首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
ObjectiveCompare the efficacy of two cardiac pacing catheters for transesophageal atrial pacing (TAP).AnimalsTen healthy dogs.MethodsTransesophageal atrial pacing was attempted in left lateral recumbency under general anesthesia. In series, a curved electrophysiologic (EP) catheter and a straight transesophageal pacing (TP) catheter were passed transorally into the distal esophagus, caudal to the heart. Each catheter was slowly withdrawn until pacing was initiated. The catheter continued to be withdrawn in 5 mm increments until capture was no longer achieved at maximal pacing setting creating a total zone of capture (tZOC). Minimum pacing threshold (Thmin) and degree of extraneous muscle stimulation (EMS) were determined at each site.ResultsThe EP catheter achieved TAP in 10/10 dogs with a Thmin of 8.8 ± 4.8 mA and tZOC of 4.0 ± 1.7 cm. The TP catheter achieved TAP in 7/10 dogs with a Thmin of 22.5 ± 5.6 mA and tZOC of 1.2 ± 1.6 cm. No EMS was noted during TAP at Thmin using the EP catheter. Of the 7 dogs in which TAP was successful, 3/7 experienced considerable EMS at Thmin. There was no significant relationship between patient body weight and Thmin with either catheter (EP catheter P = 0.09; TP catheter P = 0.81).ConclusionsThe electrophysiology catheter captured the atria of more dogs over a larger area without EMS as compared to the TP catheter. The electrophysiology catheter is recommended for transesophageal atrial pacing in dogs.  相似文献   

2.
ObjectiveTo determine the dose and cardiopulmonary effects of propofol alone or with midazolam for induction of anesthesia in American Society of Anesthesiologists status ≥III dogs requiring emergency abdominal surgery.Study designProspective, randomized, blinded, clinical trial.AnimalsA total of 19 client-owned dogs.MethodsDogs were sedated with fentanyl (2 μg kg–1) intravenously (IV) for instrumentation for measurement of heart rate, arterial blood pressure, cardiac index, systemic vascular resistance index, arterial blood gases, respiratory rate and rectal temperature. After additional IV fentanyl (3 μg kg–1), the quality of sedation was scored and cardiopulmonary variables recorded. Induction of anesthesia was with IV propofol (1 mg kg–1) and saline (0.06 mL kg–1; group PS; nine dogs) or midazolam (0.3 mg kg–1; group PM; 10 dogs), with additional propofol (0.25 mg kg–1) IV every 6 seconds until endotracheal intubation. Induction/intubation quality was scored, and anesthesia was maintained with isoflurane. Variables were recorded for 5 minutes with the dog in lateral recumbency, breathing spontaneously, and then in dorsal recumbency with mechanical ventilation for the next 15 minutes. A general linear mixed model was used with post hoc analysis for multiple comparisons between groups (p < 0.05).ResultsThere were no differences in group demographics, temperature and cardiopulmonary variables between groups or within groups before or after induction. The propofol doses for induction of anesthesia were significantly different between groups, 1.9 ± 0.5 and 1.1 ± 0.5 mg kg–1 for groups PS and PM, respectively, and the induction/intubation score was significantly better for group PM.Conclusions and clinical relevanceMidazolam co-induction reduced the propofol induction dose and improved the quality of induction in critically ill dogs without an improvement in cardiopulmonary variables, when compared with a higher dose of propofol alone.  相似文献   

3.
ObjectiveTo evaluate the analgesic and physiological effects of epidural morphine administered at the sixth and seventh lumbar or the fifth and sixth thoracic vertebrae in dogs undergoing thoracotomy.Study designProspective, randomized, blinded trial.AnimalsFourteen mixed-breed dogs, weighing 8.6 ± 1.4 kg.MethodsThe animals received acepromazine (0.1 mg kg?1) IM and anesthesia was induced with propofol (4 mg kg?1) IV. The lumbosacral space was punctured and an epidural catheter was inserted up to the region between the sixth and seventh lumbar vertebrae (L, n = 6) or up to the fifth or sixth intercostal space (T, n = 8). The dogs were allowed to recover and after radiographic confirmation of correct catheter position, anesthesia was reinduced with propofol IV and maintained with 1.7% isoflurane. Following stabilization of monitored parameters, animals received morphine (0.1 mg kg?1) diluted in 0.9% NaCl to a final volume of 0.25 mL kg?1 via the epidural catheter, and after 40 minutes, thoracotomy was initiated. Heart rate and rhythm, systolic, mean and diastolic arterial pressures, respiratory rate, arterial hemoglobin oxygen saturation, partial pressure of expired CO2 and body temperature were measured immediately before the epidural administration of morphine (0 minute) and every 10 minutes during the anesthetic period. The Melbourne pain scale and the visual analog scale were used to assess post-operative pain. The evaluation began 3 hours after the epidural administration of morphine and occurred each hour until rescue analgesia.ResultsThere were no important variations in the physiological parameters during the anesthetic period. The post-operative analgesic period differed between the groups, being longer in T (9.9 ± 1.6 hours) compared with L (5.8 ± 0.8 hours).ConclusionsThe use of morphine, at a volume of 0.25 mL kg?1, administered epidurally over the thoracic vertebrae provided longer lasting analgesia than when deposited over the lumbar vertebrae.Clinical relevanceThe deposition of epidural morphine provided longer lasting analgesia when administered near to the innervation of the injured tissue without increasing side effects.  相似文献   

4.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

5.
ObjectiveTo measure trans-diaphragmatic pressures, as an indication of diaphragmatic contractility, in anaesthetized dogs breathing normally, or during inspiratory obstruction (Mueller’s manoeuvre) in order to assess if the method is practicable for use in clinical circumstances.Study designPilot study.AnimalsTwenty eight client-owned dogs, ASA I or II, 1–10 years old, 5–30 kg bodyweight, which required anaesthesia for surgery, and were to be positioned in lateral recumbency.MethodsFollowing a standardized regimen of premedication and anaesthetic induction, anaesthesia was stabilized and maintained with isoflurane. Two commercially available balloon catheters were introduced orally, and advanced, one into the stomach and one into the mid-third of the oesophagus. Oesophageal and gastric pressures were measured from these catheters, and trans-diaphragmatic pressure (Pdi) calculated and recorded continuously. At three separate time points during anaesthesia, for one breath, inspiration was obstructed (Mueller’s manoeuvre) and Pdi was measured.ResultsPlacement of the catheters in the stomach was not easy, and failed in three cases. In five dogs, their size resulted in failure of correct placement of catheters. Good traces of all three pressures reflecting respiratory cycles were obtained from 20 dogs. During normal spontaneous breathing (mean ± SD [range]) Pdi was 5 ± 2.1 (3–10) mmHg. During Mueller’s manoeuvre, Pdi was 14.6 ± 4.5 (9–21) mmHg. Abnormal waveforms were seen included cardiac oscillations (five dogs), inadequate intra-gastric pressure tracing (one dog), deflections with a double peak (one dog), and multiple artifacts when there was increased heart rate and tachypnoea (two dogs in response to surgery).Conclusions and clinical relevanceMeasurement of trans-diaphragmatic pressure with balloon catheters was practicable in suitably sized dogs anaesthetized for clinical purposes and might be a useful tool in the assessment of diaphragmatic function. A range of catheters are required if the technique is to work in all dogs.  相似文献   

6.
ObjectiveTo determine if the transesophageal atrial (A) wave amplitude or ventricular (V) wave amplitude can be used to guide optimal positioning of a transesophageal pacing catheter in dogs.Study designProspective clinical study.AnimalsFourteen client owned healthy dogs with a median weight of 15.4 kg (IQR = 10.6–22.4) and a median age of 12 months (IQR = 6–12).Materials and methodsTransesophageal atrial pacing (TAP) using a 6 Fr pacing catheter was attempted in dogs under general anesthesia. The pacing catheter was inserted orally into the esophagus to a position caudal to the heart. With the pulse generator set at a rate 20 beats minute−1 above the intrinsic sinus rate, the catheter was slowly withdrawn until atrial pacing was noted on a surface electrocardiogram (ECG). Then the catheter was withdrawn in 1 cm increments until atrial capture was lost. Minimum pacing threshold (MPT) and transesophageal ECG were recorded at each site. Amplitudes of the A and V waves on transesophageal ECG were then measured and their relationship to MPT was evaluated.ResultsTAP was achieved in all dogs. In 9/14 dogs the site of lowest overall MPT was the same as the site of maximal A wave deflection. In dogs with at least three data points, linear regression analysis of the relationship between the estimated site of the lowest overall MPT compared to estimated site of the maximal A and V waveform amplitudes demonstrated a strong correlation (R2 = 0.99).Conclusion and clinical relevanceTransesophageal ECG A and V waveforms were correlated to MPT and could be used to direct the placement of a pacing catheter. However, the technique was technically challenging and was not considered to be clinically useful to guide the placement of a pacing catheter.  相似文献   

7.
ObjectiveTo determine the effects of intravenous (IV) magnesium sulphate (MgSO4) as a bolus followed by a constant rate infusion (CRI) on anaesthetic requirements, neuroendocrine stress response to surgery, haemostasis and postoperative analgesia in healthy dogs undergoing ovariohysterectomy.Study designBlinded randomized clinical trial.AnimalsSixteen female dogs.MethodsAfter intramuscular premedication with acepromazine (0.05 mg kg?1) and morphine (0.3 mg kg?1), anaesthesia was induced with diazepam (0.2 mg kg?1) and propofol (2 mg kg?1) intravenously and maintained with isoflurane in oxygen in all dogs. Dogs were randomly assigned to two groups, M and C. Group M received MgSO4 (50 mg kg?1 over 15 minutes, followed by a 15 mg kg?1 hour?1 CRI). Group C received an equivalent bolus and CRI of lactated Ringer's solution. In addition, all dogs received lactated Ringer's solution (10 mL kg?1 over 15 minutes followed by 10 mL kg?1 hour?1). End-tidal isoflurane and carbon dioxide tensions, cardio-respiratory variables, arterial blood gases, electrolytes, ACTH and cortisol concentrations were measured at different time points. Thromboelastography (TEG) was performed pre- and post-anaesthesia. Postoperative pain was evaluated using the short form of the Glasgow Composite Pain Scale. Data were analysed with repeated measures anova and Mann–Whitney U tests (p< 0.05).ResultsNo statistically significant differences between groups were found in any of the measured variables. However, the alpha angle and maximal amplitude recorded by TEG in group M were significantly increased post-anaesthesia, but remained within the reference interval. One dog in Group M and two in Group C received rescue analgesia during recovery.Conclusions and clinical relevanceAs used in this study, MgSO4 failed to decrease isoflurane requirements, postoperative pain and stress hormone concentrations; however, it did not produce any cardio-respiratory or major haemostatic side effects. Administration of intravenous MgSO4 together with an opioid during ovariohysterectomy in dogs does not seem to provide any clinical advantage.  相似文献   

8.
ObjectiveTo assess the effects of varying the sequence of midazolam and propofol administration on the quality of induction, cardiorespiratory parameters and propofol requirements in dogs.Study designRandomized, controlled, clinical study.AnimalsThirty‐three client owned dogs (ASA I‐III, 0.5–10 years, 5–30 kg).MethodsDogs were premedicated with acepromazine (0.02 mg kg?1) and morphine (0.4 mg kg?1) intramuscularly. After 30 minutes, group midazolam‐propofol (MP) received midazolam (0.25 mg kg?1) intravenously (IV) before propofol (1 mg kg?1) IV, group propofol‐midazolam (PM) received propofol before midazolam IV at the same doses, and control group (CP) received saline IV, instead of midazolam, before propofol. Supplementary boluses of propofol (0.5 mg kg?1) were administered to effect to all groups until orotracheal intubation was completed. Behaviour after midazolam administration, quality of sedation and induction, and ease of intubation were scored. Heart rate (HR), respiratory rate, and systolic arterial blood pressure were recorded before premedication, post‐premedication, after midazolam or saline administration, and at 0, 2, 5, and 10 minutes post‐intubation. End‐tidal CO2 and arterial oxygen haemoglobin saturation were recorded at 2, 5 and 10 minutes post‐intubation.ResultsQuality of sedation and induction, and ease of intubation were similar in all groups. Incidence of excitement was higher in the MP compared to CP (p = 0.014) and PM (p = 0.026) groups. Propofol requirements were decreased in MP and PM groups with respect to CP (p < 0.001), and in PM compared to MP (p = 0.022). The HR decreased after premedication in all groups, and increased after midazolam and subsequent times in MP (p = 0.019) and PM (p = 0.001) groups. Incidence of apnoea and paddling was higher in CP (p = 0.005) and MP (p = 0.031) groups than in PM.Conclusions and clinical relevanceAdministration of midazolam before propofol reduced propofol requirements although caused mild excitement in some dogs. Administration of propofol before midazolam resulted in less excitatory phenomena and greater reduction of propofol requirements.  相似文献   

9.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

10.
ObjectiveTo evaluate the volume effect of local anesthetic solution on thoracic epidural analgesia in dogs.Study designProspective, experimental trial.AnimalsFive healthy adult Beagle dogs weighing 9.7 ± 1.3 kg.MethodsA catheter was inserted into the seventh thoracic epidural space using a lumbosacral approach, and secured with suture under total intravenous (IV) anesthesia with propofol. Each dog was administered four volume treatments (0.05, 0.10, 0.15 and 0.20 mL kg−1) of 2% lidocaine via the catheter at 12 hour intervals. In every treatment, dogs were re-anesthetized with propofol (6 mg kg−1, IV) and isoflurane, and received iohexol at each volume to visualize the epidural distribution (ED) through computed tomography. Three hours after epidurography, when dogs had recovered from anesthesia, the appropriate volume of lidocaine was injected through the catheter, and sensory blockade (SB) in dermatomes was evaluated by pinching with a mosquito forceps. Results were presented as median (range), and the volume effect on ED and SB was analyzed with one-way Kruskal–Wallis anova.ResultsIn proportion to volumes (0.05, 0.10, 0.15 and 0.20 mL kg−1), there were significant increases in the extent of ED from 7.4 (5.5–9.0) to 10.4 (8.0–12.0), 13.2 (12.5–13.0), and 15.2 (13.0–18.0) vertebrae, respectively, p < 0.001, and in SB from 2.7 (1.0–5.0) to 6.8 (4.5–10.5), 9.9 (6.5–13.0), and 13.1 (11.0–15.0) dermatomes, respectively, p < 0.001. Unilateral ED and SB were observed in all treatments with various grades, and this distribution was more frequent in the low volume treatments. In the high volume treatments, temporary complications including Horner's syndrome, ataxia, paraplegia, depression, stupor, and intermittent cough occurred often.Conclusions and clinical relevanceThe increase in volume of local anesthetic solution improved SB by resulting in more consistent bilateral dermatome blockade as well as an extended blockade. However, caution should be exerted, as higher volume injections of lidocaine caused side effects in all dogs.  相似文献   

11.
ObjectiveTo compare the duration of action of vecuronium in diabetic dogs with a control group.Study designProspective clinical study.AnimalsForty client-owned diabetic (n = 20) and non-diabetic dogs.MethodsDogs were considered free from other concurrent disease based on clinical examination and laboratory data. After pre-anaesthetic medication with acepromazine and methadone, anaesthesia was induced with intravenous (IV) propofol and maintained with isoflurane-nitrous oxide in oxygen. Neuromuscular blockade (NMB) was achieved with vecuronium, 0.1 mg kg?1 IV and its effects recorded by palpation (pelvic limb digital extension) and electromyography (m. tibialis cranialis) of responses (twitches; T) to repeated train-of-four (TOF) nerve stimulation. Time to onset of NMB was the period between vecuronium injection and loss of fourth twitch (T4) in the TOF pattern recorded by EMG and palpation. Duration of NMB was defined as the time from drug administration to return of T1 by palpation (T1tactile) and EMG (T1EMG). Times to return of T2-4 were also recorded. Time from induction of anaesthesia to vecuronium injection was recorded. Heart rate, non-invasive mean arterial pressure, body temperature, end-tidal isoflurane and end-tidal CO2 concentrations were recorded at onset of NMB and when T1EMG returned. Loss and return of palpable and EMG responses for diabetic and non-diabetic dogs were compared using t-tests and Mann Whitney U-tests.ResultsThere were significant (p < 0.05) differences between diabetic and non-diabetic dogs for the return of all four palpable and EMG responses. Times (mean ± SD) for return of T1tactile were 13.2 ± 3.5 and 16.9 ± 4.2 minutes in diabetic and non-diabetic dogs respectively. There were no differences between diabetic and non-diabetic dogs in the time to onset of vecuronium with EMG or tactile monitoring.Conclusions and clinical relevanceThe duration of action of vecuronium was shorter in diabetic dogs as indicated by both tactile and EMG monitoring.  相似文献   

12.
ObjectiveTo evaluate perfusion index (PI) as a noninvasive tool to determine effectiveness and onset of epidural anesthesia in dogs.Study designProspective clinical trial.AnimalsA total of 21 adult dogs, aged 6.5 ± 3 years and weighing 34.9 ± 6.4 kg, undergoing a tibial plateau leveling osteotomy.MethodsDogs were premedicated intramuscularly with acepromazine (0.03 mg kg–1) and hydromorphone (0.1 mg kg–1) and anesthetized with intravenous propofol (to effect) and isoflurane in oxygen. A surface transflectance probe was secured to the tail base to monitor PI and a dorsal pedal artery catheter was placed for invasive blood pressure monitoring. A lumbosacral epidural was performed with the dog in sternal recumbency. Dogs were randomly assigned for inclusion of epidural morphine (0.1 mg kg–1) or morphine (0.1 mg kg–1) and lidocaine (4 mg kg–1). PI was recorded following instrumentation of each dog just prior to the epidural (baseline), at 10 minute intervals for 30 minutes, before and after the surgical skin incision and before and after completion of the osteotomy. Physiological variables and end-tidal isoflurane were recorded at the same time points.ResultsThere was no significant difference in PI between the groups at any time point. There was a significant change in end-tidal isoflurane before and after the skin incision in the epidural morphine and epidural morphine–lidocaine groups (p = 0.04, p = 0.05, respectively) and before and after the osteotomy in each group for heart rate (p = 0.001, p = 0.04), diastolic (p = 0.01, p = 0.01) and mean arterial blood pressure (p = 0.03, p = 0.05).Conclusions and clinical relevancePI did not provide an objective means for determining the onset or effectiveness of epidural anesthesia in anesthetized dogs and alternate methods of noninvasive assessment should be investigated.  相似文献   

13.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

14.
ObjectiveTo compare isoflurane and propofol for maintenance of anesthesia and quality of recovery in client-owned dogs with intracranial disease undergoing magnetic resonance imaging (MRI).Study designProspective, randomized, clinical trial.AnimalsTwenty-five client-owned dogs with intracranial pathology, 13 females and 12 males, ages 11 months to 13 years, weighing between 3.0 and 48.0 kg.MethodsEach dog was randomly assigned to receive propofol or isoflurane for maintenance of anesthesia. All dogs were not premedicated, were administered propofol intravenously to effect for induction, intubated and mechanically ventilated to maintain an end-tidal carbon dioxide tension 30–35 mmHg (4.0–4.7 kPa). Temperature and cardiac output were measured pre- and post-MRI. Scores for mentation, neurological status, ease of maintenance, and recovery were obtained pre- and post-anesthesia. Pulse oximetry, end-tidal gases, arterial blood pressure, heart rate (HR) and requirements for dopamine administration to maintain mean arterial pressure (MAP) >60 mmHg were recorded throughout anesthesia.ResultsEnd-tidal isoflurane concentration was 0.73 ± 0.35% and propofol infusion rate was 292 ± 119 μg kg?1 minute?1. Cardiac index was higher, while HR was lower, with propofol than isoflurane in dogs younger than 5 years, but not in older dogs. Dogs maintained with isoflurane were 14.7 times more likely to require dopamine than propofol dogs. Mentation and maintenance scores and temperature were not different. MAP and diastolic arterial pressure were higher in the propofol group. Recovery scores were better with propofol, although times to extubation were similar. Change in neurological score from pre- to post-anesthesia was not different between treatments.ConclusionsDogs maintained with propofol during MRI had higher arterial pressures, decreased requirements for dopamine, and better recovery scores, compared to dogs maintained with isoflurane.Clinical relevancePropofol anesthesia offered cardiovascular and recovery advantages over isoflurane during MRI in dogs with intracranial disease in this study.  相似文献   

15.
ObjectiveTo compare the physiological parameters, arterial blood gas values, induction quality, and recovery quality after IV injection of alfaxalone or propofol in dogs.Study designProspective, randomized, blinded crossover.AnimalsEight random-source adult female mixed-breed dogs weighing 18.7 ± 4.5 kg.MethodsDogs were assigned to receive up to 8 mg kg?1 propofol or 4 mg kg?1 alfaxalone, administered to effect, at 10% of the calculated dose every 10 seconds. They then received the alternate drug after a 6-day washout. Temperature, pulse rate, respiratory rate, direct blood pressure, and arterial blood gases were measured before induction, immediately post-induction, and at 5-minute intervals until extubation. Quality of induction, recovery, and ataxia were scored by a single blinded investigator. Duration of anesthesia and recovery, and adverse events were recorded.ResultsThe mean doses required for induction were 2.6 ± 0.4 mg kg?1 alfaxalone and 5.2 ± 0.8 mg kg?1 propofol. After alfaxalone, temperature, respiration, and pH were significantly lower, and PaCO2 significantly higher post-induction compared to baseline (p < 0.03). After propofol, pH, PaO2, and SaO2 were significantly lower, and PaCO2, HCO3, and PA-aO2 gradient significantly higher post-induction compared to baseline (p < 0.03). Post-induction and 5-minute physiologic and blood gas values were not significantly different between alfaxalone and propofol. Alfaxalone resulted in significantly longer times to achieve sternal recumbency (p = 0.0003) and standing (p = 0.0004) compared to propofol. Subjective scores for induction, recovery, and ataxia were not significantly different between treatments; however, dogs undergoing alfaxalone anesthesia were more likely to have ≥1 adverse event (p = 0.041). There were no serious adverse events in either treatment.Conclusions and clinical relevanceThere were no clinically significant differences in cardiopulmonary effects between propofol and alfaxalone. A single bolus of propofol resulted in shorter recovery times and fewer adverse events than a single bolus of alfaxalone.  相似文献   

16.
ObjectivesTo measure flow-mediated vasodilation (FMD) in healthy dogs and in client-owned dogs with chronic valvular disease (CVD) and to investigate possible correlations between markers of CVD severity and FMD.AnimalsTwelve dogs with CVD and 11 healthy weight-matched dogs.MethodsBrachial artery FMD following 5 min inflation of a cuff around the antebrachium was measured in 12 dogs with CVD and 11 healthy weight-matched dogs. Measurements were also obtained in the healthy dogs 5 min after cuff placement but without inflation (‘sham cuff placement’). Dogs with CVD underwent echocardiography to confirm and characterize their disease.ResultsIn healthy dogs (median age 4 [2–6] years), median FMD was 7.7% versus 3.4% with sham cuff placement (P = 0.003). In dogs with CVD (median age 8 [4–16] years) median FMD was 5.5% versus 7.7% in healthy dogs (P = 0.131). FMD showed an inverse correlation with left ventricular end-diastolic diameter normalized for body weight (r = ?0.76, P = 0.0043).ConclusionsBrachial FMD in dogs with early CVD inversely correlates with severity of left ventricular remodelling.  相似文献   

17.
HistoryCaridianBCT apheresis machines require a ~285 mL priming volume (extracorporeal blood) that is withdrawn from the patient in ~10 minutes. Therefore, apheresis in dogs has generally been limited to dogs > ~20 kg to assure <20% of the blood volume is removed in the priming phase.Animals/physical examinationThree dogs weighing <14 kg (13.6, 10.5, and 9.9 kg) with lymphoma that underwent apheresis.ManagementThe dogs were premedicated for placement of apheresis catheters with hydromorphone (0.1 mg kg?1) IM. Anesthesia was induced with propofol, to effect, intravenously and general anesthesia was maintained with isoflurane in oxygen. Following catheter placement, dogs were allowed to recover from isoflurane but were kept sedated with either a dexmedetomidine constant rate infusion (CRI) or a propofol CRI. Real time autologous blood priming was not performed in any of the dogs. Instead, priming solutions were composed of a combination of hetastarch, lactated Ringer's solution, and/or autologous blood that was harvested 4 days before the procedure. During apheresis, dogs received anticoagulant citrate‐dextrose, solution‐A (ACD‐A) to prevent clotting and 10% calcium gluconate as needed to maintain normal ionized calcium concentrations. Dogs were monitored for cardiovascular and cardiopulmonary stability, anemia and lactic acidosis.Follow‐upAll of the dogs had cardiovascular and cardiopulmonary values within clinically acceptable ranges. Immediately following apheresis all of the dogs were mildly to moderately anemic (PCV; 17–35%) although none of the dogs required a transfusion or had an increased lactate concentration.ConclusionsDogs as small as 9.9 kg can successfully undergo apheresis with a variety of priming solutions. Dexmedetomidine or propofol given as a CRI provides sufficient sedation for this procedure.  相似文献   

18.
ObjectiveTo investigate the sevoflurane concentrations produced within the Stephens anaesthetic machine circuit (vaporizer in-circle system) at different fresh gas flow rates (FGFRs), temperatures, vaporizer settings and vaporizer sleeve positions when used to anaesthetize dogs of different body sizes.Study designExperimental non-blinded studies.AnimalsEighteen mixed breed dogs, weights 4–39 kg.MethodsAnaesthetic induction with propofol was followed by maintenance with sevoflurane in oxygen via the Stephens anaesthetic machine. In study 1, the vaporizer setting, temperature and circuit FGFRs were altered with the vaporizer sleeve down (n = 3), or in separate experiments, up (n = 3). Delivered (Fi’SEVO) and expired sevoflurane concentrations were recorded. Study 2 determined the vaporizer settings (sleeve up) required to achieve predetermined multiples of minimal alveolar concentration (MAC) of Fi’SEVO when sevoflurane was delivered to dogs (n = 12) of different bodyweights and at different FGFRs.ResultsDelivered concentrations of sevoflurane were sufficient to maintain anaesthesia in all dogs, regardless of bodyweight, FGFR, vaporizer temperature and sleeve position. Fi’SEVO increased with increasing temperature, when the vaporizer sleeve was down, when vaporizer setting was increased and when FGFR was decreased. As the FGFR increased or the dog’s bodyweight decreased, higher vaporizer settings were required to produce the same Fi’SEVO. The median Stephens vaporizer settings to achieve an Fi’SEVO of 1.3 MAC ranged from 4.3 to 5.0 for a small dog (1–10 kg), 2.5 to 5.6 for a medium dog (15–25 kg) and 2.5 to 3.5 for a large dog (30–40 kg), depending on the FGFR.Conclusion and clinical relevanceThe Stephens anaesthetic machine can deliver to dogs, weighing 4 kg and above, concentrations of sevoflurane sufficient or in excess of that required to maintain anaesthesia, at temperatures from 10 to 35 °C, FGFRs of 1 to 5 times the patient’s estimated metabolic oxygen requirement and at any vaporizer sleeve position.  相似文献   

19.
ObjectiveTo compare induction targets, and the haemodynamic and respiratory effects, of propofol, or as an admixture with two different concentrations of alfentanil, delivered via a propofol target-controlled infusion (TCI) system.Study designProspective blinded randomized clinical study.Animals Sixty client-owned dogs scheduled for elective surgery under general anaesthesia. Mean body mass (SD) 28.5 kg (8.7) and mean age (SD) 3.5 years (2.4).MethodsDogs received pre-anaesthetic medication of acepromazine (0.03 mg kg−1) and morphine (0.2 mg kg−1) administered intramuscularly. Animals were randomly assigned to receive one of three induction protocols: propofol alone (group 1), a propofol/alfentanil (11.9 μg mL−1) admixture (group 2), or a propofol/alfentanil (23.8 μg mL−1) admixture (group 3), via a TCI system. Blood target concentrations were increased until endotracheal intubation was achieved, and induction targets were recorded. Heart rate (HR), respiratory rate (fr) and non-invasive arterial blood pressure were recorded pre-induction, at endotracheal intubation (time 0) and at 3 and 5 minutes post-intubation (times 3 and 5, respectively). Data were analysed using anova for normally distributed data or Kruskal–Wallis test, with significance assumed at p < 0.05.ResultsThere were no significant differences between groups with respect to age, body mass, HR, fr, systolic and diastolic blood pressure. The blood propofol targets to achieve endotracheal intubation were significantly higher in group 1 compared with groups 2 and 3. Mean arterial blood pressure (MAP) was significantly higher in group 1 at time 0 when compared with groups 2 and 3.Conclusions and clinical relevanceInduction of anaesthesia with a TCI system can be achieved at lower blood propofol targets when using a propofol/alfentanil admixture compared with using propofol alone. However, despite reduced targets with both propofol/alfentanil admixture groups, MAP was lower immediately following endotracheal intubation than when using propofol alone.  相似文献   

20.
ObjectiveTo compare cardiopulmonary function, recovery quality, and total dosages required for induction and 60 minutes of total intravenous anesthesia (TIVA) with propofol (P) or a 1:1 mg mL−1 combination of propofol and ketamine (KP).Study designRandomized crossover study.AnimalsTen female Beagles weighing 9.4 ± 1.8 kg.MethodsDogs were randomized for administration of P or KP in a 1:1 mg mL−1 ratio for induction and maintenance of TIVA. Baseline temperature, pulse, respiratory rate (fR), noninvasive mean blood pressure (MAP), and hemoglobin oxygen saturation (SpO2) were recorded. Dogs were intubated and spontaneously breathed room air. Heart rate (HR), fR, MAP, SpO2, end tidal carbon dioxide tension (Pe’CO2), temperature, and salivation score were recorded every 5 minutes. Arterial blood gas analysis was performed at 10, 30, and 60 minutes, and after recovery. At 60 minutes the infusion was discontinued and total drug administered, time to extubation, and recovery score were recorded. The other treatment was performed 1 week later.ResultsKP required significantly less propofol for induction (4.0 ± 1.0 mg kg−1 KP versus 5.3 ±1.1 mg kg−1 P, p = 0.0285) and maintenance (0.3 ± 0.1 mg kg−1 minute−1 KP versus 0.6 ±0.1 mg kg−1 minute−1 P, p = 0.0018). Significantly higher HR occurred with KP. Both P and KP caused significantly lower MAP compared to baseline. MAP was significantly higher with KP at several time points. P had minimal effects on respiratory variables, while KP resulted in significant respiratory depression. There were no significant differences in salivation scores, time to extubation, or recovery scores.Conclusions and clinical relevanceTotal intravenous anesthesia in healthy dogs with ketamine and propofol in a 1:1 mg mL−1 combination resulted in significant propofol dose reduction, higher HR, improved MAP, no difference in recovery quality, but more significant respiratory depression compared to propofol alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号