首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium spp. cause severe damage in many agricultural crops, including sugar beet, with Fusarium oxysporum historically being considered as the most damaging of all species. Sugar beet needs to be protected from this class of soil-borne pathogens in order to ensure an optimal sugar yield in the field. Genetic control of the disease is crucial in managing these pathogens. Identification of single nucleotide polymorphism (SNP) markers linked to resistance can be a powerful tool for the introgression of valuable genes needed to develop Fusarium-resistant varieties. A candidate gene approach was carried out to identify SNP markers linked to putative Fusarium resistance sources in sugar beet. Five resistant analogue genes (RGAs) were screened by means of high resolution melting (HRM) analysis in a set of sugar beet lines, considered as resistant and susceptible to Fusarium oxysporum. HRM polymorphisms were observed in 80% of amplicons. Two HRM polymorphisms were significantly associated with Fusarium resistance (P < 0.05). The amplicons that showed association were sequenced and two SNPs were identified. The association was further validated on 96 susceptible and 96 resistant plants using competitive allele-specific PCR (KASPar) technology. The selected SNPs could be used for marker-assisted breeding of Fusarium resistance in sugar beet.  相似文献   

2.
Rice blast disease caused by Magnaporthe oryzae is an important limiting factor to rice production in the world. Introgression of blast resistance genes into improved germplasm by marker-assisted selection has been considered as an effective and environmentally beneficial means to control this disease. Pike, a broad-spectrum blast resistance gene, was cloned by map-based strategy recently in our laboratory. Two adjacent CC-NBS-LRR genes (designated as Pike-1 and Pike-2) were required for Pike-mediated resistance. In the current study, sequence alignment of the SNP G1328C and the SNP-surrounding region let us find that the Pik DNA variants of the studied rice lines appear to be divided into G-, C-, T- and G’-types. Based on the four genotypes, a Pike-specific marker system consisting of three PCR-based markers CP-G1328C, CP-G1328T and CP-G1328G’ was developed and used to effectively differentiate G-type allele from each of the others. Using this marker system, we investigated distribution of the Pik DNA variants in a set of 326 rice varieties or breeding lines and found that there were 2, 130, 135 and 59 rice lines identified to carry G-, C-, T- and G’-type alleles, respectively. In addition, with sequence data of the SNP G1328C-containing genomic region derived from 56 rice lines, we constructed a phylogenetic tree with three major clades which just corresponded to the types of the Pik DNA variants described above.  相似文献   

3.
Identifying genetic loci and possible candidate genes related to salt and drought stresses would be an economical, feasible and efficient way to accelerate the progress of abiotic tolerance breeding in rapeseed. In this study, a seed germination experiment using distilled water, salt and drought stresses was carried out with 520 B. napus germplasm resources. The rapeseed accessions showed large variation in the seed germination percentage (GP) and germination index (GI), with GP ranging from 26 to 100%, 0 to 100% and 0 to 100% and GI from 3.05 to 53.92, 0 to 24.50 and 0 to 25.00 in distilled water, under salt stress and drought stress, respectively. The coefficients of GP and GI were 0.72, 0.97 and 0.96 in distilled water, under salt stress and drought stress, respectively. A genome-wide association analysis of the 520 accessions was performed using the Q+K model and 31,839 single-nucleotide polymorphism (SNP) sites, revealing 23 SNPs associated with GP and 20 SNPs associated with GI under salt and drought stresses. The significant loci rs32406 and rs9466 on chromosome C08 and A04 were mapped to sites 3.32 and 2.20 kb from the salt- and drought-responsive gene BnaC08g41070 and drought-responsive gene BnaA04g02620D, respectively. BnaC06g01910D, a drought-responsive gene on chromosome C06, was found to overlap with the significant locus rs44427. In addition, 37 candidate genes associated with GP and GI under salt and drought stresses were detected. Most of these candidate genes regulate signal transduction and proline biosynthesis or encode a ubiquitin ligase E3; some have unknown biological functions and may respond to salt and drought stresses together as a complex network.  相似文献   

4.
A japonica variety, Koshihikari, is known to have favorable eating quality. Two rice backcross inbred lines (BILs) developed from Koshihikari exhibited significantly different glossiness of cooked rice (GCR), an eating quality trait measured using the Toyo-taste meter. Genetic analysis indicated that the genetic composition of these two BILs differed only on the short arm of chromosome 6, which led to the identification of the qGCR6 locus. Through high-resolution genetic mapping, the qGCR6 locus was further delimited to a 43.9 kb chromosomal region containing ten putative genes. The DNA marker SNP2175, which tightly links to qGCR6, was developed and can be used in marker-assisted breeding programs.  相似文献   

5.
In a previous investigation on the reciprocal difference of interspecific hybridization between three different flower colors of Iris dichotoma and Iris domestica in the F1 offspring from crosses where I. domestica was a maternal parent were similar in morphological and cytological characters to their maternal parent. This could be evidence of apomixis; however, matroclinal progeny with complete morphological similarity to the maternal parent could be attributed to the heterozygosity for these characters in the pollen parent. The F1 plants were investigated in order to identify apomixis in I. domestica. Four matroclinal plants were randomly selected from each F1 population produced from Iris domestica × Iris dichotoma that had three different colors of flowers and were allowed to self-pollinate to establish an F2 population. All of the F2 plants had no segregation to I. domestica in their morphological characters. In addition, 13 reciprocal F1 plants were detected by 25,719 single nucleotide polymorphism (SNP) markers. When I. dichotoma plants with three different flower colors were used as maternal parents, all the progenies were genuine hybrids. When I. domestica were used as maternal parents, all the F1 plants were apomictic progenies. Apomixis of I. domestica was successfully identified and SNP markers identified F1 hybrids derived from six interspecific crosses between I. dichotoma and I. domestica, which provides a reference for authenticating offspring identity during Iris cross breeding in the future.  相似文献   

6.
Stripe rust is a devastating disease in common wheat (Triticum aestivum) worldwide. Growing cultivars with adult-plant resistance (APR) is an environmental friendly approach that provides long-term protection to wheat from this disease. Wheat cultivar Yaco“S” showed a high level of APR to stripe rust in the field from 2008 to 2014. The objective of this study was to detect the major quantitative trait loci (QTL) for APR to stripe rust in Yaco“S”. One hundred and eighty-four F2:3 lines were developed from a cross between Yaco“S” and susceptible cultivar Mingxian169. Illumina 90K and 660K single nucleotide polymorphism (SNP) chips were implemented to bulked pools and their parents to identify SNPs associated with the major QTL. A high-density linkage map was constructed using simple sequence repeat (SSR) and SNP markers. Inclusive composite interval mapping detected a major effect QTL Qyryac.nwafu-2BS conferring stable resistance to stripe rust in all tested environments. Qyryac.nwafu-2BS were mapped to a 1.3 cm interval and explained 17.3–51.9% of the phenotypic variation. Compared with stripe rust resistance genes previously mapped to chromosome 2B, Qyryac.nwafu-2BS is likely a new APR gene to stripe rust. Combining SNP iSelect assay and kompetitive allele specific PCR technology, we found that the APR gene could be rapidly and accurately mapped and it is useful for improving stripe rust resistance in wheat breeding.  相似文献   

7.
8.
Hybridization technology has proven valuable in enhancing yields in many crops, but was only recently adopted in the small grain cereals. Hybrid varieties in barley (Hordeum vulgare) rely on the cytoplasmic male sterility (CMS) system msm1 derived from Hordeum vulgare ssp. spontaneum. The major restorer gene described for the msm1 system is known as Rfm1 and maps to the top of chromosome 6H. To gain further insight into mechanisms underlying male fertility restoration in barley, we used a map-based cloning approach to identify the nuclear gene involved in the restoration mechanism of this hybridization system. Taking advantage of the available genomic resources in barley in combination with a custom-made non-gridded BAC library developed from a restorer line, we cloned and sequenced the Rfm1 restorer locus. The characterization and annotation of the nucleotide sequence for the Rfm1 restorer allele allowed for the identification of the candidate gene for Rfm1. The Rfm1 locus carries a tandem repeat of a gene encoding a pentatricopeptide repeat (PPR) protein. Surprisingly, Rfm1 belongs to the PLS-DYW subfamily of PPR genes known for their involvement in RNA editing in plants organelles, but that to date have not been identified as restorer genes.  相似文献   

9.
Association mapping was conducted to explore favorable alleles of the chlorophyll-related non-yellow coloring 1 (NYC1) gene under light and dark using an association panel of 146 maize inbred lines. A total of 14 polymorphic sites were identified to be significantly associated with at least one of the chlorophyll-related traits at the seedling stage. Four single nucleotide polymorphisms (SNPs) (S320, S2951, S3901, and S3355) from the NYC1 gene were respectively strongly associated with chlorophyll b (chlb), the ratio of chlorophyll a to chlorophyll b (chl_ratio), chlorophyll a degradation (chla_deg), and total chlorophyll degradation (total_chl_deg). SNPs S320 (C/A) in exon 1, and S2951 (A/G) in intron 8 was related to chlb, with 6.01 and 8.89% of phenotypic variation under light treatment, respectively. Under dark treatment, SNP S3901 (C/T), located in 3′ untranslated region (3′UTR), was associated with chl_ratio, explaining 7.01% of the observed phenotypic variation, whereas SNP S3355 (C/G) in intron 9 explained 6.48 and 5.18% of phenotypic variations in chla_deg and total_chl_deg, respectively. Taken together, these results indicated that the NYC1 gene plays an important role in chlorophyll content and other related traits, and different sites act on chlorophyll metabolism under different light intensities in maize seedlings. Furthermore, these findings improve our understanding of the genetic basis of chlorophyll metabolism under different light conditions.  相似文献   

10.
A set of putative marker genes to study plant defense responses against Polyphagotarsonemus latus, a key pest in the production of Rhododendron simsii hybrids, was selected and validated. Genes belonged to the biosynthetic pathway of phytohormones jasmonic acid (JA) (RsLOX, RsAOS, RsAOC, RsOPR3 and RsJMT) and salicylic acid (SA) (RsPAL and RsICS). Furthermore, RsPPO, a putative marker gene for oxidative stress response was successfully cloned from R. simsii. A CTAB-based extraction protocol was optimized to assure excellent RNA quality for subsequent RT-qPCR analysis. The RT-qPCR protocol was extensively tested and RsRG7 and RsRG14 were selected as reference genes from a geNorm pilot study. Validation of the marker genes was done after application with elicitors [methyl jasmonate (MeJA), coronatine, β-aminobutyric acid and acibenzolar-Smethyl] or wounding. Both 100 μM MeJA and 0.1 μM coronatine had a significant effect on the expression of all marker genes. Foliar application of MeJA on the shoots resulted in a significantly earlier response when compared to root application and subsequent sampling of the shoots. Expression patterns after MeJA treatment were generally the same in six R. simsii genotypes: ‘Nordlicht’, ‘Elien’, ‘Aiko Pink’, ‘Michelle Marie’, ‘Mevrouw Gerard Kint’ and ‘Sachsenstern’. Wounding resulted in the same expression patterns as MeJA treatment except for RsJMT. None of the genotypes showed a significant induction of the latter gene 6 h upon wounding. Findings of these experiments indicated that the tolerant genotype ‘Elien’ has low basal expression levels of RsPPO. This might be the first step towards the breeding of mite-tolerant genotypes.  相似文献   

11.
O. meridionalis is a wild species belonging to AA genome in the Oryza genus, which has a lot of beneficial genes for improvement of cultivated rice. In the present study, 99 chromosome single-segment substitution lines (SSSLs) were developed carrying donor segments of O. meridionalis in the genetic background of an indica cultivar, Huajingxian 74 (HJX74). The total lengths of the 99 substituted segments in the SSSLs were 1580.16 cM, with an average length of 15.11 cM per substituted segment, covering 873.94 cM and 54.98% of O.meridionalis genome. Phenotypic investigations of the SSSLs showed that three SSSLs had red pericarp, awn and showed seed shattering, respectively, indicating that these genes of O. meridionalis responsible for these traits have been transferred to the SSSLs. And wide variations were observed in seven quantitative traits including heading date and yield-related traits in 82 SSSLs.At P ≤ 0.001, 77 SSSLs showed significant differences compared with HJX74 in at least one trait either in the fall of 2014 or spring of 2015, and a total of 28 stable QTLs were detected in 24 SSSLs in both seasons. These results suggest that the SSSLs library of O. meridionalis developed in this study offers a good germplasm platform for the identification and transformation of beneficial genes of O. meridionalis, and facilitates the conservation of gene resources of O. meridionalis in vivo for long periods.  相似文献   

12.
NBS (nucleotide binding site) genes, one type of the most important disease-resistance genes in the plant kingdom, are usually found clustered in genome. In this study, a total of 2288 full-length NBS protein-coding sequences were isolated from the wheat (Triticum aestivum L.) genome, and 903 TaNBSs of which were found expressed in wheat. Meanwhile, 2203 microsatellite loci were detected within 1061 scaffolds containing TaNBS. The distribution of these microsatellite loci across wheat homologous groups (HG) is 20% HG2, 16% HG7, 15% HG1, 15% HG6, 12% HG4, 12% HG5 and 10% HG3. We developed 1830 NBS-related microsatellite (NRM) markers for the microsatellite loci on TaNBS-scaffold sequences.Among them, 342 NRM markers were developed for HG2 with the largest number of microsatellite loci, and 69 out of these markers were anchored to the wheat genetic map using mapping population. Then, a total of 26 2AS-NRM markers, nine 2BL-NRM markers and nine 2DL-NRM markers were integrated into the genetic maps carrying Yr69, Pm51 and Pm43, respectively. Finally, candidate sequences, within the gene clusters where Yr5 and Sr21 located, were analyzed according to the genomic position information of TaNBS and NRM markers. These NRM markers have clear chromosome locations and are correlated with potential disease resistance sequences, which can be manipulated to mapping or adding linkage markers of disease-resistance genes or QTLs, especially for those in the NBS gene clusters.  相似文献   

13.
The germplasm of valuable for breeding wild allotetraploid potato species Solanum stoloniferum is rarely used because of pre- and postzygotic reproductive barriers with cultivated potatoes. One of the factors that complicate crosses between S. stoloniferum and S. tuberosum is unilateral incompatibility (UI). Here, we present the results of application of S. verrucosum and S v S v -lines for overcoming UI in crosses with S. stoloniferum and of generating male fertile hybrids derived from this species. S v S v -lines are F2 S. tuberosum dihaploid × S. verrucosum that are male fertile and have D/γ-type cytoplasm. Since they are homozygous for S v gene from S. verrucosum, they were expected to have the same ability for elimination of prezygotic incompatibility as this species. Three accessions of S. verrucosum and seven S v S v -lines were pollinated by 26 accessions of S. stoloniferum. The crosses with S. verrucosum failed or had low efficacy (1.5–2.4 seeds per pollination). On the other hand, use of S v S v -lines was more efficient: 15.8 seeds per pollination. In spite of low percentage of germination (1.9%), 40 seedlings of interspecific hybrids were produced. The experiment on hybridization between S v S v -lines and S. stoloniferum has been reproduced with the accession PI 205522 of the wild species, which had DNA markers of PVY and LB resistance genes and W/γ cytoplasm: 950 hybrid seeds and 12 viable seedlings were produced. The genome of the seedlings was doubled by colchicine treatment, which generated hexaploids that formed highly fertile pollen and set seeds from self-pollination. We were able to cross them as females with the variety Katahdin.  相似文献   

14.
A collection of 112 African barley accessions were assessed for response to Puccinia hordei in seedling greenhouse tests using 10 pathotypes and in adult plant field tests over three successive field seasons in Australia. One of the 10 pathotypes (viz. 5457P+) used in seedling tests was also used in field tests to allow assessment of the presence of adult plant resistance (APR) in lines that were seedling susceptible to this pathotype. The seedling resistance genes Rph1, Rph2, Rph3, Rph9.am and Rph9.z were postulated in a number of accessions, singly and in various combinations, with Rph2 and Rph9.z being the most common. Twenty-six accessions carried seedling resistance that was either uncharacterized or could not be determined using the 10 P. hordei pathotypes. One accession carried high levels of APR and 11 accessions showed moderate levels of APR, all of which were susceptible to all P. hordei pathotypes at the seedling stage. All barley accessions were genotyped for the presence of marker alleles that are closely linked to the APR genes Rph20 and Rph23 (bPb-0837 and Ebmac0603, respectively). No accession was positive for bPb-0837, suggesting that Rph20 is not frequent in African germplasm. Thirteen accessions were postulated to carry Rph23 based on the presence of the marker allele Ebmac0603 found in Yerong (Rph23), and 10 out of the 11 accessions with moderate APR lacked the bPb-0837 and Ebmac0603 marker alleles, indicating that they likely carry new uncharacterized APR genes. Inheritance studies were performed using populations derived from four of the accessions that carried APR (Clho 9776, Clho 11958, Mecknes Maroc and Sinai) by crossing with the susceptible barley genotype Gus. Chi squared analysis of the phenotypic data from F3 populations suggested that CIho9776 carried a single APR gene and CIho11958, Mecknes Maroc and Sinai each carried two genes for APR to leaf rust.  相似文献   

15.
16.
The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family comprises the largest number of known disease resistance (R) genes and is one of the largest gene families in plants. In the present study, the full-length cDNA of ZmNL (GenBank Accession Number KF765443) was isolated using Rapid Amplification of cDNA Ends. The nucleotide sequence of ZmNL contains an open reading frame of 3156 bp that encodes the ZmNL protein, which is comprised of 1051 amino acid residues. This putative protein has high homology to other known resistance proteins (84% to Triticum aestivum LR10) and belongs to the CC–NBS–LRR type R gene family. The ZmNL gene was introduced into the maize inbred line of Huangzao4 which was highly susceptible to head smut under the control of the maize ubiquitin promoter by Agrobacterium-mediated transformation. The head smut disease incidence of 3 T2 transgenic lines was significantly reduced (by 18.38–29.40%) compared with the wild type, which indicated that the overexpression of ZmNL gene in maize enhanced the resistance to the fungus Sporisorium reilianum (Kühn) Clint of these plants.  相似文献   

17.
Previous studies reported that some genotypes with introgressed Festuca chromosome segment(s) in Lolium genome showed enhanced winter hardiness compared to Lolium. The aim of this study was to search comprehensively for the Festuca pratensis chromosome regions affecting winter hardiness-related traits when introgressed into the Lolium perenne genome. Association between F. pratensis introgression and winter hardiness-related traits (fall and winter hardiness indexes, early-spring dry matter yield, and freezing tolerance) were screened in the diploid introgression populations (n = 203) that had some F. pratensis chromosome segments introgressed. Eighty-four intron markers corresponding to unique rice genes randomly distributed across the genome were used for genotyping. Winter hardiness of almost all plants in the introgression populations was lower than that of the F. pratensis and triploid hybrid parents, but the average was higher than that of L. perenne. A significant positive effect of F. pratensis introgression on early-spring dry matter yield was detected on chromosome 7. This quantitative trait locus (QTL) was confirmed by linkage analysis using a backcross population with F. pratensis introgression in the target region of chromosome 7. However, the contribution of the newly identified QTL was rather small (6.7–9.6%), suggesting that superior winter hardiness of F. pratensis compared to L. perenne is conferred by multiple small-effect QTLs. We also detected a previously unreported negative effect of Festuca introgression on winter hardiness. Newly obtained QTL information in this study would contribute to the design of Festuca/Lolium hybrid breeding.  相似文献   

18.
N. Watanabe 《Euphytica》2017,213(8):201
Einkorn wheat, Triticum monococcum L. (2n = 2x = 14, AmAm genome), is a primitive, cultivated form of diploid wheat. The shortcoming of einkorn is that it lacks the free-threshing habit. Early heading and semi-dwarf traits are also required to fit modern agricultural practice. In the present study we developed T. monococcum pre-breeding germplasm having early, free threshing traits by utilizing an early heading source, two sources of soft glume (spike) and three sources of semi-dwarfism to combine their phenotypes into pre-breeding materials. We found two different genes determined free threshing of einkorn wheat. One of them was the sog (soft glume) gene from Triticum sinskajae Filat. et Kurkiev (2n = 2x = 14, AmAm genome) and another was the sos (soft spike) gene, which was completely linked or pleiotropic with the gene for semi-dwarfism. The genes sos, spd (short peduncle) and sd17654 (semi-dwarf CItr 17654) were utilized to develop semi-dwarf T. monococcum lines. Field performance of 6 early and free-threshing pre-breeding materials with sos and spd genes were tested over three crop seasons. Five semi-dwarf pre-breeding materials (PBMs) were obtained. However, these materials had slightly less grain yield than #252 (tall and hulled check) and PBM-1 (tall free-threshing check). Harvest index of the pre-breeding materials was improved due to the presence of sos and spd genes. If optimized cultivation practice is performed, these pre-breeding materials can be utilized as sources of early, free-threshing and semi-dwarf traits to produce modern T. monococcum varieties.  相似文献   

19.
The success of breeding for barley leaf rust (BLR) resistance relies on regular discovery, characterization and mapping of new resistance sources. Greenhouse and field studies revealed that the barley cultivars Baronesse, Patty and RAH1995 carry good levels of adult plant resistance (APR) to BLR. Doubled haploid populations [(Baronesse/Stirling (B/S), Patty/Tallon (P/T) and RAH1995/Baudin (R/B)] were investigated in this study to understand inheritance and map resistance to BLR. The seedlings of two populations (B/S and R/B) segregated for leaf rust response that conformed to a single gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.12, P > 0.7 for B/S and \({\text{X}}_{1:1}^{2}\) = 0.34, P > 0.5 for R/B) whereas seedlings of third population (P/T) segregated for two-gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.17, P > 0.6) when tested in greenhouse. It was concluded that the single gene in Baudin and one of the two genes in Tallon is likely Rph12, whereas gene responsible for seedling resistance in Stirling is Rph9.am (allele of Rph12). The second seedling gene in Tallon is uncharacterized. In the field, APR was noted in lines that were susceptible as seedlings. A range of disease responses (CI 5–90) was observed in all three populations. Marker trait association analysis detected three QTLs each in populations B/S (QRph.sun-2H.1, QRph.sun-5H.1 and QRph.sun-6H.1) and R/B (QRph.sun-1H, QRph.sun-2H.2, QRph.sun-3H and QRph.sun-6H.2), and four QTLs in population P/T (QRph.sun-6H.2, QRph.sun-1H.2, QRph.sun-5H.2 and QRph.sun-7H) that significantly contributed to low leaf rust disease coefficients. High frequency of QRph. sun-5H.1, QRph. sun-6H.1, QRph. sun-1H.1, QRph. sun-2H.2, QRph. sun-6H.2, QRph. sun-7H (based on presence of the marker, closely associated to the respective QTLs) was observed in international commercial barley germplasm and hence providing an opportunity for rapid integration into breeding programmes. The identified candidate markers closely linked to these QTLs will assist in selecting and assembling new APR gene combinations; expectantly this will help in achieving good levels of durable resistance for controlling BLR.  相似文献   

20.
Numerous stripe rust resistance genes have been identified from wheat, and new virulent races of Puccinia striiformis f. sp. tritici have also emerged in recent years. Deployment of diverse combinations of resistance genes is an efficient way to combat virulent evolution of strip rust pathogen. In this study, publically available molecular markers were used to identify the distribution of 36 Yr genes in 672 wheat accessions. The effectiveness of Yr genes individually and in combinations was also evaluated in field conditions. The result showed effective resistance of some recently applied genes, such as Yr15 and Yr65. It also showed the lost efficacy of some once widely used genes, such as Yr9 and Yr10. Moreover, significant additive effects were observed in some gene combinations, such as Yr9 + Yr18 and Yr30 + Yr46. Proper deploying of Yr genes and utilizing the positive interactions will be helpful for durable resistance breeding in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号