首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
Mori A  Takeda H 《Tree physiology》2004,24(6):661-670
Light-related plasticity of crown morphology and within-crown characteristics were investigated in understory sun and shade saplings of three codominant subalpine conifers, Abies mariesii M.T. Mast., Abies veitchii Lindl. and Picea jezoensis var. hondoensis (Mayr) Rehd. Compared with those of sun saplings, current-year shoots of shade saplings allocated less biomass to needles, resulting in less dense needle packing and hence less mutual needle shading. The proportion of lateral branch biomass in foliage was either similar in sun and shade saplings or greater in shade saplings, depending on the species, suggesting that, over the lifetime of a branch, greater needle longevity in shade compensates for reduced biomass investment in needles of current-year shoots of shade saplings. Saplings with slower-growing branches tended to have greater needle life spans, suggesting that plasticity of branch growth rate and plasticity of needle life span are interdependent. Both Abies species showed greater light-related plasticity of needle life span and branch growth than P. jezoensis. The greater shade tolerance of the Abies species derives from their broad flattened crowns with slow-growing branches. This type of crown development incurs substantial support costs, but the long needle life span of shade saplings of the Abies species compensates, at least in part, for their low annual investment in foliage, especially in the case of A. mariesii, which has a longer needle life span and slower-growing and stouter branches than A. veitchii. Compared with the Abies species, P. jezoensis had a less plastic crown morphology, and less variability of needle life span and branch growth in response to light, resulting in lower shade tolerance. However, compared with the flattened crown of Abies shade saplings, the conical crown of P. jezoensis saplings imposes a smaller support cost, making this species better adapted to rapid height growth than to survival in shade.  相似文献   

2.
Light-related plasticity in a variety of crown morphology and within-tree characteristics was examined in sun and shade saplings of Abies amabilis Dougl. ex J. Forbes growing in two late-successional forests with different snow regimes in the Cascade Mountains of Washington, USA. Compared with sun saplings, shade saplings typically had broad flat crowns as a result of acclimation at several scales (needle, shoot, branch, crown and whole sapling). Shoots of shade saplings had a smaller needle mass per unit of stem length than shoots of sun saplings, a feature that enhances light-interception efficiency by reducing among-needle shading. The low annual rate of needle production by shade saplings was associated with a longer needle lifespan and slower needle turnover. Reduced needle production within a shoot was reflected at the branch level, with lateral branches of shade saplings having a smaller needle mass than branches of the same length of sun saplings. Reduced allocation to needles permits greater investment in branches and stems, which is necessary to support the horizontally expanding branch system characteristic of shade saplings. Mean branch age of shade saplings was significantly higher than that of sun saplings. Shade saplings had lower needle mass per unit of trunk biomass or total biomass, reflecting greater investment in the trunk as a support organ. Increased investment in support organs in shade was more evident in the snowier habitat. The observed morphological acclimation makes A. amabilis highly shade and snow-tolerant and thus able to dominate in many late-successional forests in snowy coastal mountain regions.  相似文献   

3.
We investigated mature dwarf Abies mariesii trees growing in conifer thicket–meadow parklands on a snowy subalpine plateau, where these dwarf trees are buried in the accumulated snow in winter. We focused on structural variation in the needles, shoots, and branchlets within different crown positions (leader crown vs lower crown) of the dwarf trees. In the leader crown, which appears above the snow surface earlier than the lower crown, current-year shoots and branchlets had greater total biomass, and foliage was more closely packed along the stem axis than in the lower crown, whereas current-year shoots in the leader crown had a lower needle mass ratio than in the lower crown. These results suggest that current-year shoots and branchlets in the leader crown have a specific structure that allows them to harvest more light, although construction and maintenance costs would be higher. In contrast, the structural characteristics of current-year shoots and branchlets in the lower crown efficiently concentrate incoming light by avoiding mutual shading within foliage, thus leading to increased biomass of photosynthetic needles within shoot and branchlet biomass. Such within-crown variability at various hierarchical levels from needles to branches in mature, but very dwarf, A. mariesii trees maintains the crown and allows survival within conifer clumps in areas of subalpine parklands that receive heavy snowfall.  相似文献   

4.
Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x bar = 2.7) and PLA/SLA ranged between 2.0 and 3.7 (x bar = 2.2). These ratios were reflected in the ratios of net photosynthesis computed on the basis of the three measures of leaf area. The much smaller values for TLA/PLA compared with the values for TLA/SLA indicate that leaf orientation effects, or shading, or both, caused more variation in the interception of solar radiation than did variation in leaf geometry (i.e., cross-section). Silhouette leaf area of lodgepole pine, (Pinus contorta spp. latifolia) and subalpine fir (Abies lasiocarpa) shoots measured at the summer solstice varied almost 2-fold with diurnal changes in solar altitude and azimuth. Sun shoots of both species and shade shoots of lodgepole pine had the greatest SLA during the early morning and late afternoon. The midday decline in SLA was related to the relatively upright orientation of needles of subalpine fir sun shoots and the relatively upright orientation of both sun and shade shoots of lodgepole pine. Shade shoots of subalpine fir reached a maximum in SLA at midday and this was related to the near horizontal orientation both of the shoots and the needles on them.  相似文献   

5.
We studied the effects of variation in shoot structure and needle morphology on the distributions of light and nitrogen within a Pacific silver fir (Abies amabilis (Dougl.) Forbes) canopy. Specifically, we investigated the role of morphological shade acclimation in the determination of resource use efficiency, which is claimed to be optimal when the distribution of nitrogen within the canopy is directly proportional to the distribution of intercepted photosynthetically active radiation (PAR). Shoots were collected from different heights in the crowns of trees representing four different size classes. A new method was developed to estimate seasonal light interceptance (SLI, intercepted PAR per unit needle area) of the shoots using a model for the directional distribution of above-canopy PAR, measurements of shoot silhouette area and canopy gap fraction in different directions. The ratio SLI/SLI(o), where the reference value SLI(o) represents the seasonal light interceptance of a spherical surface at the shoot location, was used to quantify the efficiency of light capture by a shoot. The ratio SLI/SLI(o) doubled from the top to the bottom of the canopy, mainly as a result of smaller internal shading in shade shoots than in sun shoots. Increased light-capturing efficiency of shade shoots implies that the difference in intercepted light by sun shoots versus shade shoots is much less than the decrease in available light from the upper to the lower canopy. For example, SLI of the five most sunlit shoots was only about 20 times greater than the SLI of the five most shaded shoots, whereas SLI(o) was 40 times greater for sun shoots than for shade shoots. Nitrogen content per unit needle area was about three times higher in sun needles than in shade needles. This variation, however, was not enough to produce proportionality between the amounts of nitrogen and intercepted PAR throughout the canopy.  相似文献   

6.
We investigated current shoot properties in two contrasting vertical positions (leader crown; LC, and lower branch; LB) within the crowns of mature trees of two subalpine conifer species, Abies mariesii and A. veitchii. For both LCs and LBs, shoot length decreased with increasing branching order. However, shoot properties were different between LCs and LBs. Shoots in LCs had more needle biomass per unit of shoot length. Shoots in sunny conditions pack needles closer along the shoot and intercept incoming light more completely. This causes the shoots in the LCs to have more needles. In contrast, less needle packing per unit shoot length in LBs results in the avoidance of mutual shading among needles in order to intercept limited light more effectively. Because branch systems in lower layers tend to be more shaded, the quantity of irradiance received by the shoots in LBs is smaller. Thus, reduced needle amounts on the shoots in LBs reflect the needle arrangement acclimating to the lower light availability. This study suggests the importance of changes in the properties of individual shoot as a component of a branch system and accordingly a whole-crown system in mature canopy trees of A. mariesii and A. veitchii.  相似文献   

7.
We investigated the seasonal variation in the gas exchange of current and 1-year-old needles in the upper sun and lower shade crown of adult Pinus canariensis trees. In general, current year needles displayed lower gas exchange rates than the 1-year-old needles. In both needle age classes, gas exchange was significantly lower in the shade than in the sun crown. However irrespective of crown position and needle age, maximum daily net photosynthesis, transpiration, and stomatal conductance for water vapour were generally higher during the wet and cold winter as compared to the dry and hot summer. These higher gas exchange values obtained during the cold and wet season can mainly be explained by higher soil-water availability and lower evaporative demand as compared to the warm and dry seaon. In addition, we also observed a displacement in the temperature optimum of net photosynthesis towards lower temperatures during the cold and wet season as compared to the warm and dry season. The observed gas exchange characteristics indicate a conservative water saving strategy and thus allowing P. canariensis needles to maintain a positive carbon gain even at periods of high evaporative demand and low soil-water availability.  相似文献   

8.
The spherical mean of the shoot silhouette-to-total leaf area ratio (STAR) and the shoot transmission coefficient (c) are two key structural parameters in radiative transfer models for calculating canopy photosynthesis and leaf area index. The standard optical method for estimating these parameters might introduce errors in the estimates for species with flexible shoots and needles by changing shoot inclination relative to its inclination in situ. We devised and tested two methods to address this problem. First, we modified the standard optical method by designing an apparatus that allows shoots to be photographed in their original orientation. Second, we developed a faster, model-based approach to replace photography and tested the results against the established approach. We used shoots of three pine species, Pinus echinata Mill. (needle length ~50 mm), P. taeda L. (~150 mm) and P. palustris Mill. (~300 mm). Values of the parameters simulated by the model were similar to those measured from the photographs. In our data, STAR varied about twofold among the pine species and was ~40% higher in shade shoots than in sun shoots of P. taeda. The transmission coefficient for P. taeda shade shoots was also ~40% higher than that of sun shoots of all three species. We tested the versatility of the model by employing it on shoots of two other pine species (P. strobus L. and P. thumbergiana Parl.) as well as on shoots of Tsuga canadensis L. Carr. and Picea pungens Engelm. Regardless of shoot characteristics, the model generated values of shoot structural parameters similar to those estimated with the optical method. Although species-specific and vertical gradients in parameter values are best for modeling radiative transfer in conifer canopies, our results suggest that, in the absence of adequate data, STAR can be approximated as 0.16 for a wide range of shoot structures. For applications requiring angle-dependent parameterization, our new model facilitates rapid generation of these radiative transfer parameters.  相似文献   

9.
We examined the principal differences in photosynthetic characteristics between sun and shade foliage and determined the relative importance of biochemical and stomatal limitations during photosynthetic induction. Temperate-zone broadleaf and conifer tree species, ranging widely in shade tolerance, were investigated from one locality in the Czech Republic. The study species included strongly shade-tolerant Abies alba Mill. and Tilia cordata Mill., less shade-tolerant Fagus sylvatica L. and Acer pseudoplatanus L. and sun-demanding Picea abies (L.) Karst. In the fully activated photosynthetic state, sun foliage of all species had significantly higher maximum CO(2) assimilation rates, maximum stomatal conductance and maximum rates of carboxylation than shade foliage. Compared with shade leaves, sun leaves had significantly higher nocturnal stomatal conductances. In all species, shade foliage tended to have higher induction states 60 s after leaf illumination than sun foliage. Sun and shade foliage did not differ in the rate of disappearance of the transient biochemical limitation during the induction phase. Longer time periods were required to reach 90% photosynthetic induction and 90% stomatal induction in sun foliage than in shade foliage of the less shade-tolerant F. sylvatica and A. pseudoplatanus and in sun-demanding P. abies; however, in sun foliage of the strongly shade-tolerant species T. cordata and A. alba, the time needed for photosynthetic induction was similar to, or less than, that for shade foliage. Shade but not sun needles of P. abies and A. alba had significantly slower induction kinetics than the broadleaf tree species. Among species, the sun-demanding P. abies exhibited the shortest stomatal induction times in both sun and shade leaves. Independently of shade tolerance ranking, the transient stomatal and total limitations that characterize photosynthetic induction were relieved significantly earlier in shade foliage than in sun foliage. Sun foliage generally exhibited a hyperbolic photosynthetic induction response, whereas a sigmoidal induction response was more frequent in shade foliage. The different relative proportions of transient biochemical and stomatal limitations during photosynthetic induction in sun and shade foliage indicate an essential role of stomata in photosynthetic limitation during induction, mainly in shade foliage, with a consequent influence on the shape of the photosynthetic induction curve.  相似文献   

10.
Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon. We also compared needle anatomy across a chronosequence of 10-, 20-, 40- and 450-year-old Douglas-fir trees from the Wind River site. Anatomy differed significantly between needles of old-growth trees and saplings at all sites, suggesting a developmental change in needle anatomy with increasing tree age. Compared with needles of old-growth trees, needles of saplings were longer and had proportionately smaller vascular cylinders, larger resin canals and few hypodermal cells. Astrosclereids, which sequester lignin in their secondary cell walls and occupy space otherwise filled by photosynthetic cells, were scarce in needles of saplings but abundant in needles of old-growth trees. Needles of old-growth trees had an average of 11% less photosynthetic mesophyll area than needles of saplings. The percentage of non-photosynthetic area in needles increased significantly with increasing tree age from the chronosequence of 10-, 20-, 40- and 450-year-old trees at the Wind River site. This reduction in photosynthetic area may contribute to decreased growth rates in old trees.  相似文献   

11.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level, and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific and intraspecific variations in aLAR.  相似文献   

12.
Breakdown and macroinvertebrate colonization of conifer needles (Cryptomeria japonica) and deciduous broadleaves (Euptelea polyandra) were investigated using litter bags in two study sites in streams flowing through a conifer plantation of C. japonica in Shikoku, southwestern Japan (one site with conifer canopy and another with mixed conifer and broadleaved canopy). Breakdown rates and macroinvertebrate densities were compared between litter species (conifer needle vs broadleaf) and between the two sites (conifer vs mixed canopy) to determine (1) whether breakdown rate of broadleaves is higher than conifer needles, (2) whether macroinvertebrates prefer broadleaves to conifer needles, and (3) whether the difference in riparian canopy is reflected in macroinvertebrate abundance. The results indicated that breakdown rates of broadleaves were higher than those of conifer needles, suggesting poorer quality of the latter as food for macroinvertebrates. Differences in macroinvertebrate density between needles and broadleaves were generally consistent with those in breakdown rates: broadleaves tended to have higher densities than needles, suggesting that conifer needles were not preferred by macroinvertebrates. However, total macroinvertebrate density in the conifer site was not significantly different from that in the mixed site, although the dominant shredder taxon differed (conifer site: gammarids; mixed site: lepidostomatids). Although conifer needles are low-quality food for macroinvertebrates, this may offer some advantages. Conifer needles remain on the streambed for longer periods owing to their lower breakdown rates, being a constantly available resource. In addition, accumulations of conifer litter may effectively trap and retain particulate organic matter.  相似文献   

13.
Seasonal shoot dynamics of Japanese mountain stone pine (Pinus pumila Regel.) growing at six sites with different altitudes and slope aspects on the Kiso mountain range in central Japan were investigated. The shoots followed a similar growth pattern at all sites; current shoots elongated rapidly during June and July, and the current needles grew during July and August. Final lengths of the current shoots and needles decreased with increasing altitude. Current-shoot lengths were also shorter at the windward sites than at the leeward sites. At all sites, leaf senescence occurred intensively between mid-August and mid-September. Needle longevity, i.e., the age of the oldest living needle attached to a shoot, increased with increasing altitude. Fascicle density, i.e., the number of current needle fascicles on a unit shoot length, was greater at higher altitudes and windward sites than at lower altitudes and leeward sites. Seasonal dynamics of the P. pumila shoots were characterized by simultaneous replacement of old needles with new needles in the early autumn, thus avoiding any loss of canopy photosynthetic production during the growing season. Increases in needle longevity and fascicle density were associated with declining air temperature and increasing wind exposure. Needle longevity and fascicle density were characteristics of adaptive plasticity in P. pumila that prevent a reduction in growth potential in the stressful conditions of alpine regions.  相似文献   

14.
Abstract

Growth characteristics of ash (Fraxinus mandshuricavar. japonicd)and kalopanax (Kalopanax pictus), two mid-succcs-sional species, were monitored in relation to seasonal light in a deciduous broadleaf forest. During the growing, relative light intensity of the gap was 4 to 6 times higher than that under the closed canopy. Seedlings could be found on the mixed hardwood forest floor where relative light intensity was around greater than 7% of full sunlight. When saplings gap openings which had relative light intensities above 20%, they quickly developed lateral branches and increased their foliage volume. The light-photosynthesis curve of seedlings of both species showed a curve typical of the “shade leaf” type even though they grew under sunlight. In contrast, saplings of both species showed the “sun leaf” type of light-photosynthesis curve. This seedling to sapling shift from shade to sun adaptation was also found in other foliage characteristics. This study shows that species can efficiently adjust their leaf and branch characteristics to changing light environments from shade to openings in a forest.  相似文献   

15.
We studied shade needles of Picea glauca (Moench) Voss saplings that were growing in 15, 45 or 90% shade from competing vegetation at northern boreal forest sites in Alberta and Saskatchewan. At each site, in late May or early June 1990, all hardwoods were removed within a 2-m radius of each of eight saplings in each shade treatment (released saplings), and eight saplings in each shade treatment were left as controls. Light-saturated net assimilation (NA), stomatal and mesophyll conductance and water use efficiency of one-year-old needles were measured four times during the 1990 growing season and in the spring of 1991. There was a trend of increased photosynthetic capacity within one week following release. By August 1990 and in the following spring, NA was higher in released trees than in controls. The increase in NA appeared to be related to increased stomatal conductance to water vapor and to increased foliar nitrogen and resulting increases in mesophyll conductance to CO(2). There was no measurable effect of degree of shading prior to release on NA following release. Foliage of the released saplings appeared capable of rapid acclimation to the open conditions.  相似文献   

16.
Boyce RL  Saunders GP 《Tree physiology》2000,20(16):1077-1086
Water relations of Engelmann spruce (Picea engelmannii Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) trees growing at an elevation of 3230 m on Mt. Evans, Colorado, USA, were studied during the winters of 1995-1996 and 1996-1997. During both winters, current-year and 1-year-old shoots were collected weekly and their relative water contents (RWC) determined. Measured meteorological parameters were used in a conifer winter water relations model, WINWAT, to simulate changes in shoot RWC of P. engelmannii and A. lasiocarpa during the winter. The model failed to predict shoot RWCs in 1996-1997 when calibrated with 1995-1996 data. The cold early summer of 1995 inhibited xylem formation, which appears to have caused lower rates of water recharge to the needles during the 1995-1996 winter than during the 1996-1997 winter. We conclude that summer climate strongly affects winter water relations in these subalpine species, and that changes in both summer and winter climate must be considered when predicting future ranges of these species.  相似文献   

17.
Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.  相似文献   

18.
Boyce RL  Lucero SA 《Tree physiology》1999,19(13):893-898
Roots play a role in maintaining foliar water balance in subalpine conifer saplings during winter. We used deuterium-labeled water to demonstrate that roots of Engelmann spruce (Picea engelmannii Parry) take up water during the late-winter-early spring period. Based on a root severing experiment, we conclude that small, snow-covered saplings were largely dependent on root water uptake to meet winter transpiration needs, whereas larger saplings relied more on water stored in stem sapwood. Both water uptake and water stored in roots appeared to be critical for the survival of saplings exposed above the snowpack during the late-winter-early spring period, when sap reserves were insufficient to meet increasing transpirational demands.  相似文献   

19.
Photosynthesis (A), water relations and stomatal reactivity during drought, and leaf morphology were evaluated on 2-year-old, sun- and shade-grown Prunus serotina Ehrh. seedlings of a mesic Pennsylvania seed source and a more xeric Wisconsin source. Wisconsin plants maintained higher A and leaf conductance (g(wv)) than Pennsylvania plants during the entire drought under sun conditions, and during the mid stages of drought under shade conditions. Compared to shade plants, sun plants of both sources exhibited a more rapid decrease in A or % A(max) with decreasing leaf water potential (Psi). Tissue water relations parameters were generally not significantly different between seed sources. However, osmotic potentials were lower in sun than shade plants under well-watered conditions. Following drought, shade plants, but not sun plants, exhibited significant osmotic adjustment. Sun leaves had greater thickness, specific mass, area and stomatal density and lower guard cell length than shade leaves in one or both sources. Wisconsin sun leaves were seemingly more xerophytic with greater thickness, specific mass, and guard cell length than Pennsylvania sun leaves. No source differences in leaf structure were exhibited in shade plants. Stomatal reactivity to sun-shade cycles was similar between ecotypes. However, well-watered and droughted plants differed in stomatal reactivity within and between multiple sun-shade cycles. The observed ecotypic and phenotypic variations in ecophysiology and morphology are consistent with the ability of Prunus serotina to survive in greatly contrasting environments.  相似文献   

20.
Nothofagus nitida (Phil.) Krasser, an emergent tree of the Chilean evergreen forest, regenerates under the canopy. Nonetheless, it is common to find older saplings in clear areas. We hypothesized that this transition from shade to sun during the early developmental stages is made possible by an ontogenetic increase in the light acclimation capacity of photosynthesis. To test our hypothesis, we studied photosynthetic performance and photoprotection in N. nitida saplings at different developmental stages corresponding with three different height classes (short: 16.2 cm; medium-height: 48.0 cm; and tall: 73.7 cm) grown under contrasting light conditions (photosynthetic photon flux (PPF) of 20, 300 or 600 micromol m(-2) s(-1)) until newly expanded leaves had developed. Light-saturated CO(2) assimilation rate and light compensation and saturation points increased with increasing PPF. Medium-height and tall saplings acclimated to high light had higher electron transport rates and higher proportions of open Photosystem II reaction centers than shorter plants acclimated to high light. Short saplings showed higher thermal dissipation and contents of xanthophylls than taller saplings. Only medium-height and tall saplings acclimated to high light recovered after photoinhibition. State transitions were higher in short plants growing in low light, and decreased with plant height and growth irradiance. Thus, during development, N. nitida changes the balance of light energy utilization and photoprotective mechanisms, supporting a phenotypic transition from shade to sun during its early ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号