首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

2.
The biomass and ratio of root-shoot ofPinus sylvestriformis seedlings at CO2 concentration of 700 μL·L−1 and 500 μL·L−1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun. to Oct. in 1999. The results showed that doubling CO2 concentration was benefit to seedling growth of the species (500 μL·L−1 was better than 700 μL·L−1) and the biomass production was increased in both above-ground and underground parts of seedlings. Carbon transformation to roots was evident as rising of CO2 concentration. This project is supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

3.
The photosynthetic response of 12-year oldPinus sylvestriformis to elevated CO2 and its influential factors were tested and analyzed in the forest region of Changbai Mountain in 1999. Trees grown at the natural condition were controlled at three levels of CO2 concentration (350 μL·L−1, 500 μL·L−1 and 700 μL·L−1) by CO2 rich settlement designed by us. Net photosynthetic rates (NPR), temperature, relative humidity, stomatal conductance, intercellular CO2 concentration and photosynthetic active radiation (PAR) were measured at 6:00, 8:00, 10:00, 14:00, 16:00 and 18:00 hours a day. Experimental results showed that the NPR ofPinus sylvestriformis increased by 32.6% and 123.0% at 500 μL·L−1 and 700 μL·L−1 CO2 concentration respectively, compared to ambient atmospheric CO2 concentration (350 μL·L−1). The relations between NPR and influential factors, including temperature, relative humidity, intercellular CO2 concentration and photosynthetic active radiation, were analyzed respectively by regression analysis at different CO2 concentrations. Foundation Item: This project was supported by Chinese Academy of Sciences. Biography: WANG Chen-rui (1970-), male, Assistant Research Fellow in Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

4.
3年生白桦同时接受3种外源糖溶液(蔗糖、果糖、葡萄糖)和3种高浓度CO2(700、1400、2100μL·μL-1CO2)处理.处理1个月后,测定了叶片的总糖、蔗糖、果糖和蛋白质含量.结果表明:在700μL·L-1和1400μL·L-1 CO2下,外源糖溶液增加了叶片的可溶性糖和蛋白质含量,其中外源蔗糖的效果最好:外源糖溶液与2100μL·L-1CO2结合,会抑制叶片积累总糖和蛋白质:在700μL·L-1和1400μL·L-1CO2下,喷施葡萄糖、果糖的叶片在蛋白质含量上没有明显差别:同700、1400μL·L-1CO2相比,除喷施果糖植株外,2100μL·L-1 CO2明显增加了叶片的总糖、蔗糖、果糖和蛋白质含量:在喷施同种外源糖溶液的情况下,叶片的糖含量与CO2浓度呈正相关性.图6参7.  相似文献   

5.
Four-year-oldPinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol−1) and high CO2 concentrations (500 and 700 μmol·mol−1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42°N, 128°E). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (g s), ratio of intercellular to ambient CO2 concentration (c i/c a) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol−1 CO2. grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol−1CO2). High-[CO2]-grown plants exhibited lowerc i/c a ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However,c i/c a ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle. Foundation Item: This research was supported by National Basic Research Program of China (2002CB412502), Project of Key program of the National Natural Science Foundation of China (90411020) and National Natural Science Foundation of China (30400051). Biography: ZHOU Yu-mei (1973-), female, Ph. Doctor, assistant research fellow, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

6.
Net photosynthetic rates (NPRs) of four species seedlings,Pinus koraiensis, Pinus sylvestriformis, Fraxinus mandshurica andPhellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL·L−1 and 700 μL·L−1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs ofPinus koreainsis andPinus sylvestriformis seedlings increased with the rising of CO2 concentration, while that ofPhellodendron amurense andFraxinus mandshurica increased at some time and decreased at another time. This project was supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

7.
Pinus sylvestriformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11-year old) was studied on response to elevated CO2 concentration at 500±100 μL·L−1 by directly injecting CO2 into the canopy under natural condition in 1998–1999. The results showed that the elevated CO2 concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated CO2 reduced the transpiration and enhances the water use efficiency (WUE) of plant. The project was supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

8.
Soil samples were taken from depth of 0–12 cm in the virgin broad-leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L−1 and 200 μL·L−1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could product N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L−1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p<0.05), and between N2O emission and water content (r2=0.2968, p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L−1 (r2=0.3573, p<0.05). Temperature was an important factor controlling CH4 oxidation. However, when 20 μL·L−1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content. Foundation item: This paper was supported by Chinese Academy of Sciences. Biography: ZHANG Xiu-jun (1960-), female, Ph. Doctor, lecture in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110015, P.R. China. Responsible editor: Song Funan  相似文献   

9.
Eco-physiological responses of seedlings of eight species,Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica andAcer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998–1999). Two concentrations of CO2 were designed: elevated CO2 (700 μmol·mol−1) and ambient CO2 (400 μmol·mol−1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%–40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2. Foundation item: The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX 406-4, KZCX1 SW-01 of the Chinese Academy of Sciences Biography: WANG Miao (1964-), maie, associate professor in Institute of applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

10.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

11.
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and 500 μmol·m−2·s−1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 μmol·m−2·s−1 PPFD were slower than those at 200 μmol·m−2·s−1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity. Biograph: ZHOU Yong-bin (1970-), female, associate professor of Shenyang Agricultural University, Shenyang 110161, P.R. China. Responsible editor: Song Funan  相似文献   

12.
测定了3年生白桦的光合与呼吸作用对温度,湿度以及CO2浓度的响应;还测定了光补偿点,光饱和点和CO2补偿点。结果表明:在目前的空气CO2浓度下,光合和呼吸作用的最适温度分别是24℃和30℃;当相对湿度是80%时,白桦能维持较强的光合作用;呼吸作用与相对湿度无明显的相关性;光补偿点和光饱和点分别是25 molm-2s-1和1375 祄olm-2s-1;CO2补偿点是180 礚L-1;白桦在CO2浓度为2400 礚L-1时仍有吸收潜力。图4参19。  相似文献   

13.
本文研究了大叶桃花心木(Swietenia macrophylla King)一年生幼苗在经过夜温处理后的光响应曲线和在饱和光强下的CO2反应曲线.结果表明:在大气CO2浓度下,叶片的最佳光合作用温度在25-31℃之间,而在饱和CO2浓度下为31-35℃.在25℃以下光合速率开始降低,主要是由于羧化效率的降低,而当温度超过31℃时,光合速率下降,是因为羧化效率的降低和呼吸速率的增加.CO2浓度对光合的促进作用在低温下受到抑制,这意味着未来在CO2浓度增高的情况下,高浓度的CO2对热带常绿植物光合的促进在冬天低温情况下表现不十分明显.图4参23.  相似文献   

14.
The relationships between plant organs and root hydrological traits are not well known and the question arises whether elevated CO2 changes these relationships. This study attempted to answer this question. A pseudo-replicated experiment was conducted with two times 24 American elm (Ulmus americana L.) and 23 and 24 red oak (Quercus rubra L.) seedlings growing in ambient CO2 (around 360 μmol·L–1) and 540 ± 7.95 μmol·L–1 CO2 in a greenhouse. After 71 days of treatment for American elm and 77 days for red oak, 14 American elm and 12 red oak seedlings from each of the two CO2 levels were randomly selected in order to examine the flow rate of root xylem sap, root hydraulic conductance, total root hydraulic conductivity, fine root and coarse root hydraulic conductivity. All seedlings were harvested to investigate total plant biomass, stem biomass and leaf biomass, leaf area, height, basal diameter, total root biomass, coarse root biomass and fine root biomass. The following conclusions are reached: 1) plant organs respond to the elevated CO2 level earlier than hydraulic traits of roots and may gradually lead to changes in hydraulic traits; 2) plant organs have different relationships with hydraulic traits of roots and elevated CO2 changes these relationships; the changes may be of importance for plants as means to acclimatize to changing environments; 3) biomass of coarse roots increased rather more than that of fine roots; 4) Lorentzian and Caussian models are better in estimating the biomass of seedlings than single-variable models.  相似文献   

15.
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations ofSchima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 −N, NH4 +−N and total dissolved N (TDN). DON was calculated by subtracting NO3 −N and NH4 +−N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L−1 and DON concentration of 0.13 mg·L−1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L−1 in the SS and 10.3 and 0.19 mg·L−1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L−1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L−1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September–November period. Foundation item: This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT). Biography: Guo Jian-fen (1977-), female, Ph. Doctor in College of Life Science, Xiamen University, Xiamen 361005, P.R. China. Responsible editor: Zhu Hong  相似文献   

16.
Softwood shoots were produced from 40 cm long stem segments placed horizontally in flat trays containing sterilized sand under natural light or shade conditions for subsequent rooting and micropropagation studies in teak (Tectona grandis L.). Higher number of shoots (6.17) per log was produced under natural light as compared to shade conditions. Forcing was also better in natural light as compared to shade in terms of shoot length, number of nodes or leaves. For rooting, 2–4 cm long softwood shoots were excised and treated with either indole-3-butyric acid (IBA) or α-naphthyl acetic acid (NAA) at 0, 1000, 2000 or 3000 μmol·L–1 each or with combinations (1000 + 1000, 2000 + 2000 or 3000 + 3000 μmol·L–1) and then placed in flat trays containing autoclaved sand at 25 ± 2ºC in 16 h photoperiod at 35 µmol·m–2·s–1. After 28 days, softwood cuttings treated with IBA + NAA (3000 + 3000 μmol·L–1) had highest rooting percentage (89.3%) with 5.5 mean roots. Shoot apex and nodal explants of softwood cuttings were pretreated with 0.1% (w/v) ascorbic acid, boric acid, activated charcoal, citric acid, glutamine or polyvinylpolypyrollidone (PVP) for 24 h to remove phenolic compounds before surface disinfestation. Glutamine (Gl) and PVP were equally effective resulting in 60% establishment of shoot apices on MS medium supplemented with 10 μmol·L–1 6-benzylaminopurine (BAP) + 5 μmol·L–1 NAA. Using shoot apices, highest (42.80) number of multiple shoots with 54.33 mm shoot length were obtained on MS + BAP (8.8 μmol·L–1) + IBA (2 μmol·L–1) after 45 days. Shoots were successfully rooted and acclimatized to greenhouse  相似文献   

17.
Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m−2·s−1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m−2·s−1 to 569.00 μmol·m−2·s−1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m−2·s−1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m−2·s−1 (8–961 lx), or 10 μmol·m−2·s−1 for above 6 h. Foundation item: This study was supported by the Research Foundation of Northeast Forestry University. Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China. Responsible editor: Zhu Hong  相似文献   

18.
Embryo of lilacs (Syringa L) culture in vitro and the rapid propagation were studied. The orthogonal experiments, including the selection of basal medium, embryo age and other factors such as sugar, benzyladenine (BA), naphthalene acetic acid (NAA) and glutamine (Gln), were carried out. The results indicated that the optimal medium for embryo culture was Monnier medium supplemented with NAA (0.001 mg.L^-1), BA (0.1 mg.L^-1), sugar (50 g.L^-1), and Gin (400 mg.L^-1), with a germination rate of 91.7% at least; the optimal embryo age was 50 d; and Gln had significant effects on the germination rate of embryo.Moreover, the optimal medium for subculture was MS BA (2 mg.L^-1) NAA (0.001 mg.L^-1) Gln (0.5 mg.L^-1), with the propagation coefficient of 3.6 at least.  相似文献   

19.
The effects of elevated atmospheric CO2 concentrations on the nighttime respiration were examined for two sample branches of a hinoki cypress tree (Chamaecyparis obtusa) growing in the field with an open gas exchange system for a one-year period from July 1994 to June 1995. The branches were of a similar size and located at a similar position within the crown. One branch was subjected to an elevated CO2 concentration of 800 μmol mol−1 and the other was subjected to ambient air which had a CO2 concentration of about 370 μmol mol−1. Nighttime respiration rate was higher in elevated CO2 level than in ambient CO2 level. The relationship between nighttime respiration and the corresponding nighttime air temperature was fitted by the exponential function in every month of the year. The segregation of regression lines between the two CO2 treatments increased gradually as the seasons progressed during the treatment period. TheQ 10 values for nighttime respiration were lower in elevated CO2 (1.9 ≤Q 10 ≤ 3.7) than in ambient CO2 (2.4 ≤Q 10 ≤ 4.5) in every month of the year. TheQ 10 was inversely related to the monthly mean nighttime air temperature in both elevated and ambient CO2. The estimated daily nighttime respiration rate under both CO2 treatments had a similar seasonal pattern, which almost synchronized with the temperature change. The respiration ratio of elevated CO2 to ambient CO2 increased gradually from 1.1 to 1.6 until the end of the experiment. Our results indicate that the CO2 level and the temperature have a strong interactive effect on respiration and suggest that a potential increase in respiration of branches will occur when ambient CO2 increases.  相似文献   

20.
One-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 ώmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 ώmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 (ώmol/mol CO2 was more remarkable than 500 ώmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerantPinus koraiensis seedlings was bigger in July than in August and September, while those ofPinus sylvestriformis andPhellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth ofPinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species. Foundation Item: This paper was supported by Chinese Academy of Sciences and the Open Research Station of Changbai Mountain Forest Ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号