首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Major advancement in canola breeding depends on heterotic hybrids that require high general combining ability (GCA) and specific combining ability (SCA) inbred lines. In order to estimate heritability, gene action type, GCA, SCA and heterosis and to identify superior hybrids with wider adaptation to cold, one hundred canola hybrids were produced by crossing 10 lines and 10 testers in a Line?×?Tester mating design. The F1 and F2 generations were sown in α-lattice design in 2012 and 2013 growing seasons under optimum (early October) and late sowing (early November) conditions to be evaluated for days to flowering, days to physiological maturity, number of pods per plant, number of seeds per pod, thousand seed weight, seed yield and leaf electrical conductivity. The combined analysis indicated sufficient genetic diversity in the population and significant difference between two sowing date. The Line?×?Tester analysis presented significant GCA and SCA effects for all studied traits across optimum and late sowing conditions. The main gene action type was found to be non-additive, especially incomplete dominance and over-dominance in both conditions. Narrow-sense heritability ranged from low to moderate whereas broad-sense heritability was recorded more than 60% for all of the studied traits in both generations and conditions. The average heterosis in F2 population for all studied traits was lower than that in F1 representing this fact that heterosis is generally related to the heterozygosity at the population level and poorly correlated with heterozygosity at the individual level.  相似文献   

2.
Understanding genetic mechanisms controlling inheritance of disease resistance traits is essential in breeding investigations targeting development of resistant genotypes. Using North Carolina design II, 32 F1 hybrids were generated by crossing eight susceptible to four resistant parents and submitted for field evaluation. The analysis of general and specific combining ability (GCA and SCA) indicated involvement of additive and non‐additive gene action controlling inheritance of horizontal resistance to sheath rot of rice. High GCA/SCA ratio and high heritability estimates revealed additive effects and were more predominant than none additive ones. The level of dominance indicated dominant genes was more important than recessive genes. Estimates of GCA and SCA analysis suggested that crop improvement programmes should be directed towards selection of superior parents or good combiners, emphasizing on GCA. As far as source of resistance is concerned, most promising genotypes were Cyicaro, Yunertian and Yunkeng. The predominance of additive genetic effects together with the relevance of dominant genes suggested possibilities of improving the resistance by introgression of resistance genes through recurrent selection coupled with phenotypic selection.  相似文献   

3.
Cowpea aphid-borne mosaic virus (CABMV) is a major virus disease in Uganda that causes substantial loss of the cowpea crop especially in growth and yield. The mode of gene action conferring resistance to the virus is not well understood. The objective of the study was to determine the genetic inheritance of resistance in cowpea crosses. Three susceptible (S) cowpea landraces that are commonly grown by farmers were crossed with five introduced resistant cowpea varieties in accordance with a North Carolina mating design II scheme. The F1, F2 and BC1F1 progenies generated were evaluated in the field together with their parents. They were then infected with two infection methods namely: by spreader-rows of S cultivar (Ebelat) and artificial inoculation of virus extracts. The results obtained showed that general combining ability (GCA) and specific combining ability (SCA) effects were significant, indicating that both additive and non-additive gene effects controlled virus infection. The results further demonstrated that the GCA effects (59.8?%) were more important than SCA effects (40.2?%) in determining virus resistance in the cowpea varieties. Utilisation of good general combiners of the varieties MU-93, IT82D-516-2, SECOW-2W and IT85F-2841 in hybridisation to improve virus resistance in cowpea crosses would be recommended. The result of this study provided an indication that CABMV resistance was conditioned by more than one recessive gene in eight populations, but also revealed resistance to be conditioned by a single recessive gene in the other seven populations. Observation of continuous distribution of progenies for severity data in the F2 populations also confirmed significance of quantitative inheritance for CABMV resistance. Therefore, the significance of GCA effects suggests that recurrent selection could be applied to accumulate the additive genes for resistance in F2 populations.  相似文献   

4.
Groundnut leaf miner (GLM) (Aproaerema modicella) (Deventer) is one of the most destructive pests of soybean and groundnuts. In this study, the mode of inheritance, general combining ability (GCA), specific combining ability (SCA) effects, maternal effects of resistance to GLM and grain yield ha?1 were determined. Thirteen soybean parental genotypes and 81 F2 populations were evaluated for resistance to GLM in a 5?×?19 alpha lattice diallel design with two replications under natural GLM infestation in northern (Arua) and eastern (Iki-iki) Uganda during September to December 2016 rainy season. Highly significant differences were observed among parental genotypes and F2 populations for GLM incidence, severity, and grain yield. The estimates of GCA effects were significant for GLM incidence and severity scores but not for the number of larvae per plant and grain yield ha?1. SCA effects were non-significant for all the studied traits, suggesting that GCA effects were the major component responsible for soybean resistance to GLM with additive gene effects being more important for these traits. Baker’s ratio ranged from 0.44-1.0 for most of resistant traits except number of larvae per plant and grain yield ha?1. The results indicated also that cultivars Maksoy1 N, PI615437, PI578457A and NIIGC4.1-2 were good combiners against GLM incidence and severity. Parent PI615437 was a good combiner for grain yield and Maksoy1 N?×?PI615437 was a superior cross for grain yield and against GLM incidence. There were no maternal effects for the inheritance of resistance to GLM. The study provides a basis for understanding patterns of inheritance of soybean resistance to groundnut leaf miner for an efficient breeding program.  相似文献   

5.
S. L. Ahuja  L. S. Dhayal 《Euphytica》2007,153(1-2):87-98
The aim of this study was to estimate the general combining ability of the parents and specific combining ability of hybrids considered for the development of high yielding and better quality cultivars. Seventeen genotypes and 52 F1 hybrids obtained by crossing 4 lines and 13 testers in line × tester mating system during 2003 were sown in randomized complete block design in 2004. Line × Tester analysis revealed significant GCA and SCA effects for all the traits except fibre elongation. Preponderance of non-additive gene action was obtained for seed cotton yield per␣plant and majority of its component traits including fibre traits. Among the parents: PIL-8 for days to 50% flowering, CCH-526612 for boll weight, CITH-77 for number of open bolls per plant and CNH-36 for seed cotton yield per plant were detected with higher general combining ability. Parent, CCH-526612 for 2.5% span length, fibre strength and fibre elongation and AKH-9618 for micronaire value, fibre strength and fibre elongation were good combiners for fibre quality traits. The F1s achieved high seed cotton yield by producing more number of open bolls. The high yielding hybrids with acceptable fibre quality traits were: CISV-24 × LH-1995, H-1242 × PIL-8 and RS-2283 × SGNR-2 deducted with significant SCA effects for seed cotton yield and fibre characteristics; 2.5% span length and fibre strength. These cross combinations involved at least one parent with high or average GCA effect for a particular trait.  相似文献   

6.
Hybrid breeding is a widely discussed alternative for triticale. Heterosis as well as general (GCA) and specific combining ability (SCA) effects were estimated for eight agronomic traits. The experiment comprised 24 F1 hybrids, produced by a chemical hybridizing agent, together with their six female and four male parents, grown in drilled plots in two locations. In comparison with the mid‐parent values, hybrids averaged a 6.4 dt/ha (10.1%) higher grain yield, 8.4% more kernels per spike, a 6.8% higher 1000‐kernel weight, 9.7% lower falling number (FN) and 4.4% greater plant height. SCA effects for grain yield were significant and ranged from 4.5 to 6.9 dt/ha for grain yield. Together with GCA x location interactions, they explained most of the variation. For 1000‐kernel weight, GCA effects were predominant. SCA and interactions with location accounted for most of the variation in FN, whereas interactions were negligible for plant height. Correlations between mid‐parent and hybrid performance and between GCA and per se performance of parents were tight for all traits except grain yield, which allows for pre‐selection of parental lines. Although the amount of heterosis in triticale at present is closer to wheat than to rye, by selecting parents for combining ability and identifying heterotic patterns, grain yield heterosis of up to 20% appears sufficiently encouraging to embark on hybrid breeding.  相似文献   

7.
Maize (Zea mays L.) is an important source of carbohydrates and protein in the diet in sub-Saharan Africa. The objectives of this study were to (i) estimate general (GCA) and specific combining abilities (SCA) of 13 new quality protein maize (QPM) lines in a diallel under stress and non-stress conditions, (ii) compare observed and predicted performance of QPM hybrids, (iii) characterize genetic diversity among the 13 QPM lines using single nucleotide polymorphism (SNP) markers and assess the relationship between genetic distance and hybrid performance, and (iv) assess diversity and population structure in 116 new QPM inbred lines as compared to eight older tropical QPM lines and 15 non-QPM lines. The GCA and SCA effects were significant for most traits under optimal conditions, indicating that both additive and non-additive genetic effects were important for inheritance of the traits. Additive genetic effects appeared to govern inheritance of most traits under optimal conditions and across environments. Non-additive genetic effects were more important for inheritance of grain yield but additive effects controlled most agronomic traits under drought stress conditions. Inbred lines CKL08056, CKL07292, and CKL07001 had desirable GCA effects for grain yield across drought stress and non-stress conditions. Prediction efficiency for grain yield was highest under optimal conditions. The classification of 139 inbred lines with 95 SNPs generated six clusters, four of which contained 10 or fewer lines, and 16 lines of mixed co-ancestry. There was good agreement between Neighbor Joining dendrogram and Structure classification. The QPM lines used in the diallel were nearly uniformly spread throughout the dendrogram. There was no relationship between genetic distance and grain yield in either the optimal or stressed environments in this study. The genetic diversity in mid-altitude maize germplasm is ample, and the addition of the QPM germplasm did not increase it measurably.  相似文献   

8.
选用农家种改良过的6个食葵细胞质雄性不育系和4个优良的分枝型恢复系为亲本,按NCⅡ遗传交配设计,配成24个F1杂种,研究了9个主要经济性状,即株高、茎粗、生育期、盘径、单盘总粒数、单盘实粒数、结实率、百粒重、单株产量的配合力及杂种优势表现。结果显示:(1)不育系中有8个性状,恢复系中有7个性状的一般配合力差异达显著或极显著水平;有4个性状的特殊配合力差异达到显著或极显著水平;(2)株高、茎粗、生育期、盘径、百粒重等5个性状主要受基因的加性效应控制;单盘总粒数、单盘实粒数、结实率、及单株产量等4个性状则受基因的加性效应和非加性效应共同影响;(3)从GCA分析看,参试的不育系以A6最为理想,A2次之;恢复系则以C3最为理想。从SCA分析看,组合A2C1单株产量效应值最高;(4)杂种优势分析表明,大部分经济性状存在杂种优势,甚至相当一部分存在超亲优势,并且这些优势都是可利用的,F1多倾向于早熟、粗壮、高杆、大盘、多粒亲本。  相似文献   

9.
Maize hybrids that are tolerant to drought at the seedling stage are needed to boost productivity in the rainforest agro-ecology of West Africa. Genetics of tolerance of maize seedling to drought stress is not well understood and is poorly documented. The objectives of this study were to screen early-maturing maize lines for seedling drought tolerance, determine the inheritance and the combining ability of selected inbred lines, and evaluate the performance of seedling drought-tolerant hybrids under field conditions. Forty-nine early maize lines were screened for drought tolerance at the seedling stage. Ten drought-tolerant and two susceptible inbred lines were selected and used in diallel crosses to generate 66 hybrids. The twelve inbred lines and their hybrids were evaluated under induced drought at seedling stage in the screen house and under marginal growing conditions on the field for two seasons. Data collected were subjected to analysis of variance using the DIALLEL-SAS program. Mean squares for both GCA and SCA were significant for most traits in all research environments, indicating that additive and non-additive gene actions are controlling seedling traits under stress conditions. However, for most traits, SCA was preponderant over GCA in all environments, indicating overdominating effect of non-additive gene action. Which in turn implied that the best improvement method for the traits is hybridization. Inbred TZEI 7 had the best GCA effect for seedling traits under screenhouse conditions and for grain yield and other agronomic traits under drought conditions in the field. Hybrids TZEI 357?×?TZEI 411 and TZEI 380?×?TZEI 410 showed superior SCA effects under screen house conditions. In conclusion, the study established wide genetic variability for drought tolerance at seedling stage among tropical early-maturing maize germplasm however, the non-additive gene action was more important for most seedling traits.  相似文献   

10.
C. G. Yallou    A. Menkir    V. O. Adetimirin    J. G. Kling 《Plant Breeding》2009,128(2):143-148
Maize ( Zea mays ) is a staple food crop in sub-Saharan Africa, but its production is threatened by Striga hermonthica (Del.) Benth. Transfer of resistance genes from wild relatives may increase resistance to S. hermonthica in tropical maize. The objective of this study was to determine the combining ability of resistance to S. hermonthica among lines containing Zea diploperennis and tropical germplasm. Forty-five diallel crosses of 10 inbred lines were evaluated in an alpha-lattice design with and without artificial Striga infestation at two locations each in the Republic of Benin and Nigeria for 3 years. Results of analyses showed that only general combining ability (GCA) mean square was significant (P = 0.01) for number of emerged Striga plants (NESPP), while both GCA and specific combining ability (SCA) mean squares were significant for host damage score (HDS) and grain yield under Striga infestation. The ratio of GCA to SCA mean squares for the three traits varied from 3.5 to 57.5. Although GCA × environment interaction was significant for the three traits, two inbred lines containing Z. diploperennis (ZD 551) and tropical (TZL TC 87) germplasm had negative and significant GCA effects for NESPP and HDS and positive GCA effects for grain yield under Striga infestation in the two countries. Correlation between NESPP and HDS was strong and significant ( r  = 0.87, P = 0.01). Our results highlight the importance of harnessing useful genes from wild relatives to improve resistance to S. hermonthica in adapted maize germplasm.  相似文献   

11.
Fusarium wilt is the main pigeonpea production constraint in Malawi. The purpose of the study was to understand the nature and mechanism of inheritance of F. wilt resistance, yield and secondary traits in pigeonpea. 48 crosses were generated in a 12 lines × 4 testers mating scheme. Some F1 plants were selfed for segregation analysis for inheritance pattern of resistance, while others were evaluated for resistance, yield and secondary traits. There were significant variations among F1 plants for F. wilt, days to 50 % flowering, seed/pod, and number of secondary branches. Specific combining ability (SCA) effects were predominant for F. wilt, days to 50 % flowering and number of secondary branches. The general combining ability (GCA) effects, mainly due to maternal genotypes, were preponderant for yield and other secondary traits. The significance of GCA and SCA effects suggested that variations were due to additive gene action in both the testers and parental lines arising from their interactions, and the dominance effects due to interactions of the parental lines. The χ2 analysis suggested dominant patterns of inheritance for wilt in most of the F2 populations. The segregation ratios of 3:1, 15:1, and 9:7 suggested the involvement of single or two independent/complementary dominant genes in the test donors. Involvement of a few genes governing wilt resistance suggested the ease of breeding for this trait. Pedigree breeding method would be recommended for incorporating various traits in pigeonpea.  相似文献   

12.
水稻广亲和品种农艺性状的配合力分析   总被引:12,自引:1,他引:12  
用9个水稻不育系与3个广亲和品种进行不完全双列杂交,对其杂交组合10个性状的配合力效应分析结果表明,就杂种F1主要农艺性状而言,亲本的一般配合力效应比组合特殊配合力效应更为重要;株高、单株有效穗数、穗长、每穗实粒数、结实率、单株粒重、千粒重等性状,以一般配合力作用为主,而每穗总粒数、生育期、着粒密度等性状虽以一般配合力作用为主,但特殊配合力的作用也不可忽视;株高、单株有效穗数、穗长、每穗实粒数。结实率、单株粒重等性状以广亲和品种的一般配合力作用为主;生育期、每穗总粒数、千粒重、着粒密度等性状以不育系的一般配合力作用为主。  相似文献   

13.
Low soil nitrogen (Low N), Striga hermonthica and recurrent drought are major constraints to maize production and productivity in sub-Saharan Africa (SSA). Only a few extra-early maturing hybrids with combined tolerance to drought, Striga and low N have been commercialized in SSA. The objectives of the study were to determine the general combining ability (GCA) and specific combining ability (SCA) effects of grain yield and other traits, classify the inbreds into heterotic groups using the SCA effects of grain yield, and the heterotic group’s SCA and GCA of grain yield (HSGCA) methods, and examine the performance of hybrids under contrasting environments. Sixty-three extra-early white maize inbred lines containing genes from Zea diploperennis were crossed to four elite testers to obtain 252 single-cross hybrids and evaluated together with four checks at four locations for 2 years under drought, Striga-infested, low N and optimal environments in Nigeria. The GCA and SCA effects were significant (P ≤ 0.01) with preponderance of GCA over SCA effects for all measured traits indicating that additive genetic effects were predominant in the lines under all the contrasting environments. The HSGCA was more efficient than the SCA method in the classification of the inbreds into heterotic groups. The hybrids TZdEEI 74 × TZEEI 13 and TZdEEI 74 × TZEEI 29 were high yielding and most stable across research environments. These hybrids should be further evaluated in on-farm trials to confirm the consistency of performance for commercialization in SSA.  相似文献   

14.
Determining the gene actions governing the inheritance of traits of interest has paramount importance in designing a breeding approach to improve the progeny populations. This study was undertaken to determine the combining ability of nine selected parental lines in the F2/F3 segregating populations for low P tolerance. The experiment was laid out in an alpha lattice design in two locations, that is Mettu and Assossa of Western Ethiopia that are characterized by soils with low P and pH. General combining ability (GCA) effects were highly significant for grain yield, pod length, days to maturity and plant height, while specific combining ability (SCA) effects were highly significant for grain yield, 100-seed weight, pod length and plant height. The parent Hardee-1 was identified as the best general combiner for yield, number of seeds per pod, pod length, plant height and pod number. The results suggest that additive gene action was important for several of the studied traits, implied by significant GCA effect, which might indicate selection for these traits could be effective in later segregating generations.  相似文献   

15.
Cowpea is an important legume in sub-Saharan Africa where its protein rich grains are consumed. Insect pests constitute a major constraint to cowpea production. Flower bud thrips (FTh) is the first major pest of cowpea at the reproductive stage and if not controlled with insecticides is capable of reducing grain yield significantly. Information on the inheritance of resistance to FTh is required to facilitate breeding of resistant cultivars. The genetics of resistance was studied in crosses of four cowpea lines. Maternal effect was implicated while frequency distributions of the F2 and backcross generations suggest quantitative inheritance. Additive, dominance and epistatic gene effects made large contributions and since improved inbred lines are the desired product, selection should not be too severe in the early generations to allow for desirable gene recombination. This study suggested that some of the genes involved in the control of resistance to FTh are different in TVu1509 and Sanzi. Broad sense heritability ranged from 56% to 73%. Choice of maternal parent in a cross will be critical to the success of resistance breeding.  相似文献   

16.
Summary Head blight caused by Fusarium culmorum and F. graminearum is damaging in all winter rye (Secale cereale L.) growing areas. For hybrid breeding, the relative magnitude of general (GCA) and specific combining ability (SCA) is a crucial parameter for developing appropriate selection procedures. Forty single-cross hybrids were produced by crossing six and seven inbred lines of the Petkus and Carsten gene pool, respectively, in a factorial design. Hybrids were evaluated in two years with artificial F. culmorum inoculation. Resistance traits were head blight rating and grain weight relative to the non-inoculated control. Both resistance traits were closely correlated across both years (r-0.8, P=0.01). Significant genotypic variation was found for both traits with medium to high estimates of heritability (h2=0.6-0.8). Components of variance for GCA were, across years, 10 and 6 times larger than those for SCA for head blight rating and relative grain weight, respectively. Significant SCA effects were found for 15 to 20% of all cross combinations across both traits in each year. SCA effects were, however, inconsistent over years leading to a high SCA-year interaction. In conclusion, resistance to Fusarium head blight among the interpool hybrids tested was conditioned mainly by additive gene action that could be utilized by recurrent selection in multi-environment trials.Abbreviations GCA general combining ability - SCA specific combining ability  相似文献   

17.
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20 diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action (complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification of heterotic germplasm, and the production of seed of the population hybrid (PH).  相似文献   

18.
Combining ability information is necessary for selection of suitable advanced lines for hybridization and identification of promising hybrids for development of improved varieties. A number of 14 maize (Zea mays L.) inbred lines and 91 related crosses were evaluated over two years, 2008 and 2009, in a temperate-zone of Iran. The objectives of the study were to identify the best general and specific combiners, heterosis and type of gene actions responsible for agronomic traits. Except for grain yield and growing degree day to milky, significant general (GCA) and specific (SCA) combining ability were observed for all traits. The Baker ratio for plant height (0.15), ear height (0.26), growing degree day to milky stage (0.04), and grain yield (0.002) showed the predominance of non-additive gene effects in the expression of these traits. The heterosis observed for grain yield, grain number, pollination period, ear and plant height was considerably higher than that observed for other traits. The correlations (r) of F1 means and SCA effects were positive and significantly higher than that of r (F1, mid-parents) and r (F1, heterosis) for all the traits except cob percent, growing degree days to silking, and physiological maturity. MO17, K3547/5, and K3615/2 had negative GCA effects for growing degree day to milky stage and maturity. Among hybrids, MO17 × K3653/2, B73 × K3651/2, and K3545/6 × K3493/1 with positive SCAs for pollination period and grain yield had also negative SCA effects for degree day to silking and milky stages. Therefore, the use of these inbred lines and hybrids increases the response to selection for increasing grain yield and early maturity in maize.  相似文献   

19.
如何有效利用杂种优势已成为水稻增产的关键。本研究按照NCII遗传交配设计,将三系野败型杂交水稻的恢复系和微核心种质构成的115份优异籼稻品种,分别与4个两系不育系及1个三系不育系测交,分析各农艺性状配合力、遗传力及相互关系。结果表明,除单株有效穗数、主穗实粒数外,其他农艺性状一般配合力差异均达到极显著水平;除单株有效穗数外,其他各农艺性状特殊配合力差异也均达到极显著水平。同一组合的不同性状、同一亲本的不同组合所表现出的特殊配合力效应都有所不同,表明亲本的一般配合力水平与特殊配合力间没有固定的联系。在育种实践中,选取一般配合力高的亲本,同时兼具较高特殊配合力是获取高产杂交稻组合的关键。  相似文献   

20.
The genetic base of sunflower elite lines is very narrow, due to many years of selection and breeding. To broaden the genetic diversity of the cultivated sunflower, in 1995 73 wild sunflower populations were crossed with 3 cultivated lines (Testers), and 219 hybrid offspring’s were evaluated in the field. GCA and SCA effects were computed suggesting for all traits a genetic potential for improvement through selection. Study of the hybrids revealed that the wild accessions bear different genetic abilities to combine with the testers for traits of morphological architecture, phenology and yield (seed weight and seed oil). The variance due to GCA and SCA showed that gene action was additive for days to flowering, branching and plant height. Genotypes derived from the same geographic origin may have either good or poor general combing ability. The correlation between GCA and per se genotype performance was positive for all traits except for seed oil content. This was the first attempt to evaluate wild-cultivated hybrids in sunflower on a large scale and will be the starting point for the management of hybrid Helianthus annuus populations for breeding. GCA and SCA estimations will facilitate the definition of strategies to manage and exploit the natural diversity for this crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号