首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The volatile compound formation from riboflavin solution of a phosphate buffer (0.1 M, pH 6.5) under light for 15 h was studied by SPME-GC and SPME-GC/MS analysis. Only one major compound in the riboflavin solution was formed and increased as the light exposure time increased. The light-exposed riboflavin solution had a buttery odor. The compound of riboflavin solution under light was analyzed by gas chromatography and olfactometry. The major volatile compound eluted from the gas chromatograph had a buttery odor. The buttery odor compound was positively identified as 2,3-butanedione by a combination of gas chromatographic retention time, mass spectrum, and odor evaluation of authentic 2,3-butanedione. The addition of sodium azide, a singlet oxygen quencher, to riboflavin solution minimized the formation of the buttery odor compound. Singlet oxygen was involved in the formation of the buttery odor. The 2,3-butanedione was produced from the reaction between riboflavin and singlet oxygen. Singlet oxygen was formed from triplet oxygen by riboflavin photosensitization mechanism. This is the first reported oxidation reaction between riboflavin and singlet or triplet in food and biological systems.  相似文献   

2.
The primary photodegradation processes of fenthion (FN), one of the most photosensitive pesticides used in agriculture, have been investigated by combining laser flash photolysis and steady-state measurements. The triplet state of FN is produced quite efficiently (Phi(isc) approximately 0.3). However, this excited state does not seem to trigger the primary photodecomposition pathways of the pesticide. It is demonstrated that FN undergoes photoheterolysis via the excited singlet state and gives the corresponding singlet "sigma aryl cation". Chemical evidence for the generation of this transient species is given by trapping with typical "sigma nucleophiles" such as chloride and methanol. This photodegradation mechanism is, in part, quite different with respect to what is known to date and may account for the formation of the O,O-dimethyl S-[3-methyl-4-(methylthio)phenyl] phosphorothioate discovered as a novel photodegradation product of FN.  相似文献   

3.
The kinetics of the thermal degradation of the natural cis carotenoid bixin in a water/ethanol (8:2) solution was studied as a function of temperature (70-125 degrees C), using high-performance liquid chromatography. The curves for the decay of bixin and formation of products (e.g., di-cis and all-trans isomers and a C17 degradation compound) did not adjust well to a first-order rate law, but very good fits were obtained using a biexponential model. This mathematical modeling gave the rate constant values for the formation of the primary products from bixin, and the energy barrier for each step was obtained. The di-cis isomers were formed immediately (15 kcal/mol) together with the decay of bixin, followed by a slow consumption, indicating their role as reaction intermediates. In fact, the di-cis isomers could easily revert to bixin (Ea approximately 3 kcal/mol) or yield the primary C17 degradation product, with an energy barrier of 6.5 kcal/mol. In turn, 24 kcal/mol was necessary for the Bix --> all-trans step, explaining its slower formation.  相似文献   

4.
The effects of 0, 0.3, 0.6, and 0.9 mM Trolox and ascorbic acid on the singlet oxygen oxidation of tryptophan and tyrosine containing 25 ppm of riboflavin were determined by measuring tryptophan and tyrosine concentration by high-performance liquid chromatography analysis. The samples were stored in the a 1000 lx light storage box for 4 h at 30 degrees C. As the concentration of Trolox and ascorbic acid increased, the degradation of tryptophan and tyrosine decreased significantly at p < 0.05. Trolox reduced tryptophan and tyrosine degradation by quenching both singlet oxygen and excited triplet riboflavin, whereas ascorbic acid quenched singlet oxygen only. The total singlet oxygen quenchings of Trolox in the presence of tryptophan and tyrosine were 1.55 x 10(7) and 1.32 x 10(7) M(-1) s(-1), respectively. The total singlet oxygen quenchings of ascorbic acid in the presence of tryptophan and tyrosine were 1.16 x 10(7) and 1.10 x 10(7) M(-1) s(-1), respectively. Trolox was more effective than ascorbic acid in preventing the degradation of tryptophan and tyrosine.  相似文献   

5.
In this study, fluorescence excitation and emission matrices and multivariate curve resolution (PARAFAC) were used to detect and characterize active photosensitizers spectrally in butter. Butter samples were packed under high (air) and low oxygen (<0.05%) atmospheres and exposed to violet, green, or red light. Six photosensitizers were found: riboflavin, protoporphyrin, hematoporphyrin, a chlorophyll a-like molecule, and two unidentified tetrapyrrols. By estimation of relative concentrations, we could follow how each sensitizer was photodegraded as function of wavelength, oxygen level, and time. The degradation rate of protoporphyrin, hematoporphyrin, chlorophyll a, and one of the tetrapyrrols correlated well (0.83-0.91) with the formation of sensory measured oxidation. The results suggest that mainly type I photoreactions were responsible for the degradation of photosensitizers in both high and low oxygen atmosphere. Type II photoreactions (generation of singlet oxygen) were involved in the oxidation of butter stored in air. The study shows that PARAFAC modeling of fluorescence landscapes is an excellent tool for studying photooxidation in complex systems.  相似文献   

6.
Riboflavin (Rf)-mediated photosensitized degradation of vitamins A and D3 in skimmed milk under illumination with a white fluorescence lamp was studied by using the HPLC technique. The photosensitized degradation of both vitamins followed first-order kinetics, and the temperature effect on the observed photodegradation rate constant allowed the determination of the activation energy Ea as being 4 and 16 kcal/mol for vitamins A and D3, respectively. The addition of lycopene microencapsulated by spray-drying with a gum arabic-sucrose (8:2) mixture (MIC) produced a reduction of ca. 45% in the photosensitized degradation rate of both vitamins. Front-face fluorescence experiments showed the same photoprotection factor in the degradation of Rf itself, indicating that the photodegradation mechanism involved Rf-mediated reactive species, such as the excited triplet state of Rf, 3Rf*, and/or singlet molecular oxygen, 1O2. The interaction of both 3Rf* and 1O2 with MIC was evaluated in aqueous solutions by using laser-induced time-resolved absorption or emission spectroscopy, and the contribution of an inner-filter effect in the presence of MIC in skimmed milk was evaluated by diffuse reflectance spectroscopy. The main operating mechanism of photoprotection is due to the deactivation of 3Rf* by the proteic component of gum arabic; thus, gum arabic based microcapsules could be used to improve the photostability of milk during its storage and/or processing under light.  相似文献   

7.
Primary radicals were generated by UV photolysis of samples of trilinolein, at 77 K and under a controlled atmosphere. The resulting EPR spectra clearly show that the amount of radicals is dependent on the purity of the lipid, the exposure to visible light in the presence of a photosensitizer and oxygen, and, finally, the presence of an antioxidant. These solid state EPR experiments indicate that if all of the elements for the production of singlet oxygen (Rose Bengal, molecular oxygen, and visible light) are not present, primary radicals are practically not generated. They also point out the various steps of the oxidation mechanism: formation of singlet oxygen, which reacts with the lipid to form a hydroperoxide; and photolytic formation of the hydroxyl radical, which reacts with the frozen lipid to generate primary lipidic radicals. This constitutes a new method for investigating lipid oxidation and studying the influence of photosensitizers and molecules that are likely to react with singlet oxygen.  相似文献   

8.
The reaction between the triplet excited state of riboflavin and amino acids, peptides, and bovine whey proteins was investigated in aqueous solution in the pH range from 4 to 9 at 24 degrees C using nanosecond laser flash photolysis. Only tyrosine and tryptophan (and their peptides) were found to compete with oxygen in quenching the triplet state of riboflavin in aqueous solution, with second-order rate constants close to the diffusion limit, 1.75 x 10(9) and 1.40 x 10(9) L mol(-1) s(-1) for tyrosine and tryptophan, respectively, with beta-lactoglobulin and bovine serum albumin having comparable rate constants of 3.62 x 10(8) and 2.25 x 10(8) L mol(-1) s(-1), respectively. Tyrosine, tryptophan, and their peptides react with the photoexcited triplet state of riboflavin by electron transfer from the tyrosine and tryptophan moieties followed by a fast protonation of the resulting riboflavin anion rather than by direct H-atom abstraction, which could be monitored by time-resolved transient absorption spectroscopy as a decay of triplet riboflavin followed by a rise in riboflavin anion radical absorption. For cysteine- and thiol-containing peptides, second-order rate constants depend strongly on pH, for cysteine corresponding to pKaRSH = 8.35. H-atom abstraction seems to operate at low pH, which with rising pH gradually is replaced by electron transfer from the thiol anion. From the pH dependence of the second-order rate constant, the respective values for the H-atom abstraction (k = 1.64 x 10(6) L mol(-1) s(-1)) and for the electron transfer (k = 1.20 x 10(9) L mol(-1) s(-1)) were determined.  相似文献   

9.
To protect the nutrient and flavor stability of milk under light, the effects of 0, 0.01, 0.03, and 0.05 M 1,4-diazabicyclo[2,2,2]octane (DABCO) and 2,5-dimethylfuran (DMF) on the riboflavin photosensitized oxidation of milk were studied. The oxidation of milk was studied by measuring the headspace oxygen in sample bottles after 3 h of light exposure at 3000 lux. As the concentration of DABCO and DMF, which are water soluble compounds, increased in the sample from 0, 0.01, and 0.03 to 0.05 M, the depleted headspace oxygen content significantly decreased (P < 0.05). Steady state kinetic studies of singlet oxygen oxidation showed that the antioxidant activity of DABCO and DMF was due to singlet oxygen quenching. The reaction rate constant of singlet oxygen with milk fat was 8.1 x 10(5) M(-1) s(-1). Total singlet oxygen quenching rates of DABCO and DMF were 1.5 x 10(7) and 2.6 x 10(7) M(-1) s(-1), respectively. DABCO and DMF could be used to slow the reaction between singlet oxygen and milk components to protect nutrients, especially riboflavin, and to improve the oxidative stability of milk fat during storage or processing under light.  相似文献   

10.
The use of protein hydrolysate-based fertilizers (PHF) as adjuvant for pesticides or herbicides has been proposed; however, the behaviors of mixtures of PHFs and pesticides under solar light are not known, and various photochemical reactions may occur. The photosensitizing properties of PHFs were investigated in water solutions (0.8 g of total organic carbon L(-1)) within the wavelength range of 300-450 nm, using furfuryl alcohol (FA) as a probe to test the involvement of singlet oxygen and Irgarol 1051 as an example of organic pollutant. Two commercial PHFs and one standard PHF were studied, all of the products being of animal origin. PHFs photosensitize the transformation of FA (10(-4) M), and the kinetics of FA disappearance follows an apparent first-order rate law. Through the use of sodium azide (1 x 10(-3) M) as singlet oxygen scavenger and deuterium oxide (D2O) for increasing the singlet oxygen lifetime it was shown that singlet oxygen contributes largely to the phototransformation of FA. The replacement of water by D2O increases the apparent first-order rate constant 6 times, whereas the addition of sodium azide reduces it by approximately 90%. These results are confirmed using Irgarol 1051 (10(-5) M). The photosensitizing properties of PHFs might be due to pigments naturally present in tissues from which they are extracted or to compounds generated during the production processes.  相似文献   

11.
This work aimed to compare methods for the formation of complexes of bixin and curcumin with β-cyclodextrin (β-CD) and to evaluate the stability of the complexes formed by these methods and their food applications. The stoichiometric relationship between curcumin and β-CD was 1:2 and that between bixin and β-CD was 1:1. Curcumin-β-CD and bixin-β-CD complexes formed by kneading, coprecipitation, and simple mixing were evaluated by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), or nuclear magnetic resonance (NMR-H). For both curcumin and bixin, the best method of complexation was coprecipitation. Complexation of colorants with β-CD promoted an intensification of color and increased water solubility; however, stabilization in the presence of light occurred only for bixin. Application of curcumin-β-CD in cheese and yogurt and bixin-β-CD in the curd did not alter the initial characteristics of the products, which were sensorialy well accepted. Therefore, the complexation of these natural colorants with β-CD favors their use in low-fat foods, broadening the field of industrial application.  相似文献   

12.
Electron spin resonance (ESR) spectroscopy and near-infrared (NIR) fluorescence spectroscopy were performed to observe singlet oxygen quenching by resveratrol. Resveratrol greatly decreased the 2,2,6,6-Tetramethyl-4-piperidone-N-oxyl radical signal as determined by ESR spectroscopy. Resveratrol also efficiently decreased luminescence emission at 1268 nm as studied with a NIR spectrofluorometer, showing positive evidence of singlet oxygen quenching by resveratrol. The total singlet oxygen quenching rate constant (kr+kq) of resveratrol in methanol was determined to be 2.55×10(7) M(-1) s(-1). The singlet oxygen chemical quenching rate constant (kr) of resveratrol was calculated by measuring its reaction rate with singlet oxygen relative to that of α-terpinene in the same solution under light illumination. The kr value of resveratrol was 1.15×10(6) M(-1) s(-1). The percent partition of chemical quenching over total singlet oxygen quenching (kr×100)/(kr+kq) for resveratrol was 5.11%. The results showed that resveratrol quenches singlet oxygen almost exclusively through the mechanism of physical quenching. Resveratrol showed a protective activity similar to that of BHA on the methylene blue sensitized photooxidation of α-terpinene. This unambiguously explains the mechanism of how resveratrol protects tissues and cells in biological systems or important nutrients in food systems against their photosensitized oxidations.  相似文献   

13.
The vitamin B(6) compounds pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and pyridoxamine 5'-phosphate (PMP) inhibited the diphenolase activity of mushroom tyrosinase. PM showed the highest inhibition; the control activity was inhibited by 38% at 1.5 mM. Each PL, PN, and PMP showed about 30% inhibition at the same concentration. Lineweaver-Burk plots showed that PM and PN were mixed-type inhibitors with K(I) values of 4.3 and 5.2 mM, respectively. Because PM and PN cannot form a Schiff base with a primary amino group of the enzyme, their inhibition is not attributable to the formation of the Schiff base. Alternatively, their quenching function of reactive oxygen species (ROS) was postulated to be responsible for the inhibition. Thus, the inhibitory effect of ROS was examined. The representative singlet oxygen quenchers l-histidine, sodium azide, Trolox, and anthracene-9,10-dipropionic acid (AAP) inhibited the activity. The specific scavenger of superoxide, proxyl fluorescamine, also inhibited the activity. The scavengers of hydroxyl radical, d-mannitol and dimethyl sulfoxide, showed no inhibition. The fluorescence of AAP was decayed during the diphenolase reaction, and PM inhibited the decay. AAP was also a mixed-type inhibitor. The results showed that the vitamin B(6) compounds inhibited the diphenolase activity by quenching ROS (probably singlet oxygen) generated during some reaction step of the diphenolase reaction.  相似文献   

14.
Glycation of bovine serum albumin by D-glucose and D-fructose under dry-heating conditions was studied. The reactivities of D-glucose and D-fructose, with respect to their ability to utilize primary amino groups of proteins, to cross-link proteins, to develop Maillard fluorescence, and to reduce protein solubility in the presence and absence of air (molecular oxygen) were investigated. D-Glucose showed a higher initial rate of utilization of primary amino groups than D-fructose, both in the presence and in the absence of oxygen. Subsequent reactions of the Amadori and Heyns rearrangement products, cross-linking, development of Maillard fluorescence, oxidation, and fragmentation, indicated that the alpha-hydroxy carbonyl group of Amadori products is more reactive than the aldehydo group of Heyns products. D-Fructose showed a greater sensitivity than D-glucose toward the presence of oxygen at the initial stages of the Maillard reaction. The presence or absence of oxygen in the glycation mixture did not seem to have an influence on the nature of products generated in the glycation mixtures during the advanced stages of the Maillard reaction.  相似文献   

15.
Hydroxyphenylureas are the first main metabolites formed in the environment from pesticide and biocide urea compounds. Because fungi release potent exocellular oxidases, we studied the ability of laccases produced by the white rot fungus, T. versicolor, to catalyze in vitro the transformation of five hydroxyphenylureas, to identify transformation pathways and mechanisms. Our results establish that the pH of the reaction has a strong influence on both the kinetics of the reaction and the nature of the transformation products. Structural characterization by spectroscopic methods (NMR, mass spectrometry) of eleven transformation products shows that laccase oxidizes the substrates to quinones or to polyaromatic oligomers. Slightly acidic conditions favor the formation of quinones as final transformation products. In contrast, at pH 5-6, the quinones further react with the remaining substrate in solution to give hetero-oligomers via carbon-carbon or carbon-oxygen bond formation. A reaction pathway is proposed for each of the identified products. These results demonstrate that fungal laccases could assist the transformation of hydroxyphenylureas.  相似文献   

16.
Electrospray ionization mass spectrometry (ESI-MS) was used to study the glycation of lysozyme by D-glucose (LZM-G) and by D-fructose (LZM-F) under dry heating conditions in the presence and in the absence of oxygen. ESI-MS proved to be a precise method for monitoring protein glycation with respect to following the extent of glycation and changes in the glycoconjugate profile with time. The ESI-MS spectrum of glycated LZM revealed a heterogeneous distribution of glycoforms of LZM at different reaction stages. D-Glucose showed a higher level of reactivity with the amino groups of LZM than D-fructose, both in the presence and in the absence of oxygen. The presence of oxygen in the reaction system induced oxidative side reactions, which competed with and slowed the initial rate of formation of Amadori or Heyns products. The more reactive glycoxidation products formed during the initial stages of incubation in the presence of oxygen accelerated the rate of glycation during the later stages of incubation and increased the involvement of arginine residues of LZM in the glycation reaction. The interaction between the initial glycoxidation product(s) of the reducing sugars and intact lysozyme during the later stages of incubation was observed by the appearance of a different cluster of glycoconjugates in the mass spectrum during the latter stages of incubation. The molecular weight differences between the molecular ions of the new cluster of glycoconjugates are consistent with the formation of D-glucosone from the autoxidation of D-glucose or from the oxidative cleavage of the glucose-lysozyme imine adduct in the lysozyme-glucose system. The effect of oxygen-induced glycoxidation on the glycation reaction was also more pronounced in the LZM-G system compared with that in the LZM-F system.  相似文献   

17.
Bixa orellana fruit extracts were studied by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The intensity of the peak at m/z 396, assigned to the bixin molecular ion plus two hydrogen atoms (C25H(32)O(4+), decreased as the extract was heated and nearly disappeared with heating above 150 degrees C. Simultaneously, the formation of dimers at m/z 790, 804, and 818 was observed. The ToF-SIMS spectrum is characterized by a large amount of peaks generated by the principal ions and their multiple fragmentation patterns. To extract maximum information from the data set, multivariate statistical analysis was applied. Principal component analysis revealed important structural changes of the bixin molecule upon heating at different temperatures. This information can be used by the food industry as by controlling the temperature of the heating process the red/yellow balance of this colorant can be tuned.  相似文献   

18.
The carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols was monitored by Fourier transform infrared spectroscopy at a temperature range between 20 and 100 degrees C and under acidic and basic conditions. To avoid interference, the reactions were conducted in the absence of solvent using liquid reactants such as methyl pyruvate, pyruvic acid, ethanolamine, and 1-amino-2,3-propanediol. Analysis of the time- and temperature-dependent spectra indicated that under basic conditions and at room temperature, the initial imine formation and its subsequent isomerization through a 1,3-prototropic shift occur very rapidly and the reaction goes to completion within 12 min. Interestingly, the isomerization product of the initial imine is the so-called Schiff base intermediate formed when the corresponding amino acid and the reducing sugar react during a typical Maillard reaction. Furthermore, the detailed studies also indicated that during the first 30 s, the rate of formation of the initial imine was faster than the rate of its isomerization; however, after 60 s, its rate of isomerization becomes faster than the rate of its formation. The data also indicated that under acidic conditions, this isomerization was prevented from occurring and the reaction was terminated at the initial imine formation stage. In addition, temperature-dependent spectra indicated that the isomerization of the Schiff's base into eneaminol can be achieved at or above 60 degrees C and its subsequent rearrangement into Amadori product can be attained at temperatures above 80 degrees C even under basic conditions, thus providing a novel route to Maillard reaction products starting from a keto acid and an amino alcohol. This observation was also confirmed through identification of the common Amadori product in both keto acid/amino alcohol and sugar/amino acid mixtures, by the application of tandem mass spectrometry and chemical ionization techniques.  相似文献   

19.
The formation of alpha-dicarbonyl-containing substances and Amadori rearrangement products was studied in the glycine-catalyzed (Maillard reaction) and uncatalyzed thermal degradation of glucose, maltose, and maltotriose using o-phenylenediamine as trapping agent. Various degradation products, especially alpha-dicarbonyl compounds, are formed from carbohydrates with differing degrees of polymerization during nonenzymatic browning. The different Amadori rearrangement products, isomerization products, and alpha-dicarbonyls produced by the used carbohydrates were quantified throughout the observed reaction time, and the relevance of the different degradation pathways is discussed. In the Maillard reaction (MR) the amino-catalyzed rearrangement with subsequent elimination of water predominated, giving rise to hexosuloses with alpha-dicarbonyl structure, whereas under caramelization conditions more sugar fragments with an alpha-dicarbonyl moiety were formed. For the MR of oligosaccharides a mechanism is proposed in which 1,4-dideoxyosone is formed as the predominating alpha-dicarbonyl in the quasi-water-free thermolysis of di- and trisaccharides in the presence of glycine.  相似文献   

20.
Lumichrome and lumiflavin were formed from riboflavin under light. pH had a significant influence on the formation of lumichrome and lumiflavin from riboflavin. Lumichrome was the only major product from riboflavin under neutral or acidic pH values. Lumiflavin was also formed from riboflavin in basic pH. The maximum concentration of lumiflavin from 100 microM riboflavin at pH 8.5 was 30.9 microM, and it was reached after 2 h of exposure at 1500 lux. The maximum concentration of lumichrome formed from 100 microM riboflavin at pH 4.5, 6.5, or 8.5 was 79.9, 58.7, and 73.1 microM, respectively, after 8, 6, or 2 h of light exposure. The formation of lumichrome and lumiflavin from riboflavin was due to the type I mechanism of the riboflavin photosensitized reaction. Singlet oxygen was also involved in the photosensitized degradation of lumiflavin and lumichrome. The reaction rates of riboflavin, lumiflavin, and lumichrome with singlet oxygen were 9.66 x 10(8), 8.58 x 10(8), and 8.21 x 10(8) M(-1) s(-1), respectively. The headspace oxygen depletion and headspace volatile formation were significant in soy milk containing lumichrome or lumiflavin under light (p < 0.05) and were insignificant (p > 0.05) in the dark. Ascorbic acid could inhibit the total volatile changes of soy milk under light. Soy milk should be protected from light to prevent the photodegradation of riboflavin and the oxidation of soy milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号