首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of some pesticides upon substrate colonization by Trichoderma harzianum Rifai in the presence of other soil fungi.A herbicide (propyzamide) and 5 fungicides (benomyl, quintozene, vinclozolin. thiram, prothiocarb) were added at various concentrations to two Trichoderma harziunum-enriched garden soils. After thorough mixing, followed by solidifying with water agar, discs of these mixtures were cut with a cork-borer and transferred to a non specific nutrient medium (PDA). The development of T. harzianum on the agar, around each implant, was estimated after incubation for 1 week at 28°C.In the presence of other soil fungi, T. harzianum development was scarcely or not at all modified by prothiocarb, propyzamide and quintozene. It was highly depressed by benomyl. Vinclozolin was only slightly inhibitory. In our experimental conditions, T. harzianum development was strongly enhanced by thiram, even at a high dosage (300 μg ml?1).The limits and the advantages of the method are estimated and the results are discussed in view of practical applications.  相似文献   

2.
The effect of soil fumigation with a chloropicrin-methyl bromide mixture(1:1) at 440 kg·ha?1 on the fungal flora of a wheat-field has been investigated. Recolonization of fumigated soil and the occurrence of fungi on roots of wheat growing in fumigated and untreated soil were also followed. Very few fungi survived in fumigated soil that had been covered with polythene sheeting, but in uncovered fumigated soil some fungi survived especially at or near the soil surface.Study of recolonization of covered fumigated soil showed that some fungi, notably species of Chaetomium and Mortierella, appeared to survive fumigation and then increase in number, but many of the fungi recolonizing surface soil (2.5 cm), Alternaria, Stemphylium, Mucor, Cladosporium, Epicoccum), appeared to have come from the air. Recolonization of surface soil was not uniform; high counts were often due to the spores of one or a few fungi and samples collected a few cm apart might show different fungi in high number. In subsurface soil (5–22.5 cm) recolonization was much slower and even 117 days after fumigation the number of colonies and species of fungi was low compared with untreated soil.The common fungi on roots of plants grown in uncovered fumigated or untreated soil were very similar though initially there were fewer fungi on roots from fumigated soil. The main differences recorded were that Chaetomium species were more frequent on roots from fumigated soil and that. in general, Cylindrocarpon destruetans, Embellisia chlamydospora, species of Pythium and Rhizoctonia, and Gaeumannomyces graminis were more common on roots in untreated soil.  相似文献   

3.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

4.
Corn contaminated with aflatoxin is unfit for consumption by animals and is most often disposed of by plowing it into the soil. The effect of aflatoxin B1 on the population and activity of soil microorganisms was determined at concentrations of 1, 100 and 10,000 ng ml?1 of agar media or g?1 of soil. Aflatoxin B1 at 10,000 ng ml?1 of medium reduced the number of viable fungi by 38% and the number of bacteria and actinomycetes by 34%. Soil amended to 10,000 ng aflatoxin B1 demonstrated a slight, yet significant reduction in the population of fungi and bacteria plus actinomycetes. At this rate the antagonistic effect on soil microorganisms began at 14 days after aflatoxin B1 was added and lasted nearly 6 weeks. Subsequently no significant differences were observed among any of the treatments.When the soil was amended with alfalfa to provide a substrate for microbial growth, the population showed a more significant reduction due to aflatoxin B1, but the duration of the effect was reduced. The evolution of CO2 from soil amended with aflatoxin B1 showed little if any diminution. Similarly, aflatoxin B1 failed to demonstrate a significant effect on nitrifying bacteria. Aflatoxin B1 was found to be slightly deleterious to Rhizobium japonicum, resulting in a 30% reduction in numbers at the highest treatment rate. Using auxotrophic cultures of R. japonicum, aflatoxin B1 was also shown to induce the formation of mutants.  相似文献   

5.
One way to disperse waste from large commercial feedlots is to spread large amounts of the waste on limited areas nearby. The effects of this practice on the soil microbial populations was assessed. Feedlot waste (FLW) was applied for 5 yr at rates of 0, 22, 67, 134, and 269 t ha?1 yr?1. Additional treatments were 538 t ha?1 yr?1 for 1 and 3 years and applications of N and NPK fertilizer. Soil cores from plots were sampled for microbial analysis before, during, and after the fifth growing season. April, July. and December soil samples were analyzed to 180-, 20-, and 480-cm depths, respectively. The following utritional and physiological groups of microorganisms were counted: soil fungi on Rose Bengal agar; bacteria on a basal mineral salts medium, on nutrient agar (both aerobically and in BBL GasPak jars), and on EMB agar (Escherichia coli-type colonies and total counts); and nitrifying and denitrifying organisms. Little effect due to FLW application rates was found, and organisms producing coliform-type colonies on EMB agar did not persist in the soil. The results indicated that applying large amounts of feedlot waste will not deleteriously affect soil microorganisms.  相似文献   

6.
Inhibition of nitrification by potassium ethyl xanthate has been investigated in liquid batch culture and in soil, using axenic cultures of Nitrosomonas and Nitrobacter. In all cases the major effect was induction of a prolonged lag rather than a reduction in specific oxidation rates, although this was also found for Nitrosomonas at high xanthate concentrations. Inhibition of both ammonium and nitrite oxidation was reduced in soil, because of immobilization of xanthate or its breakdown products at the soil surface. However, in liquid culture nitrite oxidation was more sensitive while ammonium oxidation was more sensitive in soil. It is proposed that this also results from accumulation of xanthate, or its breakdown products at the soil surface. Xanthate was shown to have a bacteriostatic, rather than bactericidal effect, but xanthate-treated cells exhibited a significantly longer lag when transferred to xanthate-free medium, emphasizing the need for caution when using the most probable number method in such studies.  相似文献   

7.
Ectomycorrhizal mycelial necromass is an important source of carbon for free-living microorganisms in forest soils, yet we know little either of its fate when it enters soil or of the identity of microbes that are able to utilise mycelium as their energy source. Here we used 13C-labelled mycelium of the ectomycorrhizal fungus Pisolithus microcarpus in laboratory incubations in combination with DNA-stable isotope probing (SIP) to determine the identity of functionally active soil fungi that can utilise dead mycelium. We also used solid-state nuclear magnetic resonance (NMR) spectroscopy to detect parallel changes in the abundance of key biochemical constituents of soil. A decrease in bulk soil 13C concentration together with rapid loss of glycogen and chitin-glucan during the 4 week incubations suggested that dead mycelium was rapidly turned over. Further, 13C was incorporated into fungal DNA within 7 days of addition to soil. DNA-SIP also revealed a dynamic community of functionally active soil fungi. By applying DNA-SIP and NMR in parallel, our data show that carbon from decaying ectomycorrhizal mycelium is rapidly transformed and incorporated into free-living soil fungi. This finding emphasises that dead extra-matrical mycelium is an important source of labile carbon for soil microorganisms.  相似文献   

8.
The family Tylenchidae is a large group of soil nematodes but their feeding habits are not fully known. We studied the fungal-feeding abilities of nematodes in the genus Filenchus. We measured population growth rates (PGRs) of six nematode isolates, representing three Filenchus species, when feeding on seven fungal species on two types of culture media. On Potato Dextrose Agar (PDA) Filenchus misellus, Filenchus discrepans and an unidentified Filenchus sp. generally showed moderate to large PGRs on saprophytic fungi (Rhizoctonia solani, Chaetomium globosum, Coprinus cinereus, Flammulina velutipes) and low PGRs on plant-pathogenic fungi (Fusarium oxysporum, Pythium ultimum). In soil medium amended with chopped soybean plant material or wheat bran, the status of most of the fungi as food for the nematodes was similar to that on PDA, although PGRs tended to be lower in the soil medium. However, C. globosum, a good food on PDA, only supported low PGR in soil for each of the three nematodes. The PGRs of F. misellus on C. globosum in soil were still low even when types and amounts of organic matter amendments were varied. A nematophagous fungus, Pleurotus ostreatus (oyster mushroom), was determined to be a food for Filenchus on PDA or in soil, based on PGR measurements corrected for extraction efficiency. To determine whether fungal species and culture media affected nematode extraction efficiencies and, consequently, the apparent PGRs, we compared efficiencies between R. solani, C. globosum and C. cinereus, and between PDA and soil. The relatively low extraction efficiencies across fungal species in soil seemed responsible for the lower nematode PGRs in soil than on PDA. On PDA generally, fungal species did not affect the assessment. In soil, effects of fungal species on extraction were significant, but not consistent, across nematode species. Nevertheless, the extraction efficiency differences in soil were considered not to affect assessment of the three fungi as food for the nematodes. The confirmation that three Filenchus species reproduce by feeding on fungi in soil suggests that fungal-feeding is not an unusual habit in the field, in this genus. We believe that in community studies, nematodes in the genus Filenchus should be considered fungal feeders or root and fungal feeders, rather than only plant feeders. Our confirmation of fungal-feeding habits in the genus Filenchus supports the hypotheses that plant-feeding nematodes evolved from those feeding on fungi.  相似文献   

9.
Exposure of sclerotia of Macrophomina phaseolina to 0 and 33% relative humidity (r.h.) for 12 weeks and of Sclerotium cepivorum to 0, 33 and 55% r.h. for 20 weeks did not reduce their germinability on agar. Exposure to 78% r.h. caused high loss of germinability in M. phaseolina and complete loss in S. cepivorum. After 7-day exposures respective moisture contents of sclerotia of M. phaseolina and S. cepivorum were 1 and 2% at 0% r.h.; and 10 and 14% at 78% r.h. M. phaseolina sclerotia held at 0% and 33% r.h. in desiccators for several times up to 12 days did not decrease in subsequent survivability in moist soil, unlike sclerotia held at 78% r.h. for 4 days.More sclerotia of M. phaseolina were colonized by fungi and Streptomyces spp. on alkaline soil than on acid soil. On alkaline soil twice as many sclerotia were colonized after exposure to 0% r.h. as after exposure to 33, 55 and 78% r.h. Colonization of S. cepivorum sclerotia was as high on acid as on alkaline soil and 3 times as high on sclerotia treated at 0% r.h. as on those treated at higher r.h. Attempts to ascertain the effects of colonization on sclerotial viability were unsuccessful. Incubation of sclerotia of M. phaseolina in moist Rumsford sandy loam (50% m.h.c.) for 20 weeks reduced survivability by 43%. At room temperature, alternate drying and wetting of soil containing sclerotia did not appreciably affect survivability of either pathogen. Survivability of S. cepivorum sclerotia was highest when the sclerotia were incubated in air-dried soil (2–3% m.h.c.) for 20 weeks.Incidence of white rot on onion seedlings transplanted to S. cepivorum-infested soil was higher in soil that had been air-dried for 20 weeks than in soil that had been alternately wetted and dried. Sclerotia that were exposed to 0% r.h. for 7 days before soil incubation produced little white rot.  相似文献   

10.
盐碱地塔宾曲霉菌的解磷能力及其对小麦生长的影响   总被引:2,自引:0,他引:2  
[目的]研发新型解磷生物菌肥,提高黄河三角洲盐碱障碍耕地作物产量。[方法]采用无机磷液体培养基培养的方法,从黄河三角洲盐碱化菜园根际土壤筛选得到一株解磷真菌CT1,即塔滨曲霉菌(Aspergillus tubingensis),对其解磷能力进行了深入研究。[结果]解磷菌CT1的解磷能力随发酵液盐浓度升高降低,当发酵液盐浓度在0.03%~6%时,发酵液中有效磷浓度可维持在523.5~338.5mg/L,且解磷菌的溶磷量与发酵液pH之间存在明显的负相关。解磷菌CT1在葡萄糖作为碳源的培养基上生长状况最好,在(NH_4)_2SO_4作为氮源的培养基上生长状况最好。接入解磷菌15d的小麦与未接菌的小麦相比,茎长增加了16.24%,茎鲜重增加了12.35%,根长增加了21.6%。[结论]解磷菌CT1对盐碱地小麦幼苗生长有一定的促进作用,可作为提高盐碱地作物产量的新型解磷生物菌肥利用。  相似文献   

11.
We examined whether strains of Bradyrhizobium japonicum selected for growth on acid media in vitro would also survive and grow better in acid soils. Four agar screening media for acid-tolerant rhizobia, which differed in the number of acid soil stresses imposed (pH, low calcium (Ca) and phosphorus (P), high aluminum (Al) and manganese (Mn)), were assessed for their effects on the survival of 14 Indonesian strains and two commercial strains of B. japonicum. Survival of B. japonicum in the agar media was compared with that in two acid soils. A repeat stab inoculation method which provided a declining range of inoculum cell number to 103 cells per stab was used to assess the daily growth of the strains on the screening media at 5 pH levels (3.8, 4.2, 4.5, 5.0, and 6.8). The growth and survival of the 16 strains were then measured at days 1, 8, 18, and 28 after inoculation in two acid soils (pH 4.24 and 4.35) sterilized using γ-irradiation at 5.0 Mrad. Selectivity of the agar media improved as more acid stress factors were incorporated in the media. Those strains of Bradyrhizobium identified as acid, Al and Mn-tolerant in acidic agar media, also had better survival in the low pH soils. There was no relationship between acid or alkali production on agar media and acid tolerance on agar or in soil. There was no apparent relationship between symbiotic performance and acid tolerance, and one acid-tolerant strain was as effective as the commercial inoculant strain CB1809. The most acid-tolerant strain was also the most ineffective.  相似文献   

12.
A field trial consisting of four granule formulation doses and five liquid formulation sprays of a seaweed extract from Ascophyllum nodosum commercially known as Biovita, along with the recommended dose of nitrogen (N)–phosphorus (P)–potassium (K), was conducted during 2008 and 2009 in BHU, Varanasi, India, to evaluate its effect on wheat (var. HUW 468) under a no-tillage system. Among the granule doses, the 10 kg ha?1 basal application and the two liquid sprays of 500 cm3 ha?1 each at 25 and 50 days after sowing significantly improved the performance of wheat. On an average under these two treatments, the greatest grain and straw yields were observed were 3454.5, 3446.5 and 5187.5, 5220.0 kg ha?1, respectively. The greatest protein content was found when further high doses of extract were applied. A faster decomposition of the paddy residue was also observed as indicated by an earlier decline in carbon (C)/N ratio of the soil in the treated plots.  相似文献   

13.
A fermented organic mixture of 50% coffee grounds, 25% poppycake and 25% grape meal was incorporated into a soil naturally infested by Pythium sp. in order to study its effect on the pathogen.When incorporated 4 days before sowing, it decreased damping-off of cucumber seedling by 90%. Its effect is a function of dosage in soil: at 20 g l?1 it reduced the disease by 70% and suppressed it almost completely at 60 g l?1. Treating the organic matter before its incorporation into soil provided evidence that the mechanism of suppressiveness is biological and is associated with changes in the fungal rather than the bacterial populations. It is concluded that organic matter induces a proliferation of total fungi in the soil, especially Mucorales. Suppressiveness was reduced by destruction of the Mucorales.Suppressiveness is probably due to saprophytic competition between Pythium and Mucorales without complete destruction of Pythium. When the treatment was applied to cultivated soil under greenhouse conditions it increased the survival of cucumber seedling by 25%.  相似文献   

14.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg?1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg?1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg?1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

15.
Sodium chloride is the most often used chemical to malt ice and snow on the roads and has negative effects on the roadside environment. Searching for ways to improve the conditions for growth of trees and shrubs near the roads becomes an urgent matter. One such method of improving growth conditions for plants under salinity might be to use organic matter (green waste compost) and mycorrhizal fungi. This study studied the effect of application in soil different salts on several trees and shrubs growth in growing media. Also, effect of green waste compost and arbuscular mycorrhiza (AM) added to the growing medium was evaluated in terms of growth and K+, Ca+2, and Na+ uptake. The highest pH of the growing medium was noted when sodium carbonate was used. The pH ranged from 8.7 to 9.0 after eight doses of sodium carbonate. The pH of the growing medium was also significantly higher regardless of whether or not green waste compost or mycorrhizal fungi were used. The type of growing medium had a great effect on the growth of most of the trees, but among shrubs the growing medium was only important for Cornus alba, Sambucus nigra, and Spiraea vanhouttei. Growth of all these plants was much better under salinity when green waste compost or green waste compost with AM fungi was used. In all the cases, when salinity of the growing medium retarded growth of trees and shrubs, sodium chloride was the compound that had the strongest growth retarding effect. Leaf ionic composition was significantly affected by salinity in the growing medium, and in some cases also by micorhizal fungi. The type of growing medium had various effects on sodium uptake, depending on species. In most cases, the addition of green waste compost to the growing medium caused a greater amount of sodium in the leaves of tested plants. The use of mycorrhizal fungi had no effect on the uptake of sodium, compared to the control plants (without AM fungi).  相似文献   

16.
The survival of Ophiobolus graminis (Sacc.) Sacc. in buried wheat straw, but not of Cercosporella herpotrichoides Fron, was prolonged when nitrogen was added to soil. Five isolates of C. herpotrichoides survived similarly despite differences in their abilities to decompose cellulose and wheat straw. However, survival of O. graminis, at different temperatures, was entirely consistent with its cellulolytic activity. Unlike O. graminis, C. herpotrichoides survived up to 19 weeks in buried agar discs. These differences suggest contrasting means of survival of the pathogens.Both fungi showed short-term saprophytic activity in soil, growing into autoclaved wheat straws or coleoptiles only during the first few days after burial. An apparently increased competitive saprophytic colonization of straws at 10 than at 21°C, however, was largely an artefact of the “Cambridge Method” and not an indication of increased competitive saprophytism. Burial in unsterilized soil reduced the decomposition-rate of straws colonized by Chaetomium globosum Kunze and increased that of straws colonized by C. herpotrichoides. It also caused O. graminis to form lysis-resistant hyphae from previously unadapted ones.  相似文献   

17.
《Applied soil ecology》2001,16(1):85-90
One DDT-contaminated soil and two uncontaminated soils were used to enumerate DDT-resistant microbes (bacteria, actinomycetes and fungi) by using soil dilution agar plates in media either with 150 μg DDT ml−1 or without DDT at different temperatures (25, 37 and 55°C). Microbial populations in this study were significantly (p<0.001) affected by DDT in the growth medium. However, the numbers of microbes in long-term contaminated and uncontaminated soils were similar, presumably indicating that DDT-resistant microbes had developed over a long time exposure. The tolerance of isolated soil microbes to DDT varied in the order fungi>actinomycetes>bacteria. Bacteria from contaminated soil were more resistant to DDT than bacteria from uncontaminated soils. Microbes isolated at different temperatures also demonstrated varying degrees of DDT resistance. For example, bacteria and actinomycetes isolated at all incubation temperatures were sensitive to DDT. Conversely fungi isolated at all temperatures were unaffected by DDT.  相似文献   

18.
Ligninolytic fungi can be used for remediation of pollutants in water and soil. Extracellular peroxidases and laccases have been shown to oxidize recalcitrant compounds in vitro but the likely significance of individual enzyme levels in vivo remains unclear. This study documents the amounts and activities of Mn-dependent peroxidase (MnP), lignin peroxidase and laccase (LAC) in various species of ligninolytic fungi grown in liquid medium and soil and their effect on degradation of polycyclic aromatic hydrocarbons (anthracene and pyrene), a polychlorinated biphenyl mixture (Delor 106) and a number of synthetic dyes. Stationary cultures of a highly degradative strain Irpex lacteus exhibited 380-fold and 2-fold increase in production of MnP and LAC, respectively, compared to submerged cultures. Addition of Tween 80 to the submerged culture increased MnP levels 260-fold. High levels of MnP correlated with efficient decolorization of Reactive Orange 16 azo dye but not of Remazol Brilliant Blue R anthraquinone dye. Degradation of anthracene and pyrene in spiked soil by straw-grown explorative mycelium of Phanerochaete chrysosporium, Trametes versicolor and Pleurotus ostreatus showed the importance of MnP and LAC levels secreted into the soil. The importance of high fungal enzyme levels for efficient degradation of recalcitrant compounds was better demonstrated in liquid media compared to the same strains growing in soil.  相似文献   

19.
Microorganisms (348 fungi, 388 actinomycetes and 319 bacteria) were isolated from a nodulation problem soil, a non-problem virgin soil, a cultivated problem soil and the rhizosphere of clover plants grown in the problem soil. Rhizobium trifolii TA 1 which failed to establish in problem soils was inhibited on laboratory media by a greater number of these soil microorganisms than the better soil colonizing R. trifolii (WU95 and WU290) and R. lupini (WU425). R. lupini was not inhibited or stimulated on agar by many soil or rhizosphere isolates. R. meliloti showed greater stimulation than either R. trifolii or R. lupini and was inhibited by relatively few soil microorganisms so that its poor soil survival was thought to be due to chemical or physical soil conditions rather than to biotic factors. The greatest incidence of rhizobial inhibitors, mainly associated with TA 1, was found among the isolates from the clover rhizosphere. There was a reduction in the relative numbers of rhizobial inhibitors isolated from the cultivated soil compared with the virgin problem soils, a result possibly due to the changed soil environment changing with cultivation, altered vegetation and the addition of superphosphate. Inhibitors of rhizobia were more frequent amongst the bacteria than fungi or actinomycetes. Strong stimulation was more commonly shown by fungi than by actinomycetes or bacteria. The interaction on agar between rhizobia and the soil microflora is related to soil colonization and persistence.  相似文献   

20.
This study examined the interactions between the inoculation with three arbuscular mycorrhizal fungi, namely, Glomus intraradices, Glomus deserticola and Glomus mosseae, and the addition of a liquid organic amendment at different rates (0, 50, 100 or 300 mg C of liquid amendment per kilogram soil) obtained by alkaline extraction of composted dry olive residue with respect to their effects on growth of Retama sphaerocarpa seedlings and on some microbiological and physical properties of soil. One year after planting, both mycorrhizal inoculation treatments and the addition of amendment had increased plant growth and dehydrogenase, urease and benzoyl argininamide hydrolysing activities. The inoculation with G. mosseae increased plant growth to a greater extent than the addition of the amendment (about 35% greater than plants grown in the amended soil and about 79% greater than control plants) and both treatments produced similar increases in soil aggregate stability (about 31% higher than control soil). The organic amendment produced a very significant decrease in the levels of microbial biomass C and a strong increase in soil dehydrogenase and urease activities, which were proportional to the amendment rate. Only the combined treatment involving the addition of a medium dose of amendment (100 mg C kg−1 soil) and the mycorrhizal inoculation with G. intraradices or G. deserticola produced an additive effect on the plant growth with respect to the treatments applied individually (about 77% greater than plants grown in the amended soil and about 63% greater than inoculated plants).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号