首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The terrestrial biosphere component of the Integrated Model to Assess the Greenhouse Effect (IMAGE 2) uses changes in land cover to compute dynamically the C fluxes between the terrestrial biosphere and the atmosphere. The model explores the potential impact of feedback processes incorporated in the model, which are the enhancement of plant growth (CO2 fertilization) and a more efficient use of water under increased CO2 concentrations in the atmosphere; the temperature response of photosynthesis and respiration of plants; the temperature and soil water response of decomposition processes; and the climate-induced changes in vegetation and agricultural patterns with the consequent changes in land cover. In this paper we discuss the implementation and operation of the different feedback processes in the IMAGE 2 model. Results are shown for each process separately as well as the combined processes. The aim of this paper is to quantify the importance of these feedback processes geographically. The main results are that vegetation shifts due to climatic change and increased water use efficiency, CO2 fertilization decreases net C emissions, while changed decomposition rates strongly increase C emissions to the atmosphere. Changes in the global balance between photosynthesis and respiration make little net difference. With the IPPC business-as-usual scenario the terrestrial biosphere continues to emit C into the atmosphere. This behavior is governed by changes in land-use, caused by a multitude of anthropogenic processes.  相似文献   

2.
The sink of CO2 and the C budget of forest biomes of the Former Soviet Union (FSU) were assessed with two distinct methods: (1) ecosystem/ecoregional, and (2) forest statistical data. The ecosystem/ecoregional method was based on the integration of ecoregions (defined with a GIS analysis of several maps) with soil/vegetation C data bases. The forest statistical approach was based on data on growing stock, annual increment of timber, and FSU yield tables. Applying the ecosystem/ecoregional method, the area of forest biomes in the FSU was estimated at 1426.1 Mha (106 ha); forest ecosystems comprised 799.9 Mha, non-forest ecosystems and arable land comprised 506.1 and 119.9 Mha, respectively. The FSU forested area was 28% of the global area of closed forests. Forest phytomass (i.e., live plant mass), mortmass (i.e., coarse woody debris), total forest plant mass, and net increment in vegetation (NIV) were estimated at 57.9 t C ha?1, 15.5 t C ha?1, 73.4 t C ha?1, and 1.0 t C ha?1 yr?1, respectively. The 799.9 Mha area of forest ecosystems calculated in the ecosystem/ecoregional method was close to the 814.2 Mha reported in the FSU forest statistical data. Based on forest statistical data forest phytomass was estimated at 62.7 t C ha?1, mortmass at 37.6 t C ha?1; thus the total forest plant mass C pool was 100.3 t C ha?1. The NIV was estimated at 1.1 t C ha?1 yr?1. These estimates compared well with the estimates for phytomass, total forest plant mass, and NIV obtained from the ecosystem/ecoregional method. Mortmass estimated from the forest statistical data method exceeded the estimate based on the ecosystem/ecoregional method by a factor of 2.4. The ecosystem/ecoregional method allowed the estimation of litter, soil organic matter, NPP (net primary productivity), foliage formation, total and stable soil organic matter accumulation, and peat accumulation (13.9 t C ha?1, 125.0 t C ha?1, 3.1 t C ha?1 yr?1, 1.4 t C ha?1 yr?1, 0.11, and 0.056 t C ha?1 yr?1, respectively). Based on an average value of NEP (net ecosystem productivity) from the two methods, and following a consideration of anthropogenic influences, FSU forests were estimated to be a net sink of approximately 0.5 Gt C yr?1 of atmospheric C.  相似文献   

3.
4.
Understanding carbon (C) cycling and sequestration in vegetation and soils, and their responses to nitrogen (N) deposition, is important for quantifying ecosystem responses to global climate change. Here, we describe a 2-year study of the C balance in a temperate grassland in northern China. We measured net ecosystem CO2 exchange (NEE), net ecosystem production (NEP), and C sequestration rates in treatments with N addition ranging from 0 to 25 g N m?2 year?1. High N addition significantly increased ecosystem C sequestration, whose rates ranged from 122.06 g C m?2 year?1 (control) to 259.67 g C m?2 year?1 (25 g N). Cumulative NEE during the growing season decreased significantly at high and medium N addition, with values ranging from ?95.86 g C m?2 (25 g N) to 0.15 g C m?2 (5 g N). Only the highest N rate increased significantly cumulative soil microbial respiration compared with the control in the dry 2014 growing season. High N addition significantly increased net primary production (NPP) and NEP in both years, and NEP ranged from ?5.83 to 128.32 g C m?2. The C input from litter decomposition was significant and must be quantified to accurately estimate NPP. Measuring C sequestration and NEP together may allow tracking of the effects of N addition on grassland C budgets. Overall, adding 25 or 10 g N m?2 year?1 improved the CO2 sink of the grassland ecosystem, and increased grassland C sequestration.  相似文献   

5.
The processes controlling total carbon (C) storage and release from the terrestrial biosphere are still poorly quantified. We conclude from analysis of paleodata and climate biome model output that terrestrial C exchanges since the last glacial maximum (LGM) were dominated by slow processes of C sequestration in soils, possibly modified by C starvation and reduced water use efficiency of trees during the LGM. Human intrusion into the C cycle was immeasurably small. These processes produced an averaged C sink in the terrestrial biosphere on the order of 0.05 Pg yr?1 during the past 10,000 years. In contrast, future C cycling will be dominated by human activities, not only from increasing C release with burning of fossil fuels, and but also from indirect effects which increase C storage in the terrestrial biosphere (CO2 fertilization; management of C by technology and afforestation; synchronous early forest succession from widespread cropland abandonment) and decrease C storage in the biosphere (synchronous forest dieback from climatic stress; warming-induced oxidation of soil C; slowed forest succession; unfinished tree life cycles; delayed immigration of trees; increasing agricultural land use). Comparison of the positive and negative C flux processes involved suggests that if the C sequestration processes are important, they likely will be so during the next few decades, gradually being counteracted by the C release processes. Based only on tabulating known or predicted C flux effects of these processes, we could not determine if the earth will act as a significant C source from dominance by natural C cycle processes, or as a C sink made possible only by excellent earth stewardship in the next 50 to 100 yrs. Our subsequent analysis concentrated on recent estimates of C release from forest replacement by increased agriculture. Those results suggest that future agriculture may produce an additional 0.6 to 1.2 Pg yr?1 loss during the 50 to 100 years to CO2 doubling if the current ratio of farmed to potentially-farmed land is maintained; or a greater loss, up to a maximum of 1.4 to 2.8 Pg yr?1 if all potential agricultural land is farmed.  相似文献   

6.
After the Kyoto Protocol: Can soil scientists make a useful contribution?*   总被引:1,自引:0,他引:1  
Abstract. Over 170 countries have ratified the UN Framework Convention on Climate Change (UNFCCC) which aims at ‘the stabilisation of greenhouse gases in the atmosphere at a level that will prevent dangerous anthropogenic interference with the climate system’. The Kyoto Protocol, signed in 1997, commits the developed (‘Annex 1′) countries to a reduction in gaseous emissions. The global increase in atmospheric CO2, the main greenhouse gas, comes mainly from fossil fuels (6.5 Gt C yr?1), together with about 1.6 Gt C yr?1 from deforestation. The atmospheric increase is only 3.4 Gt C yr?1, however, due to a net sink in terrestrial ecosystems of about 2 Gt C yr?1, and another in the oceans. Increasing net carbon sequestration by afforestation of previously non-forested land is one way of reducing net national emissions of CO2 that is permitted under the Kyoto Protocol. Future modifications may also allow the inclusion of carbon sequestration brought about by other forestry and agricultural land management practices. However, associated changes in net fluxes of two other greenhouse gases identified in the Protocol — nitrous oxide (N2O) and methane (CH4) — will have to be taken into account. Growth of biomass crops can increase N2O emissions, and drainage of wetlands for forestry or agriculture also increases them, as well as emissions of CO2, while decreasing those of CH4. The problems of how to quantify these soil sources and sinks, to maximize soil C sequestration, and to minimize soil emissions of CH4 and N2O, will present a major scientific challenge over the next few years — one in which the soil science community will have a significant part to play.  相似文献   

7.
 Determination of the C balance is of considerable importance when forecasting climate and environmental changes. Soil respiration and biological productivity of ecosystems (net primary production; NPP) are the basic components of the terrestrial C cycle. In this study, a previously made assessment of the annual CO2 flux from Russian soils was improved upon. CO2 emissions from Russian soils during the growing period were shown to represent, on average, 53–82% of the annual CO2 flux from Russian soils. The total annual CO2 flux from Russian soils was estimated at 4.50 Gt C (C source). The NPP of Russian ecosystems was estimated at 4.81 Gt C year–1 (C sink). Our calculations showed values of CO2 emissions and the C sink to be very close. This shows that, in general, terrestrial ecosystems are under steady state. Received: 1 December 1997  相似文献   

8.
Variations in the succession following cutting of a herbaceousLarix sibirica Ledeb. phytocoenosis along the southern boundary of boreal forests in southern Siberia and in Eastern Hentey, Mongolia, were studied. Morphometric methods were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground components including standing wood, herbaceous cover and litter were studied. The maximum aboveground phytomass was measured as 212.3 Mg ha?1 (oven dry mass). The highest total aboveground biomass productivity rate of aLarix sibirica phytocoenosis located at its southern limit exceeds 7 Mg ha?1 per year. The maximum annual phytomass increment was found to be 4.4 Mg ha?1 for the overstorey trees, 2.1 Mg ha?1, for the herbaceous layer and 0.7 Mg ha?1 for forest litter.  相似文献   

9.
Land and water interface zones   总被引:1,自引:0,他引:1  
This paper reports analyses of C pools and fluxes in land-water interface zones completed at the International Workshop: Terrestrial Biospheric Carbon Fluxes; Quantification of Sinks and Sources of CO2 (Bad Harzburg, Germany, March 1–5, 1993). The objective was to determine the role of these zones as global sinks of atmospheric CO2 as part of a larger effort to quantify global C sinks and sources in the past (ca. 1850), the present, and the foreseeable future (ca. 2050). Assuming the world population doubles by the year 2050, storage of atmospheric C in reservoirs will also double, as will river loads of atmospheric C and nutrients. It is estimated that C sinks in temperate and boreal wetlands have decreased by about 50%, from 0.2 to 0.1 Gt C yr?1 since 1850. The total decrease for wetlands may be considerably larger when tropical wetlands are taken into account, however, the area and C density of tropical wetlands are not well known at this time. Changes in cultivation practices and improved sampling of methaneogenesis have caused estimates of CH4 emissions from ricelands to drop substantially from 150 to 60 Tg yr?1. Even with doubled N and P loads, rivers are unlikely to fertilize more than about 20% of the new primary production in the coastal ocean. The source of C for this new production may not be the atmosphere, however, because the coastal ocean exchanges large quantities of DIC with the open ocean. Until the C fluxes from air-sea exchange of CO2 and DIC are better quantified, the C-sink potential of the coastal ocean will remain a major uncertainty in the global C cycle. Analysis of model simulations of oceanic C uptake reconfirmed that the open ocean appears to take up about 2.0 Gt C yr?1 from the atmosphere and that model estimates are in better accord now, ±0.5 Gt C yr?1, than ever before. Land use management must consider the unique C sinks in coastal and alluvial wetlands in order to minimize the future negative impacts of agriculture and urban development. Long-term monitoring will be essential to prove the success, or failure, of management practices to sustain wetlands in the future. Relative to the other systems examined at the workshop, the C-sink capacity of the ocean (excluding estuaries) is not likely to be measurably affected in the foreseeable future by the management scenarios considered at the workshop.  相似文献   

10.
The databases and maps of the phytomass, mortmass, and annual production for Northern Eurasia published by N.I. Bazilevich in 1993 historically played an important role in the intensification of studies of the biological productivity of plant ecosystems in the countries of the former Soviet Union. The development of biological science in the last decades emphasized the priority and importance of these studies. This work presents the results of the formal processing of the digitized original maps of the phytomass, mortmass, and annual production compiled by Bazilevich for the natural zones and natural-agricultural provinces in the entire territory of the former Soviet Union. The values averaged for the entire territory of the former Soviet Union were 218.2 Gt of raw material (1 Gt = 109 t) for the phytomass reserves, 81.4 Gt for the mortmass, and 15.7 Gt/ha for the annual production. These are the theoretical estimates of the potential reserves of plant organic matter in the land systems of Northern Eurasia without consideration for the anthropogenic impacts (the infrastructure, settlements, land use, etc.) and the natural destruction processes. These estimates are not only of historical interest but they also quantitatively characterize the initial state of the ecosystems in the former Soviet Union for the assessment of the dynamics of the production process on the threshold of the epoch of global changes.  相似文献   

11.
Nearly 50% of terrigenous materials delivered to the world's oceans are delivered through just twenty-one major river systems. These river-dominated coastal margins (including estuarine and shelf ecosystems) are thus important both to the regional enhancement of productivity and to the global flux of C that is observed in land-margin ecosystems. The tropical regions of the biosphere are the most biogeochemically active coastal regions and represent potentially important sinks of C in the biosphere. Rates of net primary productivity and biomass accumulation depend on a combination of global factors such as latitude and local factors such as hydrology. The global storage of C in mangrove biomass is estimated at 4.03 Pg C; and 70% of this C occurs in coastal margins from 0° to 10° latitude. The average rate of wood production is 12.08 Mg ha?1 yr?1, which is equivalent to a global estimate of 0.16 Pg C/yr stored in mangrove biomass. Together with carbon accumulation in mangrove sediments (0.02 Pg C/yr), the net ecosystem production in mangroves is about 0.18 Pg C/yr. Global estimates of export from coastal wetlands is about 0.08 Pg C/yr compared to input of 0.36 Pg C/yr from rivers to coastal ecosystems. Total allochthonous input of 0.44 Pg C/yr is lower than in situ production of 6.65 Pg C/yr. The trophic condition of coastal ecosystems depends on the fate of this total supply of 7.09 Pg C/yr as either contributing to system respiration, or becoming permanently stored in sediments. Accumulation of carbon in coastal sediments is only 0.41 Pg C/yr; about 6% of the total input. The NEP of coastal wetlands also contribute to the C sink of coastal margins, but the source of this C is part of the terrestrial C exchange with the atmosphere. Accumulation of C in wood and sediments of coastal wetlands is 0.205 Pg C/yr, half the estimate for sequestering of C in coastal sediments. Burial of C in shelf sediments is probably underestimated, particularly in tropical river-dominated coastal margins. Better estimates of these two C sinks in the tropics, coastal wetlands and shelf sediments, is needed to better understand the contribution of coastal ecosystems to the global carbon budget.  相似文献   

12.
This paper describes the IMAGE 2.0 model, a multi-disciplinary, integrated model designed to simulate the dynamics of the global society-biosphere-climate system. The objectives of the model are to investigate linkages and feedbacks in the system, and to evaluate consequences of climate policies. Dynamic calculations are performed to year 2100, with a spatial scale ranging from grid (0.5°×0.5° latitudelongitude) to world regional level, depending on the sub-model. The model consists of three fully linked sub-systems: Energy-Industry, Terrestrial Environment, and Atmosphere-Ocean. The Energy-Industry models compute the emissions of greenhouse gases in 13 world regions as a function of energy consumption and industrial production. End use energy consumption is computed from various economic/demographic driving forces. The Terrestrial Environment models simulate the changes in global land cover on a gridscale based on climatic and economic factors, and the flux of CO2 and other greenhouse gases from the biosphere to the atmosphere. The Atmosphere-Ocean models compute the buildup of greenhouse gases in the atmosphere and the resulting zonal-average temperature and precipitation patterns. The fully linked model has been tested against data from 1970 to 1990, and after calibration can reproduce the following observed trends: regional energy consumption and energy-related emissions, terrestrial flux of CO2 and emissions of greenhouse gases, concentrations of greenhouse gases in the atmosphere, and transformation of land cover. The model can also simulate long term zonal average surface and vertical temperatures.  相似文献   

13.
Models of the ocean provide the best estimate of how much anthropogenic CO2 the ocean can and will absorb. Yet their agreement is only within 40% as characterized by the range of 2.0±0.8 Gt C yr?1 computed by the Intergovernmental Panel on Climate Change (IPCC) in 1990 from four model estimates. Since then, one of the former results has been updated and two new model estimates have become available. In a reassessment, now with six ocean models and concern for individual model uncertainties, this study found a narrower range of 2.0±0.5 Gt C yr?1 (38% less than the former uncertainty). Less uncertainty for oceanic uptake of anthropogenic CO2, means greater certainty for two combined terms in the budget for the global carbon cycle. First the uncertainty of the combined atmosphere plus ocean sink is also nearly halved (now at±0.5 Gt C yr?1 for 1980–1989). Second, the uncertainty of the imbalance term (or missing sink) is reduced, but only slightly because most of its large uncertainty remains associated with the difficulty in precisely quantifying deforestation and land use change.  相似文献   

14.
太行山区植被NPP时空变化特征及其驱动力分析   总被引:4,自引:2,他引:2  
本文基于2000—2014年MODIS NPP数据,结合同期土地利用变化、气温、降水和DEM数据,运用趋势分析法、相关系数法及分区统计法等方法,研究了太行山区2000—2014年植被NPP时空变化特征,分析了气温、降水等气候因素和人为因素对植被NPP变化的影响,为太行山区植被资源管理及生态环境调控提供参考。研究结果表明:(1)太行山区植被NPP多年平均值为284.0 g(C)·m~(-2)·a~(-1),耕地、林地和草地的NPP均值分别为302.5 g(C)·m~(-2)·a~(-1)、258.1 g(C)·m~(-2)·a~(-1)、286.5 g(C)·m~(-2)·a~(-1)。(2)2000—2014年太行山区植被NPP整体呈上升趋势,但大部分植被NPP变化未达到显著水平;16.17%的植被NPP显著或极显著升高,主要分布在太行山区西侧;0.88%的植被NPP显著或极显著降低,零散分布在研究区内。(3)不同植被类型NPP变化速率为草地耕地林地。(4)基于区域平均计算,太行山区植被NPP与降水显著正相关(P0.05),与气温负相关(P0.05)。基于像元计算,植被NPP与降水显著或极显著正相关区面积比例为23.82%,主要分布在太行山区北段,几乎没有显著负相关区;植被NPP与气温显著或极显著负相关区面积比例为8.42%,主要分布在太行山区西侧,显著或极显著正相关区面积比例为0.81%,主要分布在太行山区最北端。(5)研究期内气候因子对植被NPP的升高整体上表现为促进作用,而人为因素主要表现为抑制作用。太行山区生态环境保护仍应以减少人为干扰为主。  相似文献   

15.
Forests play a prominent role in the global C cycle. Occupying one-third of the earth's land area, forest vegetation and soils contain about 60% of the total terrestrial C. Forest biomass productivity can be enhanced by management practices, which suggests that, by this means, forests could store more C globally and thereby slow the increase in atmospheric CO2. The question is how much C can be sequestered by forest and agroforest management practices. To address the question, a global database of information was compiled to assess quantitatively the potential of forestry practices to sequester C. The database presently has information for 94 forested nations that represent the boreal, temperate and tropical latitudes. Results indicate that the most promising management practices are reforestation in the temperate and tropical latitudes, afforestation in the temperate regions, and agroforestry and natural reforestation in the tropics. Across all practices, the median of the mean C storage values for the boreal latitudes is 16 tCha[?1 (n=46) while in the temperate and tropical latitudes the median values are 71 tCha?1 (n=401) and 66 tCha?1 (n=170), respectively. Preliminary projections are that if these practices were implemented on 0.6 to 1.2×109 ha of available land over a 50-yr period, approximately 50 to 100 GtC could be sequestered.  相似文献   

16.
Monitoring crop net primary productivity (NPP) and its proportion returned to soil in the form of carbon (C) input is vital to better understand the ecological responses to environmental and anthropogenic changes. However, quantification of NPP and C inputs from cropping systems at a regional scale is challenging due to the temporal and spatial variability of soils, climate, and management practices. The aim of this study was to estimate (i) the NPP from soybean crop [Glycine max (L.) Merr.] and (ii) the C inputs from soybean residues into soils of the Pampas and Extra-Pampas regions of Argentina between 1993 and 2005 using a simple approach based on the crop yield census records, a C budget equation, and crop-specific conversion factors at regional scale. Soybean NPP (t ha?1 year?1) at a regional scale was estimated by grain yields and harvested areas reported in the long-term (1993–2005) National database for several districts within each province. The mean annual soybean NPP in the Pampas was 0.3 t ha?1 higher (P < 0.05) than in the Extra-Pampas, resulting in a higher C input from soybean residues of 0.4 t ha?1 year?1 in the Pampas region. Due to improved cultivars and higher nutrient inputs in the Pampas region, the mean NPP and C inputs increased by about 25% from 1999 to 2005. Crop NPP and C inputs from residues into soils play a major role in C dynamics and should be considered for further studies at different scales to understand soil organic C modifications through agricultural changes.  相似文献   

17.
In this paper we review results of research to summarize the state-of-knowledge of the past, present, and potential future roles of tropical forests in the global C cycle. In the pre-industrial period (ca. 1850), the flux from changes in tropical land use amounted to a small C source of about 0.06 Pg yr?1. By 1990, the C source had increased to 1.7 ± 0.5 Pg yr?1. The C pools in forest vegetation and soils in 1990 was estimated to be 159 Pg and 216 Pg, respectively. No concrete evidence is available for predicting how tropical forest ecosystems are likely to respond to CO2 enrichment and/or climate change. However, C sources from continuing deforestation are likely to overwhelm any change in C fluxes unless land management efforts become more aggressive. Future changes in land use under a “business as usual” scenario could release 41–77 Pg C over the next 60 yr. Carbon fluxes from losses in tropical forests may be lessened by aggressively pursued agricultural and forestry measures. These measures could reduce the magnitude of the tropical C source by 50 Pg by the year 2050. Policies to mitigate C losses must be multiple and concurrent, including reform of forestry, land tenure, and agricultural policies, forest protection, promotion of on-farm forestry, and establishment of plantations on non-forested lands. Policies should support improved agricultural productivity, especially replacing non-traditional slash-and-burn agriculture with more sustainable and appropriate approaches.  相似文献   

18.
During the last few decades, land use changes have largely affected the global warming process through emissions of CO2. However, C sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates. Although Mediterranean areas show a high potential for C sequestration, only a few studies have been carried out in these systems. In this study, we propose a methodology to assess the impact of land use and land cover change dynamics on soil organic C stocks at different depths. Soil C sequestration rates are provided for different land cover changes and soil types in Andalusia (southern Spain). Our research is based on the analysis of detailed soil databases containing data from 1357 soil profiles, the Soil Map of Andalusia and the Land Use and Land Cover Map of Andalusia. Land use and land cover changes between 1956 and 2007 implied soil organic C losses in all soil groups, resulting in a total loss of 16·8 Tg (approximately 0·33 Tg y−1). Afforestation increased soil organic C mostly in the topsoil, and forest contributed to sequestration of 8·62 Mg ha−1 of soil organic C (25·4 per cent). Deforestation processes implied important C losses, particularly in Cambisols, Luvisols and Vertisols. The information generated in this study will be a useful basis for designing management strategies for stabilizing the increasing atmospheric CO2 concentrations by preservation of C stocks and C sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes two global models: (1) an Agricultural Demand Model which is used to compute the consumption and demand for commodities that define land use in 13 world regions; and, (2) a Land Cover Model, which simulates changes in land cover on a global terrestrial grid (0.5° latitude by 0.5° longitude) resulting from economic and climatic factors. Both are part of the IMAGE 2.0 model of global climate change. The models have been calibrated and tested with regional data from 1970–1990. The Agricultural Demand Model can approximate the observed trend in commodity consumption and the Land Cover Model simulates the total amount of land converted within 13 world regions during this period. Some degree of the spatial variability of deforestation has also been captured by the simulation. Applying the model to a “Conventional Wisdom” scenario showed that future trends of land conversions could be strikingly different on different continents even though a consistent scenario (IS92a from the IPCC) was used for assumptions about economic growth and population. Sensitivity analysis indicated that future land cover patterns are especially sensitive to assumed technological improvements in crop yield and computed changes in agricultural demand.  相似文献   

20.
Non-forested drylands occupy 43% of the world's land surface yet they are not currently regarded as important in sequestering carbon due to overuse and poor management. Seventy percent of drylands have already undergone moderate to severe desertification and an additional 3.5% drops out of economic production each year. Reversing the trend towards desertification through cultivation of halophytes on saline lands, revegetation of degraded rangelands and other innovative conservation measures could result in net C sequestration in dryland soils of 0.5–1.0 Gt yr?1 at a cost of $10–18 t?1 C, based on a 100 yr scenario. Investment in antidesertification measures in the world's drylands appears to be an economical method to mitigate CO2 buildup in the atmosphere while accomplishing a major international objective of restoring dryland productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号