首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The exotic earthworm invasion in hardwood forests of the northern United States is associated with many ecosystem-level changes. However, less is known about the effects of the invasion on the composition of the soil microbial community through which ecosystem-level changes are mediated. Further, earthworm effects on soil microbial community composition have not been well studied in the field. To evaluate changes in bacterial and fungal abundance associated with the earthworm invasion we quantified bacterial and fungal biomass by microscopic counts in paired earthworm-invaded (earthworm) and earthworm-free (reference) plots in five forest stands in central New York (USA). Earthworms significantly increased the ratio of bacteria to fungi on an area basis (per m2), by more than two times in mid-summer and early autumn. While this effect was associated primarily with the lack of the fungal-dominated organic horizon in earthworm plots, a higher ratio of bacteria to fungi in the surface 5 cm mineral soil also contributed as it developed between spring and mid-summer. Earthworm reduction of fungal biomass was confirmed by substantially lower growth of fungal hyphae into mesh sand bags in earthworm compared to reference plots. Burrowing activity by the earthworm Lumbricus terrestris increased the ratio of bacteria to fungi over the short-term within earthworm plots, introducing small-scale spatial heterogeneity associated with burrows. Our study suggests that the exotic earthworm invasion in these northern hardwood forests markedly increased the ratio of bacteria to fungi by eliminating the fungal-rich organic horizon, and was associated localized increases in bacterial vs. fungal abundance in mineral soil, setting the stage for future research into linkages between the earthworm invasion, bacterial and fungal abundance, and ecosystem processes.  相似文献   

2.
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the “Brabantsche Biesbosch”, the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations.  相似文献   

3.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

4.
A field experiment was conducted to study the effects of peat amendment and crop production system on earthworms. The experiment was established on a field previously cultivated with oats and with silt as the main soil type. Perennial crops strawberry, timothy and caraway, and annual crops rye, turnip rape, buckwheat, onion and fiddleneck were cultivated with conventional methods. All the crops were grown with and without soil amendment with peat. Earthworms were sampled twice: 4 and 28 months after establishment of the experiment. In the former case part of the experimental plots were soil sampled and hand sorted for estimation of earthworms. In the latter case all experimental plots were sampled and both soil sampling and mustard extraction was carried out. Soil organic carbon and microbial biomass was measured at 14 and 28 months. Peat increased the abundance of juvenile Aporrectodea caliginosa by 74% in three growing seasons, but had no effect on adult numbers. Lumbricus terrestris numbers were not increased by peat treatment. Three season cultivation of caraway favoured both A. caliginosa and L. terrestris. An equal abundance of A. caliginosa was also found in plots cultivated with turnip rape and fiddleneck. Total earthworm and especially A. caliginosa numbers were very small in plastic-mulched strawberry beds. This was mainly attributed to repeated use of the insecticide endosulfan. With the strawberry plots omitted there was a significant correlation between soil microbial N measured at 14 months and juvenile Aporrectodea spp. and Lumbricus spp. numbers measured at 28 months. Adult earthworm numbers were not associated with either soil organic C or microbial biomass.  相似文献   

5.
It is argued that the podzol of Silpho Moor could be converted under birch to a typical brown earth only if it could sustain an earthworm population with a Lumbricus terrestris biomass of not less than 100 g m?2. No worms of this species were found under experimental birch plots 30 yr old. The presence of podzolizing species in the ground vegetation; the low pH of the raw humus layer; the low Ca and N supply in the soil, litter and rainfall; and the impeded soil drainage lead to the conclusion that colonization by L. terrestris is unlikely.  相似文献   

6.
In the highly polluted river Rhine system, earthworms face environmental stress resulting from flooding and elevated heavy metal concentrations in the floodplain soil. Previous field studies have revealed adaptation to flooding for the earthworm species Lumbricus rubellus as this species matures at a lower weight in floodplain sites with a high frequency of flooding compared to less frequently flooded sites. Also heavy metals have effects on L. rubellus and heavy metals are influencing the genetic composition of this species. In this study, it was tested whether flooding and heavy metals had an impact on the genetic composition of L. rubellus living in floodplains along the river Rhine system. Earthworms were sampled at three sites previously studied along the river to assess earthworm diversity, biomass, density, and individual weight, and developmental status of L. rubellus. The genetic variation by means of isozymes was studied for 175 individuals. The results showed lowest density of L. rubellus adult and sub-adult life-stages and lowest individual weight of these life-stages at the frequent inundated site. The genetic composition, however, showed no effects of flooding on the genetic composition, but effects of heavy metals could not be ruled out.  相似文献   

7.
 Nitrogen excretion rates of 15N-labeled earthworms and contributions of 15N excretion products to organic (dissolved organic N) and inorganic (NH4-N, NO3-N) soil N pools were determined at 10  °C and 18  °C under laboratory conditions. Juvenile and adult Lumbricus terrestris L., pre-clitellate and adult Aporrectodea tuberculata (Eisen), and adult Lumbricus rubellus (Hoffmeister) were labeled with 15N by providing earthworms with 15N-labeled organic substrates for 5–6 weeks. The quantity of 15N excreted in unlabeled soil was measured after 48 h, and daily N excretion rates were calculated. N excretion rates ranged from 274.4 to 744 μg N g–1 earthworm fresh weight day–1, with a daily turnover of 0.3–0.9% of earthworm tissue N. The N excretion rates of juvenile L. terrestris were significantly lower than adult L. terrestris, and there was no difference in the N excretion rates of pre-clitellate and adult A. tuberculata. Extractable N pools, particularly NH4-N, were greater in soils incubated with earthworms for 48 h than soils incubated without earthworms. Between 13 and 40% of excreted 15N was found in the 15N-mineral N (NH4-N+NO3-N) pool, and 13–23% was in the 15N-DON pool. Other fates of excreted 15N may have been incorporation in microbial biomass, chemical or physical protection in non-extractable N forms, or gaseous N losses. Earthworm excretion rates were combined with earthworm biomass measurements to estimate N flux from earthworm populations through excretion. Annual earthworm excretion was estimated at 41.5 kg N ha–1 in an inorganically-fertilized corn agroecosystem, and was equivalent to 22% of crop N uptake. Our results suggest that the earthworms could contribute significantly to N cycling in corn agroecosystems through excretion processes. Received: 12 April 1999  相似文献   

8.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

9.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

10.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. However, responses of soil ecosystem engineers, such as earthworms, to annual temperature dynamics are virtually unknown. We studied growth, mortality and cocoon production of epigeic earthworm species (Lumbricus rubellus and Dendrobaena octaedra) exposed to temperature fluctuations in root-free soil of a mid-European beech-oak forest. Both earthworm species (3 + 3 individuals of each species) were kept in microcosms containing soil stratified into L, F + H and Ah horizons. In the field, earthworm responses to smoothing of diurnal temperature fluctuations were studied, simulating possible global change. In the laboratory, earthworm responses to seasonal (±5 °C of the annual mean) and diurnal temperature fluctuations (±5 °C of the seasonal levels) were analyzed in a two-factorial design. Both experiments lasted 12 months to differentiate between seasonal and diurnal responses. In the third experiment overwintering success of both earthworm species was investigated by comparing effects of constant temperature regime (+2 °C), and daily or weekly temperature fluctuations (2 °C ± 5 °C).Temperature regime strongly affected population performance of the earthworms studied. In the field, smoothed temperature fluctuations beneficially affected population development of both earthworm species (higher biomass, faster maturity and reproduction, lower mortality). Consequently, density of both species increased faster at smoothed than at ambient temperature conditions. In the laboratory, responses of L. rubellus and D. octaedra to temperature treatments differed; however, in general, earthworms benefited from the absence of diurnal fluctuations. Total earthworm numbers were at a maximum at constant temperature and lowest in the treatment with both diurnal and seasonal temperature fluctuations. However, after one year L. rubellus tended to dominate irrespective of the temperature regime. In the overwintering experiment L. rubellus sensitively responded to even short-term winter frost and went extinct after one week of frost whereas D. octaedra much better tolerated frost conditions. Earthworms of both species which survived frosts were characterized by a significant body weight decrease during the period of frosts and fast recovery in spring suggesting a different pattern of individual resource expenditure as compared with constant +2 °C winter regime. Contrasting trends in the population dynamics of L. rubellus and D. octaedra during the frost-free period and during winter suggest that in the long-term temperature fluctuations contribute to the coexistence of decomposer species of similar trophic position in the forest litter. The results are discussed in context of consequences of climate change for the functioning of soil systems.  相似文献   

11.
 The dynamics of earthworm populations were investigated in continuously-cropped, conventional disk-tilled corn agroecosystems which had received annual long-term (6 years) amendments of either manure or inorganic fertilizer. Earthworm populations were sampled at approximately monthly intervals during the autumn of 1994 and spring and autumn of 1995 and 1996. The dominant earthworm species were Lumbricus terrestris L. and Aporrectodea tuberculata (Eisen), which comprised 50–60% and 8–13%, respectively, of the total annual earthworm biomass. Lumbricus rubellus (Hoffmeister) and Aporrectodea trapezoides (Dugés) were much less abundant and contributed a small fraction of total earthworm biomass. Earthworm numbers and biomass were significantly greater in manure-amended plots compared to inorganic fertilizer-treated plots during the majority of the study period. Seasonal fluctuations in earthworm numbers and biomass were attributed to changes in soil temperature and moisture, and cultivation. Unfavorable climatic conditions in the summer and autumn of 1995 caused earthworm abundance and biomass to decline significantly. Mature L. terrestris, L. rubellus and A. tuberculata were most abundant in May and June of 1995 and 1996, and cocoon production was greatest in June and July 1995 and June 1996. Recruitment of juveniles of Lumbricus spp. and Aporrectodea spp. into earthworm communities occurred primarily in the autumn. Long-term amendments of manure or inorganic fertilizer did not change the species composition of earthworm communities in these agroecosystems. The earthworm populations in both manure and inorganic fertilizer plots have declined significantly after 5 years of continuously-cropped corn. Received: 24 August 1997  相似文献   

12.
Biopores are hotspots of nutrient mobilisation and shortcuts for carbon (C) into subsoils. C processing relies on microbial community composition, which remains unexplored in subsoil biopores. Phospholipid fatty acids (PLFAs; markers for living microbial groups) and amino sugars (microbial necromass markers) were extracted from two subsoil depths (45–75 cm ; 75–105 cm) and three biopore types: (I) drilosphere of Lumbricus terrestris L., (II) 2-year-old root biopores and (III) 1.5-year-old root biopores plus six 6 months of L. terrestris activities. Biopore C contents were at least 2.5 times higher than in bulk soil, causing 26–35 times higher Σ PLFAs g-1 soil. The highest Σ PLFAs were found in both earthworm biopore types; thus, the highest soil organic matter and nutrient turnover were assumed. Σ PLFAs was 33% lower in root pores than in earthworm pores. The treatment affected the microbial community composition more strongly than soil depth, hinting to similar C quality in biopores: Gram-positives including actinobacteria were more abundant in root pores than in earthworm pores, probably due to lower C bioavailability in the former. Both earthworm pore types featured fresh litter input, promoting growth of Gram-negatives and fungi. Earthworms in root pores shifted the composition of the microbial community heavily and turned root pores into earthworm pores within 6 months. Only recent communities were affected and they reflect a strong heterogeneity of microbial activity and functions in subsoil hotspots, whereas biopore-specific necromass accumulation from different microbial groups was absent.  相似文献   

13.
Dwarf shrub litter is thought to be of poor quality and palatability for macro-decomposers. In laboratory feeding experiments, however, it was found that this litter type represents a potential food source for earthworms and millipedes. Here we tested whether this is true under natural conditions by conducting a 1 year field experiment on an abandoned alpine pasture in Tyrol (Austria). As the natural isotopic signatures of plant litter do not allow discriminating between different plant species, dwarf shrub litter, artificially enriched in 15N, was offered in experimental plots to the macro-decomposer community. Both the earthworm Lumbricus rubellus and the millipede Cylindrojulus fulviceps fed on dwarf shrub litter as indicated by their increased δ15N signatures, but IsoError analysis indicated a clear preference for grass litter for all macro-decomposer species investigated.Soil δ15N signatures were only marginally affected by the experimental provision of 15N-enriched dwarf shrub litter, whereas litter from other, unlabelled, plants became enriched by the isotopic tracer to some extent. Except for one grass species, plants harvested at the end of the experiment were not enriched in 15N, suggesting that the N-uptake from decomposing litter material by plants on abandoned alpine pastureland is slow.  相似文献   

14.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

15.
《Geoderma》2006,130(1-2):14-25
The interactive effects of two functionally different earthworm species (Aporrectodea caliginosa (endogeic species) and Lumbricus rubellus (epigeic species)) on the incorporation of fresh residue into large macroaggregates and formation of microaggregates within these large macroaggregates were investigated during a short-term laboratory experiment using 13C-labelled sorghum (Sorghum bicolor (L.) Moench) residues. Soil was collected from a long-term no-tillage agricultural field, crushed through a 250-μm sieve and incubated under laboratory conditions. The following earthworm treatments were applied: (i) soil+13C-labelled residue+A. caliginosa; (ii) soil+13C-labelled residue+L. rubellus; (iii) soil+13C-labelled residue+A. caliginosa+L. rubellus and; (iv) soil+13C-labelled residue. Two residue placement treatments (i.e. surface and incorporated) were superimposed on the earthworm treatments. Earthworms were added after 8 days of incubation. Aggregate size distribution and total C and 13C were measured after 22 days. Microaggregates, fine inter-microaggregate particulate organic matter (inter-POM) and intra-microaggregate POM (intra-POM) were isolated from macroaggregates. Earthworms had a greater stimulating effect on the formation of large macroaggregates (>2000 μm) and microaggregates within large macroaggregates when residue was incorporated in the soil, especially in the presence of A. caliginosa. When residue was placed on the surface, residue-derived intra-POM C was highest when L. rubellus was present and significantly lower in the presence of A. caliginosa. Residue-derived inter-POM C was highest when a mix of both species was present. These results indicate that earthworm species differentially affect incorporation of fresh organic matter into stable microaggregates within macroaggregates, and that interactive effects of earthworm species might have important consequences for the incorporation and protection of C inside of microaggregates within macroaggregates especially when residues are placed on the soil surface.  相似文献   

16.
The application of decomposable organic residues such as manure and crop litter is generally beneficial to earthworms. There is an emerging interest in applying biochar, a carbonaceous product of pyrolysis, to temperate agricultural soils. The slow decomposition rate of biochar, which also contains ash and combustion byproducts, could be detrimental to earthworms. The objective of this study was to describe the earthworm populations in biochar-amended soils on a dairy farm in the St. Francis River watershed, Quebec, Canada. Earthworms were collected from replicated field plots under cereal production. Site A received three wood-based biochar types at two application rates(5 and 10 t ha~(-1) biochar) plus an unamended control, while Site B received wood-based biochar(7.5 t ha~(-1) biochar), dairy cattle slurry(10 t ha~(-1) manure), or a combination of the biochar and manure rates plus an unamended control. Earthworms were collected by hand sorting and formaldehyde expulsion from soil pits. Three species, Aporrectodea turgida, Aporrectodea tuberculata, and Lumbricus rubellus, were found at the sites, and Aporrectodea was the dominant genus. Biochar sources, rates, and application with dairy slurry did not affect the earthworm population, which had 52–218 individuals m~(-2) in 2010 and 4–96 individuals m~(-2) in 2011. The seasonal variation in earthworm population may be due to flooding in the spring of 2011, which apparently interfered with earthworm reproduction. The similarity in earthworm abundance and biomass in plots with and without wood-based biochar leads to the conclusion that earthworm populations are stable in biochar-amended soils in this cold, humid temperate region.  相似文献   

17.
《Soil biology & biochemistry》2001,33(7-8):1067-1075
Placement of plant residues in conventional tillage (CT) and no-tillage (NT) soils affects organic matter accumulation and the organization of the associated soil food webs. Root-derived C inputs can be considerable and may also influence soil organic matter dynamics and soil food web organization. In order to differentiate and quantify C contributions from either roots or litter in CT and NT soils, a 14C tracer method was used.To follow root-derived C, maize plants growing in the field were 14C pulse-labeled, while the plant litter in those plots remained unlabeled. The 14C was measured in NT and CT soils for the different C pools (shoots, roots, soil, soil respiration, microbial biomass). Litter-derived C was followed by applying 14C labeled maize litter to plots which had previously grown unlabeled maize plants. The 14C pools measured for the litter-derived CT and NT plots included organic matter, microbial biomass, soil respiration, and soil organic C.Of the applied label in the root-derived C plots, 35–55, 6–8, 3, 1.6, and 0.4–2.4% was recovered in the shoots, roots, soil, cumulative soil respiration, and microbial biomass, respectively. The 14C recovered in these pools did not differ between CT and NT treatments, supporting the hypothesis that the rhizosphere microbial biomass in NT and CT may be similar in utilization of root-derived C. Root exudates were estimated to be 8–13% of the applied label. In litter-derived C plots, the percentage of applied label recovered in the particulate organic matter (3.2–82%), microbial biomass (4–6%), or cumulative soil respiration (12.5–14.7%) was the same for CT and NT soils. But the percentage of 14C recovered in CT soil organic C (18–69%) was higher than that in NT (12–43%), suggesting that particulate organic matter (POM) leaching and decomposition occurred at a higher rate in CT than in NT. Results indicate faster turnover of litter-derived C in the CT plots.  相似文献   

18.
The effect of 15N-labelled litter of different quality (Luzula sylvatica, a grass species, Vaccinium gaultheroides, a deciduous dwarf shrub, and Calluna vulgaris, a hardy dwarf shrub) and the presence of macro-decomposers (Lumbricus rubellus, Lumbricidae, and Enantiulus nanus, Diplopoda) on the growth of Dactylis glomerata (Poaceae), a grass species abundant on alpine pastureland, was investigated. After 4 months, the presence of soil animals significantly increased litter mass loss of L. sylvatica, V. gaultheroides and C. vulgaris by 27%, 11% and 40%, respectively. Soil animals generally reduced microbial biomass but significantly increased it in treatments where either L. sylvatica or C. vulgaris was present. The presence of soil animals significantly increased shoot and root biomass of D. glomerata by 48% and 64%, respectively. L. rubellus increased the transfer of 15N from the litter into plants. We conclude that macro-decomposers increased nutrient mobilization and plant uptake of nutrients mineralized from recalcitrant litter materials. Litter of L. sylvatica contributed most to the 15N uptake by D. glomerata, suggesting that litter quality is crucial for the cycling of nutrients on abandoned alpine pastureland.  相似文献   

19.
Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological group classifications, and that earthworm species interactions would affect mineralization through competition and facilitation effects. A mesocosm experiment was conducted to investigate the effect of three earthworm species, representative of different ecological groups (epigeic: Lumbricus rubellus; endogeic: Aporrectodea caliginosa tuberculata; and anecic: Lumbricus terrestris), and their interactions on the bacterial community, and on nitrogen mineralization from 15N-labelled crop residue and from soil organic matter.Our results indicate that L. rubellus and L. terrestris enhanced mineralization of the applied crop residue whereas A. caliginosa had no effect. On the other hand, L. rubellus and A. caliginosa enhanced mineralization of the soil organic matter, whereas L. terrestris had no effect. The interactions between different earthworm species affected the bacterial community and the net mineralization of soil organic matter. The two-species interactions between L. rubellus and A. caliginosa, and L. rubellus and L. terrestris, resulted in reduced mineral N concentrations derived from soil organic matter, probably through increased immobilization in the bacterial biomass. In contrast, the interaction between A. caliginosa and L. terrestris resulted in increased bacterial growth rate and reduced total soil C. When all three species were combined, the interaction between A. caliginosa and L. terrestris was dominant. We conclude that the effects of earthworms on nitrogen mineralization depend on the ecological traits of the earthworm species present, and can be modified by species interactions. Knowledge of these effects can be made useful in the prevention of nutrient losses and increased soil fertility in agricultural systems, that typically have a low earthworm diversity.  相似文献   

20.
Little is known about the organisms responsible for decomposition in terrestrial ecosystems, or how variations in their relative abundance may influence soil carbon (C) cycling. Here, we altered organic matter in situ by manipulating both litter and throughfall inputs to tropical rain forest soils, and then used qPCR and error-corrected bar-coded pyrosequencing to investigate how the resulting changes in soil chemical properties affected microbial community structure. The plot-scale manipulations drove significant changes in microbial community composition: Acidobacteria were present in greater relative abundance in litter removal plots than in double-litter plots, while Alphaproteobacteria were found in higher relative abundance in double-litter and throughfall reduction plots than in control or litter removal plots. In addition, the bacterial:archaeal ratio was higher in double-litter than no-litter plots. The relative abundances of Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were positively correlated with microbial biomass C and nitrogen (N), and soil N and C pools, while acidobacterial relative abundance was negatively correlated with these same factors. Bacterial:archaeal ratios were positively correlated with soil moisture, total soil C and N, extractable ammonium pools, and soil C:N ratios. Additionally, bacterial:archaeal ratios were positively related to the relative abundance of Actinobacteria, Gammaproteobacteria, and Actinobacteria, and negatively correlated to the relative abundance of Nitrospira and Acidobacteria. Together, our results support the copiotrophic/oligotrophic model of soil heterotrophic microbes suggested by Fierer et al. (2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号