首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Soil biology & biochemistry》2001,33(7-8):913-919
A reliable and simple technique for estimating soil microbial biomass (SMB) is essential if the role of microbes in many soil processes is to be quantified. Conventional techniques are notoriously time-consuming and unreproducible. A technique was investigated that uses the UV absorbance at 280 nm of 0.5 M K2SO4 extracts of fumigated and unfumigated soils to estimate the concentrations of carbon, nitrogen and phosphorus in the SMB. The procedure is based on the fact that compounds released after chloroform fumigation from lysed microbial cells absorb in the near UV region. Using 29 UK permanent grassland soils, with a wide range of organic matter (2.9–8.0%) and clay contents (22–68%), it was demonstrated that the increase in UV absorbance at 280 nm after soil fumigation was strongly correlated with the SMB C (r=0.92), SMB N (r=0.90) and SMB P (r=0.89), as determined by conventional methods. The soils contained a wide range of SMB C (412–3412 μg g−1 dry soil), N (57–346 μg g−1 dry soil) and P (31–239 μg g−1 dry soil) concentrations. It was thus confirmed that the UV absorbance technique described was a rapid, simple, precise and relatively inexpensive method of estimating soil microbial biomass.  相似文献   

2.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

3.
《Soil biology & biochemistry》2001,33(12-13):1581-1589
The activity and biomass of soil microorganisms were measured in soils from 25 different arable sites in the Pacific region of Nicaragua with the objective of elucidating their interrelationship with soil textural and soil chemical properties. All soils developed from recent volcanic deposits but differ in their particle size distribution. Short-term phosphorus fixation capacity varied widely and was, on average, 11% of added P. In contrast, long-term P fixation capacity varied within a small range of around 55%. Mean basal respiration was 8.6 μg CO2–C d−1 g−1 soil, average contents of biomass C, biomass P, and ergosterol as an indicator of fungal biomass were 116, 1.95, and 0.34 μg g−1 soil, respectively. They were all, except biomass P, significantly lower in the sandy than in the loamy soils. The mean biomass C-to-soil C ratio was 0.69%, the mean metabolic quotient 95 mg CO2–C d−1 g−1 biomass C, the mean ergosterol-to-biomass C ratio 0.31% and the mean biomass C-to-P ratio 107. The very low ergosterol-to-biomass C ratio indicates that fungi contribute only a relatively small percentage to the microbial biomass. The biomass C-to-P ratio exceeded considerably the soil C-to-total P ratio. Metabolic quotient qCO2 and ergosterol-to-biomass C were both negatively correlated with biomass C-to-soil C ratio and clay content, indicating positive correlations between qCO2 and ergosterol-to-biomass C ratio and between biomass C-to-soil C ratio and clay content. Key problems of soil fertility and soil quality in Nicaragua are low availability of soil organic matter and phosphorus to soil microorganisms, which are magnified by a low percentage of fungi, probably reducing the ability of soil to provide nutrients for plant growth.  相似文献   

4.
《Soil & Tillage Research》2007,96(1-2):348-356
Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Center, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density (ρb) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0–30 cm depth ranged from 68.4 Mg ha−1 for N0 to 75.8 Mg ha−1 for N4. Across all N treatments, the SOC pool in 0–30 cm depth for CC was 4.7 Mg ha−1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0–30 cm depth ranged from 5.36 Mg ha−1 for N0 to 6.14 Mg ha−1 for N4. In relation to cropping systems, the TN pool for 0–20 cm depth for CC was 0.4 Mg ha−1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased ρb for 0–30 cm and decreased the soil C:N ratio for 0–10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.  相似文献   

5.
《Pedobiologia》2014,57(4-6):277-284
Assimilating atmospheric carbon (C) into terrestrial ecosystems is recognized as a primary measure to mitigate global warming. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the dominant enzyme by which terrestrial autotrophic bacteria and plants fix CO2. To investigate the possibility of using RubisCO activity as an indicator of microbial CO2 fixation potential, a valid and efficient method for extracting soil proteins is needed. We examined three methods commonly used for total soil protein extraction. A simple sonication method for extracting soil protein was more efficient than bead beating or freeze–thaw methods. Total soil protein, RubisCO activity, and microbial fixation of CO2 in different agricultural soils were quantified in an incubation experiment using 14C-CO2 as a tracer. The soil samples showed significant differences in protein content and RubisCO activity, defined as nmol CO2 fixed g−1 soil min−1. RubisCO activities ranged from 10.68 to 68.07 nmol CO2 kg−1 soil min−1, which were closely related to the abundance of cbbL genes (r = 0.900, P = 0.0140) and the rates of microbial CO2 assimilation (r = 0.949, P = 0.0038). This suggests that RubisCO activity can be used as an indicator of soil microbial assimilation of atmospheric CO2.  相似文献   

6.
《Soil & Tillage Research》2007,92(1-2):199-206
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

7.
Studies were conducted to evaluate the survival and persistence of Sinorhizobium meliloti 104A14 and two acid phosphatase-negative mutants in Kirkland (fine, mixed, thermic Udertic Paleustolls) silt loam soils with various fertility levels, and to assess the impact of inoculation on nodule occupancy and soil microbial community structure in the inoculated alfalfa (Medicago sativa L.) rhizosphere. Recovery of the inoculated strains was 100% (in the order of 108 cells g−1 soil) immediately following inoculation to soils, but decreased from 108 cells g−1 soil to undetectable levels in a nutrient-poor soil within 32 days. In a nutrient-rich soil, approximately 2–3% (4.7–7.43×106 cells g−1 soil) of the mutants and 23% (5.84×107 cells g−1 soil) of the wild-type inocula persisted for more than 64 days. Survivability and persistence of the wild-type S. meliloti were significantly greater than that of the genetically modified acid phosphatase negative mutants in all the soils tested. The persistence and nodule occupancy of the introduced S. meliloti in sterile and non-sterile soils were also tested for two repeated alfalfa growth periods in the same plant growth units, with a 1 month interval in between and no additional inoculation for the second period. Nodule occupancy of the introduced S. meliloti in non-sterile soils ranged from 30 to 60% for the first period and 85 to 100% for the second period. Our results suggest that survival and persistence of S. meliloti was enhanced by alfalfa cultivation and increased soil fertility, but impaired by mutation of acid phosphatase genes regardless of phosphorus nutritional levels. Moreover, inoculation with genetically modified S. meliloti strain 104A14 promoted indigenous bacterial growth in soil (increased bacterial population from 1.4×106 to 4.3×106 cells g−1 soil), but not the growth of fungi and yeast. However, inoculation of the wild-type S. meliloti or genetically modified mutants did not result in significant changes in microbial community structure as indicated by EP indices and ratios of r/K strategists.  相似文献   

8.
《Soil biology & biochemistry》2001,33(7-8):1077-1093
We studied soil moisture dynamics and nitrous oxide (N2O) fluxes from agricultural soils in the humid tropics of Costa Rica. Using a split-plot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter content, water retention capacity, and hydraulic conductivity. The top 2–3 cm of the soils consists of distinct small aggregates (dia. <0.5 cm). We measured a strong gradient of bulk density and moisture within the top 7 cm of the clay soil. Using automated sampling and analysis systems we measured N2O emissions at 4.6 h intervals, meteorological variables, soil moisture, and temperature at 0.5 h intervals. Mean daily soil moisture content at 5 cm depth ranged from 46% water filled pore space (WFPS) on clay in April 1995 to near saturation on loam during a wet period in February 1996. On both soils the aggregated surface layer always remained unsaturated. Soils emitted N2O throughout the year. Mean N2O fluxes were 1.04±0.72 ng N2O-N cm−2 h−1 (mean±standard deviation) from unfertilized loam under annual crops compared to 3.54±4.31 ng N2O-N cm−2 h−1 from the fertilized plot (351 days measurement). Fertilization dominated the temporal variation of N2O emissions. Generally fluxes peaked shortly after fertilization and were increased for up to 6 weeks (‘post fertilization flux’). Emissions continued at a lower rate (‘background flux’) after fertilization effects faded. Mean post-fertilization fluxes were 6.3±6.5 ng N2O-N cm−2 h−1 while the background flux rate was 2.2±1.8 ng N2O-N cm−2 h−1. Soil moisture dynamics affected N2O emissions. Post fertilization fluxes were highest from wet soils; fluxes from relatively dry soils increased only after rain events. N2O emissions were weakly affected by soil moisture during phases of low N availability. Statistical modeling confirmed N availability and soil moisture as the major controls on N2O flux. Our data suggest that small-scale differences in soil structure and moisture content cause very different biogeochemical environments within the top 7 cm of soils, which is important for net N2O fluxes from soils.  相似文献   

9.
Nitrogen (N) from urine excreted by grazing animals can be transformed into N compounds that have detrimental effects on the environment. These include nitrate, which can cause eutrophication of waterways, and nitrous oxide, which is a greenhouse gas. Soil microbes mediate all of these N transformations, but the impact of urine on microbes and how initial soil conditions and urine chemical composition alter their responses to urine are not well understood. This study aimed to determine how soil inorganic N pools, nitrous oxide fluxes, soil microbial activity, biomass, and the community structure of bacteria containing amoA (nitrifiers), nirK, and nirS (denitrifiers) genes responded to the addition of urine over time. Bovine urine containing either a high (15.0 g K+ l?1) or low salt content (10.4 g K+ l?1) was added to soil cores at either low or high moisture content (hereafter termed dry and wet soil respectively; 35% or 70% water-filled pore space after the addition of urine). Changes in soil conditions, inorganic N pools, nitrous oxide fluxes, and the soil microbial community were then measured 1, 3, 8, 15, 29 and 44 days after urine addition. Urine addition increased soil ammonium concentrations by up to 2 mg g d.w.?1, soil pH by up to 2.7 units, and electrical conductivity (EC) by 1.0 and 1.6 dS m?1 in the low and high salt urine treatments respectively. In response, nitrate accumulation and nitrous oxide fluxes were lower in dry compared to wet urine-amended soils and slightly lower in high compared to low salt urine-amended soils. Nitrite concentrations were elevated (>3 μg g d.w.?1) for at least 15 days after urine addition in wet urine-amended soils, but were only this high in the dry urine-amended soils for 1 day after the addition of urine. Microbial biomass was reduced by up to half in the wet urine-amended soils, but was largely unaffected in the dry urine-amended soils. Urine addition affected the community structure of ammonia-oxidising and nitrite-reducing bacteria; this response was also stronger and more persistent in wet than in dry urine-amended soils. Overall, the changes in soil conditions caused by the addition of urine interacted to influence microbial responses, indicating that the effect of urine on soil microbes is likely to be context-dependent.  相似文献   

10.
《Applied soil ecology》2005,28(3):247-257
Carbon dioxide emissions from soils beneath canopies of two Mediterranean plants, Artemisia absinthium L. and Festuca pratensis Huds. cv. Demeter, were monitored over a 7-day period that included an artificial precipitation event of 4 cm. The experiments were conducted using 0.2 m3 soil microcosms inside greenhouses with CO2 concentrations of either 360 or 500 μmol mol−1. Carbon dioxide flux from the soil surface, as calculated using a diffusive transport model agreed well with CO2 flux measurements made using a dynamic flow system. Soil CO2 emissions did not differ significantly between the 360 and 500 μmol mol−1 CO2 treatments when soils were dry (volumetric soil moisture content ≤9%). A simulated precipitation event caused an immediate exhalation of CO2 from soil, after which CO2 emissions declined slightly and remained constant for approximately 36 h. CO2 emissions from soil microcosms with F. pratensis plants growing in 500 μmol mol−1 CO2 then rose to levels that were significantly greater than CO2 emissions from soils in the microcosms exposed to 360 μmol mol−1 CO2. For A. absinthium growing in 500 μmol mol−1 CO2, the rise in soil CO2 emissions following the wetting event was not significantly greater than emissions from soils with A. absinthium growing under 360 μmol mol−1 CO2. A. absinthium above ground biomass increased by 46.1 ± 17.9% (mean ± S.E., n = 4, P ≤ 0.05). Above ground biomass did not significantly increase for F. pratensis (14.4 ± 6.5%, P ≥ 0.10). Root biomass, on the other hand, increased for both species; by 50.6 ± 17.9% (P ≤ 0.05) for A. absinthium and by 55.9 ± 12.7% (P ≤ 0.05) for F. pratensis. Our results demonstrate two events following precipitation onto dry soils, an immediate release of CO2 followed by a gradual increase from enhanced biological activity The gradual increase was greater for the herbaceous ruderal perennial F. pratensis under elevated CO2.  相似文献   

11.
《Applied soil ecology》2001,16(3):243-249
Very little is known about the effect of overgrazing on carbon loss from soil in semi-arid savannas and woodlands of South America. Soil carbon parameters were measured in a 10,000 ha restoration project in the western Chaco of Argentina (24°43′S and 63°17′W). Three situations were compared: highly restored (HRS), moderately restored (MRS) and highly degraded (HDS). Soil and litter samples were recovered in the dry and wet seasons. SOC and CO2–C values decreased from the HRS (7.0 kg m−2 and 130 g m−2) to the HDS (1.5 kg m−2 and 46 g m−2) whereas the C mineralization rate increased toward the less restored sites (0.96–2.29). Surface-litter C was similar in both sites under restoration (260 and 229 g m−2), being non-existent at the HDS. Leaves from woody species dominated surface-litter in the HRS, whereas grass material was predominant in the MRS. During the wet season, the SOC decreased, whereas both CO2–C and C mineralization rate increased. The magnitude of the between-season differences was highest at the HDS (62% in SOC, 55% in CO2, and 80% in C mineralization rate). We estimated that C loss since introduction of cattle into the forest was 58 Mg ha−1, reaching a total of 2×1015 g at for the entire Chaco. These values are higher than those caused by the conversion of savannas and other ecosystems into agriculture or cultivated pastures. The amount of C fixed in the highly restored site (275 g ha−1 per year) indicates that the Chaco soils have a significant potential as atmospheric carbon sinks.  相似文献   

12.
《Soil biology & biochemistry》2001,33(4-5):449-455
The influence of several soil properties on soil conduciveness or suppressiveness to disease caused by the soil fungus Fusarium oxysporum f. sp. cubense was studied in seven field plots of banana plantations, situated in Tenerife and Gran Canaria islands (Canary Islands, Spain). In each plot, soil samples were taken in conducive and suppressive areas to Fusarium wilt. Water-stable aggregates (WSA: 200–2000 μm diameter), soil particle size, and selected soil solution characteristics [pH, electric conductivity (EC) and soluble Na] were determined in the samples. Aggregate water-stability was higher in soils of conducive areas than in suppressive areas. The percentage of WSA in the conducive areas ranged from 460 to 330 g kg−1, while in the suppressive areas the maximum value was 285 g kg−1 and the minimum was 150 g kg−1. The soils had high clay content and the EC and soluble Na tended to be higher in suppressive areas than in conducive areas. Soil solution pH was lower in conducive areas (except sites 1 and 9). Our data provide evidence that in different soil areas of the same plot, the structural stability of aggregates, presumably controlled in part by the clay fraction, soluble Na concentration and EC, is of great importance for the conduciveness or suppressiveness to banana wilt caused by Fusarium oxysporum f. sp. cubense of the soils studied. Finally, we hypothesize that a greater stability of the aggregates forming anaerobiosis could partly explain most of the available Fe found in soil areas where the disease was severe, at least in these types of soils.  相似文献   

13.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

14.
Little is know on the impact of biosolids application on soil organic matter (SOM) stability, which contributes to soil C sequestration. Soil samples were collected in 2006 at plow layer from fields that received liquid and dry municipal biosolids application from 1972 to 2004 at the cumulative rate of 1416 Mg ha−1 in mined soil and 1072 Mg ha−1 in nonmined soil and control fields that received chemical fertilizer at Fulton County, western Illinois. The biosolids application increased the soil microbial biomass C (SMBC) by 5-fold in mined soil and 4-fold in nonmined soil. The biosolids-amended soils showed a high amount of basal respiration and N mineralization, but low metabolic quotient, and low rate of organic C and organic N mineralization. There was a remarkable increase in mineral-associated organic C from 6.9 g kg−1 (fertilizer control) to 26.6 g kg−1 (biosolids-amended) in mined soil and from 8.9 g kg−1 (fertilizer control) to 23.1 g kg−1 (biosolids-amended) in nonmined soil. The amorphous Fe and Al, which can improve SOM stability, were increased by 2–7 folds by the long-term biosolids application. It is evident from this study that the biosolids-modified SOM resists to decomposition more than that in the fertilizer treatment, thus long-term biosolids application could increase SOM stability.  相似文献   

15.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

16.
In upland soils aerobic methane-oxidizing bacteria (MOB) catalyze methane (CH4) oxidation, and thus regulate the sole terrestrial sink for atmospheric CH4. While confirmed in mature upland soils, little is known about this important function in young mountainous soils in glacier forefields, which are progressively formed as a result of glacier recession. We assessed four attributes of the soil CH4 sink, i.e., soil-atmosphere CH4 flux (Jatm), CH4 oxidation activity (k), MOB abundance and variation in community composition along the 6–120-yr soil chronosequence in two Alpine glacier forefields on siliceous and calcareous bedrock. At most sampling locations soil CH4 profiles showed stable uptake of atmospheric CH4, with Jatm in the range of −0.082 to −2.2 mg CH4 m−2 d−1. Multiple-linear-regression analyses indicated that Jatm significantly increased with soil age, whereas k did not. Instead, water content and CH4 profiles in the youngest soils often indicated dry, inactive top layers with k < 0.1 h−1, and active deeper layers (0.2 h−1 ≤ k ≤ 11 h−1) with more favorable water content. With increasing soil age the zone of highest CH4 oxidation activity gradually moved upwards and eventually focused in the 10–40-cm layer (0.2 h−1 ≤ k ≤ 16 h−1). Copy numbers of pmoA genes significantly increased with soil age at both sites, ranging from 2.4 × 103 to 5.5 × 105 copies (g soil w.w.)−1, but also correlated with mineral nitrogen content. Terminal restriction-fragment-length-polymorphism and cluster analyses showed differences in MOB community composition apparently related to bedrock type rather than soil age. Yet, regardless of bedrock type, the soil CH4 sink established within a few years of soil development, and Jatm increased to values comparable to mature soils within decades. Thus, young mountainous soils have the potential to consume substantial amounts of atmospheric CH4, and should be incorporated into future estimates of global soil CH4 uptake.  相似文献   

17.
《Soil & Tillage Research》2007,93(1):126-137
Although reduced tillage itself is beneficial to soil quality and farm economics, the amount of crop residues returned to the soil will likely alter the success of a particular conservation tillage system within a farm operation. We investigated the impact of three cropping systems (a gradient in silage cropping intensity) on selected soil physical, chemical, and biological properties in the Piedmont of North Carolina, USA. Cropping systems were: (1) maize (Zea mays L.) silage/barley (Hordeum vulgare L.) silage (high silage intensity), (2) maize silage/winter cover crop (medium silage intensity), and (3) maize silage/barley grain—summer cover crop/winter cover crop (low silage intensity). There was an inverse relationship between silage intensity and the quantity of surface residue C and N contents. With time, soil bulk density at a depth of 0–3 cm became lower and total and particulate C and N fractions, and stability of macroaggregates became higher with lower silage intensity as a result of greater crop residue returned to soil. Soil bulk density at 0–3 cm depth was initially 0.88 Mg m−3 and increased to 1.08 Mg m−3 at the end of 7 years under high silage intensity. Total organic C at 0–20 cm depth was initially 11.7 g kg−1 and increased to 14.3 g kg−1 at the end of 7 years under low silage intensity. Stability of macroaggregates at 0–3 cm depth at the end of 7 years was 99% under low silage intensity, 96% under medium silage intensity, and 89% under high silage intensity. Soil microbial biomass C at 0–3 cm depth at the end of 7 years was greater with low silage intensity (1910 mg kg−1) than with high silage intensity (1172 mg kg−1). Less intensive silage cropping (i.e., greater quantities of crop residue returned to soil) had a multitude of positive effects on soil properties, even in continuous no-tillage crop production systems. An optimum balance between short-term economic returns and longer-term investments in improved soil quality for more sustainable production can be achieved in no-tillage silage cropping systems.  相似文献   

18.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

19.
Amynthas agrestis is an exotic, invasive earthworm in North America that has been associated with horticulture settings as well as damage to forest soil. An experiment was conducted to find out whether A. agrestis, an earthworm commonly found in mulches in Vermont, stimulates ligninolytic enzymes in the presence of commercial wood mulches. Mesocosms filled with a sandy loam soil were topped with either spruce, cedar or pine mulch. Half of the mesocosms received juvenile A. agrestis, the other half did not. After 7 weeks soils were analyzed for phenoloxidase and peroxidase activity. Most A. agrestis survived and developed into adults during the incubation period. Significantly greater phenoloxidase activity was detected in soils with A. agrestis than without earthworms. Mean (standard deviation) phenoloxidase activities in the presence of A. agrestis were 0.15 (±0.10), 1.14 (±0.46), 2.71 (±0.98) μmol g−1 h−1 for pine, spruce and cedar respectively, and 0.012 (±0.023), 0.25 (±0.25), 0.78 (±0.45) μmol g−1 h−1 in the absence of A. agrestis. There was significantly greater peroxidase activity for the pine and spruce treatment when earthworms were present. Mean peroxidase activities were 0.47 (±0.21), 0.94 (±0.29), 1.20 (±0.77) μmol h−1 g−1 soil for pine, spruce and cedar, respectively for soils with A. agrestis and 0.15 (±0.10), 0.37 (±0.10), 0.63 (±0.30) μmol h−1 g−1 soil in the absence of earthworms. The increased ligninolytic activity in combination with successful maturation of juveniles into adult A. agrestis suggests that mulch can be habitat for these invasive earthworms. This finding is supported by a survey of master gardeners in Vermont and New Hampshire 20% of whom reported to have seen these earthworms mainly in their gardens and mulched beds.  相似文献   

20.
Addition of organic manure over thousands of years has resulted in the development of very fertile soils in parts of the Loess Plateau in Northwest China. This region also suffers from serious soil erosion. For that reason, afforestation of arable soils has taken place. The dynamics of soil organic matter in these soils affected by a very specific management and by land use changes is largely unknown. Therefore, we measured C mineralization in a 35-days incubation experiment and analyzed amounts and properties of water-extractable organic carbon (WEOC) in 12 topsoils of this region. The soils differed in land use (arable vs. forest) and in amounts of added organic manure. Afforestation of arable soils resulted in a distinct stabilization of organic C as indicated by the smallest C mineralization (0.48 mg C g−1 C d−1) and the highest C content (2.3%) of the studied soils. In the soils exposed to intensive crop production without regular addition of organic manure we found the largest C mineralization (0.85 mg C g−1 C d−1) and the lowest contents of organic C (0.9%). Addition of organic manure over a time scale of millennia resulted in high organic C contents (1.8%) and small C mineralization (0.55 mg C g−1 C d−1). The content of WEOC reflected differences in C mineralization between the soils quite well and the two variables correlated significantly. Water-extractable organic C decreased during C mineralization from the soil illustrating its mainly labile character. Carbon mineralization from soils was particularly large in soils with small specific UV absorbance of WEOC. We conclude that amounts and properties of WEOC reflected differences in the stability of soil organic C. Both afforestation of arable land and the long-term addition of organic manure may contribute to C accumulation and stabilization in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号