed total Ca diets retained less (P < 0.05) Ca if diets contained phytase. No differences in P retention were observed between diet formulation principles, but pigs fed non-phytase diets retained more (P < 0.05) P than pigs fed diets with phytase. In conclusion, because diets formulated based on STTD Ca contain less Ca than total Ca diets, pigs fed STTD Ca diets excreted less Ca in urine, but retention of Ca was not affected. Formulating non-phytase diets based on STTD Ca instead of total Ca increased P absorption, which confirms the detrimental effect of excess Ca on P digestibility. However, P retention was not improved if pigs were fed STTD Ca diets.  相似文献   

10.
Considering approaches to efficiently produce broiler chickens, an experiment was conducted to describe the manufacturing and feeding effects of a corn, soybean meal, and wheat based diet with varying levels of corn distillers dried grains with solubles (DDGS) and commercial phytase. Treatments were arranged in a 3 × 2 factorial randomized complete block design varying in phytase (zero, 1,000, and 6,000 FTU/kg) and DDGS inclusion (zero or 5%). Phytase inclusion decreased dietary non-phytate phosphorous (nPP) and total Calcium (Ca) in formulation by 0.12 and 0.1%, respectively. Diets were steam conditioned at 82°C for 10 s, extruded through a 4.7 × 38 mm pellet die, and fed as crumbles (starter and grower) or pellets (finisher). Ten replicate pens of straight-run Hubbard × Cobb 500 chicks consumed one of 6 dietary treatments for 38 days. Phytase improved feed conversion ratio (FCR) in the starter period (P = 0.05), but benefits were not apparent in the grower or finisher periods. Phytase and formulation main effects interacted to affect overall FCR (P = 0.05), demonstrating a 0.05 decrease in FCR when birds were fed a diet containing a super-dose of phytase and without DDGS relative to diets containing a super-dose of phytase and DDGS. The DDGS likely provided reduced nutrient availability relative to their nutrient values used for diet formulation or provided non-starch polysaccharides (NSP) at a level that decreased bird performance. Based on tibia ash measures, performance improvement associated with the super-dose of phytase was likely associated with reducing phytate phosphorus gastrointestinal irritation rather than meeting bird phosphorus requirement.  相似文献   

11.
An experiment was conducted to measure DE and ME and the apparent total tract digestibility (ATTD) of energy, N, and P in distillers dried grains with solubles (DDGS) fed to growing pigs. Ten sources of DDGS were obtained from ethanol plants in South Dakota and Minnesota, and 11 diets were formulated. One diet was based on corn (96.8%), limestone, salt, vitamins, and microminerals. Ten additional diets were formulated by mixing the corn diet and each of the 10 sources of DDGS in a 1:1 ratio. Eleven growing pigs (initial BW of 29.3 +/- 0.42 kg) were allotted to an 11 x 11 Latin square design, with 11 periods and 11 pigs. Each of the 11 diets was fed to each pig during 1 period. Pigs were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine. Samples were analyzed for GE, N, and P and energy and N balances, and the ATTD of GE, N, and P were calculated for each diet. By subtracting the contribution from the corn diet to the DDGS-containing diets, the energy and N balances and the ATTD for GE, N, and P for each source of DDGS were calculated. Results of the experiment showed that the DE and ME differed (P < 0.001) among the 10 sources of DDGS (3,947 to 4,593 kcal of DE/kg of DM and 3,674 to 4,336 kcal of ME/kg of DM). The average DE and ME in DDGS were 4,140 and 3,897 kcal/kg of DM, respectively. These values were not different from the DE and ME in corn (4,088 and 3,989 kcal/kg of DM, respectively). Based on the analyzed GE and nutrient composition of DDGS and the calculated values for DE and ME, prediction equations for DE and ME were developed. These equations showed that DE and ME in DDGS may be predicted from the concentration of ash, ether extract, ADF, and GE. The retention of N from DDGS was greater (P < 0.001) than from corn, but when calculated on a percentage basis, the N retention did not differ between DDGS and corn. The ATTD of P in DDGS was 59.1% on average for the 10 samples. This value was greater (P < 0.001) than the ATTD of P in corn (19.3%). It is concluded that the DE and ME in DDGS is not different from the DE and ME in corn. However, if DDGS is included in diets fed to growing swine, a greater portion of the organic P will be digested and absorbed, thus reducing the need for adding inorganic P to the diets.  相似文献   

12.
1. An experiment was conducted with 360 Lohmann LSL-Classic White Leghorn layers (64 weeks old) to evaluate the effects of supplementation of microbial phytase on production, egg quality, bone, selected manure parameters and feed costs.

2. Experimental diets were formulated as follows: (1) maize–soybean (CS), (2) CS+300 units of phytase (FTU)/kg diet which was formulated to recoup only calcium and available phosphorus equivalency for phytase (CS+PHYCa+P), (3) CS+300 FTU/kg diet which was formulated to recoup total nutrient equivalency for phytase (CS+PHYtotal), (4) CS+100 g/kg distiller's dried grains with solubles (DDGS), (5) DDGS+300 FTU/kg diet which was formulated to recoup only calcium and available phosphorus equivalency for phytase (DDGS+PHYCa+P), or (6) DDGS+300 FTU/kg diet which was formulated to recoup total nutrient equivalency for phytase (DDGS+PHYtotal).

3. Each dietary treatment was assigned to 4 replicate groups with 3 cages and 5 hens per cage. The hens were provided with feed and water ad libitum. The experiment lasted for 8 weeks.

4. CS+PHYCa+P, CS+PHYtotal, DDGS+PHYCa+P and DDGS+PHYtotal diets supplemented with phytase provided similar percentage egg production, egg weight, egg mass, exterior egg quality, initial and final body weight compared with phytase-free diets.

5. However, supplementation of phytase to the experimental diets and calculation of the total nutrient equivalency for enzyme caused increased feed intake and decreased feed conversion ratio and Haugh unit.

6. No differences in manure dry matter, crude ash, total nitrogen, tibia crude ash, calcium and phosphorus contents were found among the experimental diets. On the other hand, manure total phosphorus content was significantly decreased in the DDGS diet and diets supplemented with phytase in comparison to the CS diet.

7. It was concluded that the addition of microbial phytase to the CS-based diets or diets with DDGS of hens in late lay and using Ca and available P equivalency of enzyme in feed; formulation may provide an economic benefit and decrease the amount of phytate P excretion in the manure without compromising production and egg quality parameters.  相似文献   


13.
Two experiments were conducted to evaluate effects of corn distillers dried grains with solubles (DDGS) on growth performance and health status of weanling pigs. Experiment 1 evaluated effects of increasing concentrations of DDGS on growth performance and health of weanling pigs. Dietary treatments included 1) control (CTL), 2) 0% DDGS (0% DDGS in phase 2 and 30% DDGS in phase 3), 3) 5% DDGS (5% DDGS in phase 2 and 30% DDGS in phase 3), and 4) 30% DDGS (phases 2 and 3). Overall, pigs fed 30% DDGS during phases 2 and 3 had decreased (22.1 vs. 25.1 and 24.0 kg; P = 0.003) BW compared with CTL pigs and pigs that only received DDGS during phase 3. In addition, pigs fed 5 or 30% DDGS in phase 2 had decreased (422.7 or 390.0 vs. 468.2 g; P = 0.003) ADG compared with CTL pigs. However, pigs fed 0% DDGS during phase 2 had similar BW, ADG, and ADFI compared with CTL pigs. Experiment 2 was conducted to evaluate effects of DDGS, lactose, and their interaction on growth performance and health of weanling pigs. Dietary treatments included 1) CTL, 2) lactose (20%), 3) DDGS (15%), and 4) lactose + DDGS. Diets of interest were fed during phase 1 (d 0 to 14), and a common diet was fed during phase 2 (d 14 to 28). Pigs receiving DDGS in phase 1 had greater ADG (576.2 vs. 534.6 g; P = 0.01) and ADFI (814.9 vs. 751.6 g; P = 0.01) during phase 2 compared with non-DDGS-fed pigs. Pigs receiving lactose during phase 1 had greater ADG (214.7 vs. 177.2 g; P = 0.01) and G:F (741.0 vs. 660.3 g/kg; P = 0.01) and tended to have greater ADFI (289.3 vs. 267.6 g; P = 0.07) during phase 1 but decreased (537.7 vs. 573.1 g; P = 0.09) ADG during phase 2. Serum immunoglobulin analyses and fecal microbial profiling were conducted in both experiments as indicators of health status. No effects of dietary treatment were observed for serum immunoglobulin in either experiment. Fecal microbial profiling resulted in statistically significant effects of dietary treatment with respect to microbial similarity and diversity indices (Exp. 1) and lactic acid-producing bacteria (Exp. 2), where main effects of both lactose and DDGS were observed with respect to putative Lactobacillus reuteri (P < 0.05). Results from Exp. 1 indicate that decreased concentrations of DDGS early in the nursery phase may negatively affect growth performance; however, growth performance may be maintained when inclusion of high concentrations (30%) of DDGS is delayed until the late nursery period. Results from Exp. 2 indicate that lactose may be incorporated in nursery diets containing DDGS to help maintain growth performance, and DDGS and lactose may affect fecal microbial profiles.  相似文献   

14.
Effect of supplementing wheat dried distillers’ grain with solubles (DDGS)‐containing diet with enzymes on nutrient utilization by growing pigs was evaluated in two experiments. In Experiment 1, 60 pigs weighing ~30 kg were fed five diets that included a corn‐based diet (Control), Control with 10% wheat DDGS (DDGS‐PC), DDGS‐PC without inorganic P source (DDGS‐NC), and DDGS‐NC plus phytase alone or with multi‐carbohydrase for 4 weeks to determine average daily gain (ADG), average daily feed intake (ADFI) and gain‐to‐feed ratio (G:F). In Experiment 2, 30 barrows weighing 22 kg were fed five diets fed in Experiment 1 to determine nutrient digestibility and retention. Pigs fed DDGS‐PC and Control diets had similar ADG and G:F. The ADG and G:F for DDGS‐PC diet were higher (P < 0.05) than those for DDGS‐NC diet. Phytase improved (P < 0.05) ADG, G:F, total tract P digestibility and P retention by 6.6, 8.7, 86.0 and 85.5%, respectively. Addition of multi‐carbohydrase to phytase‐supplemented diet did not affected growth performance, but reduced (P < 0.05) P retention. In conclusion, inclusion of 10% wheat DDGS in growing pig diet may not affect growth performance of growing pigs. Phytase supplementation to wheat DDGS‐containing diet can eliminate the need for inorganic P supplement in pig diets.  相似文献   

15.
Four experiments were conducted to investigate the effects of distillers dried grains with solubles (DDGS) and dietary S on feed preference and performance of pigs. In a 10-d feed preference experiment (Exp. 1), 48 barrows (20.1 ± 2.2 kg of BW) were randomly allotted to 3 treatment groups, with 8 replicate pens per treatment and 2 pigs per pen. A control diet based on corn and soybean meal, a DDGS diet containing 20% DDGS, and a DDGS-sulfur (DDGS-S) diet were prepared. The DDGS-S diet was similar to the DDGS diet with the exception that 0.74% CaSO(4) was added to the diet. Two diets were provided in separate feeders in each pen: 1) the control diet and the DDGS diet, 2) the control diet and the DDGS-S diet, or 3) the DDGS diet and the DDGS-S diet. Preference for the DDGS diet and the DDGS-S diet vs. the control diet was 35.2 and 32.6%, respectively (P < 0.05), but there was no difference between the DDGS diet and the DDGS-S diet. In Exp. 2, a total of 90 barrows (10.3 ± 1.4 kg of BW) were allotted to 3 treatments, with 10 replicate pens and 3 pigs per pen, and were fed the diets used in Exp. 1 for 28 d, but only 1 diet was provided per pen. Pigs fed the control diet gained more BW (497 vs. 423 and 416 g/d; P < 0.05) and had greater G:F (0.540 vs. 0.471 and 0.455; P < 0.05) than pigs fed the DDGS or the DDGS-S diet, but no differences between the DDGS and the DDGS-S diets were observed. In a 10-d feed preference experiment (Exp. 3), 30 barrows (49.6 ± 2.3 kg of BW) were allotted to 3 treatment groups, with 10 replicates per group. The experimental procedures were the same as in Exp. 1, except that 30% DDGS was included in the DDGS and DDGS-S diets and 1.10% CaSO(4) was added to the DDGS-S diet. Feed preference for the DDGS and the DDGS-S diets, compared with the control diet, was 29.8 and 32.9%, respectively (P < 0.01), but there was no difference between the DDGS and the DDGS-S diets. In Exp. 4, a total of 120 barrows (34.2 ± 2.3 kg of BW) were fed grower diets for 42 d and finisher diets for 42 d. Diets were formulated as in Exp. 3. Pigs on the control diets gained more BW (1,021 vs. 912 and 907 g/d; P < 0.05) and had greater G:F (0.335 vs. 0.316 and 0.307; P < 0.05) than pigs fed the DDGS or DDGS-S diet, respectively, but no differences between pigs fed the DDGS and the DDGS-S diets were observed. In conclusion, dietary S concentration does not negatively affect feed preference, feed intake, or growth performance of weanling or growing-finishing pigs fed diets based on corn, soybean meal, and DDGS.  相似文献   

16.
Two experiments were conducted to investigate the concept that the addition of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) to a P-deficient diet would improve growth performance and P utilization in pigs. An E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was included for comparison. In Exp. 1, forty-eight 10-kg pigs were blocked by BW into 6 blocks and allotted to 8 dietary treatments such that the BW among dietary treatments was similar and given free access to feed for 28 d. The dietary treatments were a negative control (NC) with no inorganic P supplementation; NC + 2, 4, or 6 g of monosodium phosphate/kg; NC + 16,500, 33,000, or 49,500 phytase units (FTU) of CBP/kg; and NC + 16,500 FTU of Quantum/kg. In Exp. 2, twenty-four 13-kg barrows were assigned to the NC, NC + 16,500 or 33,000 FTU of CBP/kg, or NC + 16,500 FTU of Quantum/kg, in a nutrient- and energy-balance study consisting of 5 d of adjustment and 5-d collection periods. The total collection method was used to determine nutrient and energy balance. Addition of CBP to the low-P NC diet linearly increased (P < 0.01) ADG, G:F, and plasma P concentration of pigs during the 28-d study. There was no difference in ADG, G:F, or plasma P concentration between pigs fed the CBP or Quantum phytase at 16,500 FTU/kg. Weight gain, G:F, and plasma P concentration of pigs increased (P < 0.01) with monosodium phosphate supplementation, confirming P deficiency of the NC diet. Linear improvements (P < 0.05) in DM digestibility and energy retention were observed with CBP supplementation of the NC diet. Although there were linear (P < 0.01) and quadratic (P < 0.05) increases in N digestibility, N retention was unaffected by CBP supplementation of the NC diet in growing pigs. Phosphorus and Ca digestibilities and retentions improved linearly and quadratically (P < 0.01) with the addition of CBP to the NC diet. There was no difference in digestive utilization of P or Ca between pigs fed CBP and Quantum phytase at 16,500 FTU/kg. The data showed that the addition of a corn expressing an E. coli-derived gene to a P-deficient diet improved growth performance and indices of P utilization in pigs, and corn expressing phytase was as efficacious as Quantum phytase when supplemented in P-deficient diets for weanling pigs.  相似文献   

17.
18.
A growth performance and carcass evaluation study was conducted to determine the maximal inclusion rate of corn distillers dried grain with solubles (DDGS) in grower-finisher pig diets when formulated on a total AA basis. A total of 240 (28.4 +/- 0.8 kg of BW) crossbred pigs [(Yorkshire x Landrace) x Duroc] were allotted randomly within sex and weight outcome groups to 1 of 24 pens. Pens were assigned randomly within the initial BW groups to 1 of 4 dietary treatment sequences in a 5-phase grower-finisher feeding program in a 4 x 3 factorial arrangement of treatments. The inclusion level of DDGS (0, 10, 20, or 30%) in the diet and the initial BW class [low (23.2 kg), medium (28.1 kg), or high (33.8 kg)] served as the main factors for the grower-finisher performance study. All diets were formulated to contain similar concentrations of total Lys, ME, calcium, and phosphorus within each phase. Pigs were slaughtered and carcass data were collected when the average BW of pigs in a pen reached 114 +/- 2.25 kg. Dietary treatment and initial weight groups did not interact for any response variables, and only the main effects of dietary treatment are presented. Pigs fed the 20 or 30% DDGS diets had reduced ADG (P < 0.05) compared with that of the 0 or 10% DDGS groups, but ADFI was unaffected by dietary treatment. Gain:feed decreased when pigs were fed 30% DDGS (P < 0.05) compared with the 0, 10, and 20% DDGS dietary inclusion levels. Loin depth was lower in pigs fed the 30% DDGS diets (P < 0.05), but backfat depth and percentage of carcass lean did not differ among treatments. Iodine number of carcass fat increased linearly (P < 0.01) with increasing dietary DDGS concentration, and belly firmness adjusted for belly thickness was reduced (P < 0.05) for pigs fed the 30% DDGS diets compared with pigs fed the 0 or 20% DDGS diets. Color measurements, ultimate pH, and visual evaluations (color, firmness, and marbling scores) of the LM did not differ among treatments. Cooking loss, 24-h drip loss, and total moisture loss were not affected by DDGS in the diets. However, differences were detected between 0 and 20% DDGS treatments for 11-d purge loss (P < 0.05). Dietary treatment did not affect Warner-Bratzler shear force of cooked loin chops. Results from this study indicate that when diets for grower-finisher pigs are formulated on a total AA basis, less than 20% DDGS should be included in the diet for optimal performance and carcass composition. Feeding DDGS in swine finishing diets did not have any detrimental effects on pork muscle quality.  相似文献   

19.
This experiment used indirect calorimetry to determine the net energy (NE) content of five corn distillers dried grains with solubles (corn DDGS) containing different oil levels and to compare the NE obtained using indirect calorimetry with that calculated using previously published prediction equations. There were two samples of high‐oil DDGS, one sample of medium‐oil DDGS and two samples of low‐oil DDGS. Twelve barrows (initial BW of 32.8 ± 2.0 kg) were used in a repeated 3 × 6 Youden square design with three periods and six diets. The diets were comprised of a corn–soybean meal basal diet and five diets containing 29.25% of one of the corn DDGS added at the expense of corn and soybean meal. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to feed and environmental conditions. On day 8, the pigs were transferred to respiration chambers and fed one of the six diets at 2300 kJ ME/kg BW0.6/day. Faeces and urine were collected from day 9 to 13 and heat production (HP) was also measured. From day 14 to 15, the pigs were fed 893 kJ ME/kg BW0.6/day to allow them to adapt from the fed to the fasted state. On the last day of each period (day 16), the pigs were fasted and fasting HP was measured. The digestible energy value was 16.0, 17.1 and 15.3 MJ/kg DM, the metabolizable energy value was 14.6, 15.5 and 13.7 MJ/kg DM and the NE value was 10.7, 11.0 and 9.4 MJ/kg DM, for the high‐oil, medium‐oil and low‐oil corn DDGS, respectively. The NE obtained with indirect calorimetry in the present study did not differ from values calculated using previously published prediction equations.  相似文献   

20.
The efficacy of an Escherichia coli-derived phytase preparation   总被引:1,自引:0,他引:1  
Five experiments were conducted to evaluate the effect of an Escherichia coli-derived phytase on phytate-P use and growth performance by young pigs. The first experiment involved time course, pH dependence, and phytase activity studies to investigate the in vitro release of P from corn, soybean meal, and an inorganic P-unsupplemented corn-soybean meal negative control diet. In Exp. 2, which was designed to determine the efficacy of the E. coli-derived vs. fungal phytase-added diets at 0, 250, 500, 750, 1,000, or 1,250 FTU/kg (as-fed basis; one phytase unit or FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P/min, at pH 5.5, from an excess of 15 microM sodium phytate at 37 approximately C) and a positive control diet, eight individually penned 10-kg pigs per diet (12 diets, 96 pigs) were used in a 28-d growth study. The third experiment was a 10-d nutrient balance study involving six 13-kg pigs per diet (four diets, 24 pigs) in individual metabolism crates. In Exp. 4, eight pens (four pigs per pen) of 19-kg pigs per treatment were used in a 42-d growth performance study to examine the effect of adding the E. coli-derived phytase to corn-soybean diets at 0, 500, or 1,000 FTU/kg (as-fed basis) and a positive control (four diets, 128 pigs). In Exp. 5, six 19-kg pigs per treatment were used in a 10-d nutrient balance study to investigate the effects of the E. coli-derived phytase added to diets at 0, 250, 500, 750, or 1,000 FTU/kg (as-fed basis) and a positive control diet (six diets, 36 pigs). The in vitro study showed that the E. coli-derived phytase has an optimal activity and pH range of 2 to 4.5. Inorganic phosphate release was greatest for soybean meal, least for corn, and intermediate for the negative control diet. Dietary supplementation with graded amounts of E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain, feed efficiency, and plasma Ca and P concentrations in 10-kg pigs in Exp. 2. Phytase also increased P digestibility and retention in the 13-kg pigs in Exp. 3. In Exp. 4, dietary supplementation with E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain and feed efficiency of 19-kg pigs. Supplementation of the diets of 19-kg pigs with the E. coli-derived phytase also improved Ca and P digestibility and retention in Exp. 5. In the current study, the new E. coli-derived phytase was efficacious in hydrolyzing phytate-P, both in vitro and in vivo, in young pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号