首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The allopolyploidization event that created cultivated oilseed rape Brassica napus L, followed by intense breeding, reduced its genetic diversity. Resynthesized (RS) B. napus L. obtained by interspecific hybridization between genotypes of B. rapa L. and B. oleracea L. can be a valuable source for broadening genetic diversity in cultivated oilseed rape. In this study, we determined the extent of DNA polymorphism among natural accessions of oilseed rape, resynthesized B. napus, their parental species and double-low quality semi-RS lines carrying the Rfo gene. Using 10 selected primer combinations, 522 polymorphic AFLP markers were scored in the complete set of 100 Brassica sp. To detect relationships between these genotypes, a cluster analysis was performed using the Jaccard’s distance. Resynthesized allopolyploids clustered directly between their diploid parents. Cultivated accessions of oilseed rape created a compact group away from resynthesized allopolyploids as well as semi-RS lines. The natural oilseed rape group, which consists of 49 cultivars and breeding lines of oilseed rape, is characterized by lower genetic diversity than the group of 33 accessions of resynthesized oilseed rape, and the analysis showed that the double-low quality semi-RS lines represent a specific genetic variation of B. napus. The de novo resynthesized B. napus lines and the semi-RS lines of double-low quality generated from them, provide a significant opportunity for enrichment the gene pool of oilseed rape.  相似文献   

2.
Arabica coffee production is based on highly productive cultivars; however, these cultivars are susceptible to infestation by several biotic agents, including root-knot nematodes. Collections of wild Coffea arabica germplasm represent an important source of genetic variability for resistant cultivar development. In this study, 1046 plants derived from 71 wild coffee trees were evaluated with respect to Meloidogyne paranaensis resistance. In addition to information on plants reactions, we also evaluated the genetic parameters related to resistance. Progenies from the five most promising plants were also evaluated regarding resistance to M. incognita and M. exigua. The yield potential of selected plants was estimated through analysis of data for fruits harvested in 4 different years. Forty-seven plants were considered resistant based on reproduction factor values. The estimated heritability was high for all analyzed variables leading to substantial selection gain, mainly at the progeny mean level. On the basis of heritabilities and genetic correlations, we conclude that selection could be performed based on values of the gall and egg mass index. However, higher genetic gain could be obtained based on nematode count variables. A second experiment confirmed the reactions of the selected five plants to M. paranaensis, and multiple resistance was detected in three of them. The resistant accessions also have yield potential.  相似文献   

3.
4.
Soil and root samples were collected from major tomato growing areas of Ethiopia during the 2012/2013 growing season to identify root-knot nematode problems. DNA-based and isozyme techniques revealed that Meloidogyne incognita and M. javanica were the predominant Meloidogyne species across the sampled areas. The aggressiveness of different populations of these species was assessed on tomato cultivars Marmande and Moneymaker. The two most aggressive populations of each species were selected and further tested on 33 tomato genotypes. The resistance screening and mechanism of resistance was performed after inoculation with 100 freshly hatched (<24 h) second-stage juveniles (J2). Eight weeks after inoculation the number of egg masses produced on each cultivar was assessed. For the resistance mechanism study, J2 penetration and their subsequent development inside the tomato roots were examined at 1, 2, 4 and 6 weeks after inoculation. On both cultivars Marmande and Moneymaker all M. incognita and M. javanica populations formed a high number of egg masses indicating highly aggressive behaviour. Populations from ‘Jittu’ and ‘Babile’ for M. incognita and ‘Jittu’ and ‘Koka’ for M. javanica were selected as most aggressive. None of the 33 tomato genotypes were immune for these M. incognita and M. javanica populations. However, several tomato genotypes were found to have a significant effect on the number of egg masses produced indicating possible resistance. For M. javanica populations there were more plants from cultivars or breeding lines on which no egg masses were found compared to M. incognita populations. The lowest number of egg masses for both populations of M. incognita was produced on cultivars Bridget40, Galilea, and Irma while for M. javanica it was on Assila, Eden, Galilea, Tisey, CLN-2366A, CLN-2366B and CLN-2366C. Tomato genotypes, time (weeks after inoculation) and their interaction were significant sources of variation for J2 penetration and their subsequent development inside the tomato roots. Differential penetration was found in breeding lines such as CLN-2366A, CLN-2366B and CLN-2366C, but many of the selected tomato genotypes resistance for the tested M. incognita and M. javanica populations were expressed by delayed nematode development. Therefore, developing a simple screening technique to be used by local farmers or extension workers is crucial to facilitate selection of a suitable cultivar.  相似文献   

5.
Cercosporiosis, or brown eye spot, is currently one of the main diseases of the coffee tree. It is caused by Cercospora coffeicola Berk. & Cooke. Nevertheless, genetic resistance to this disease has not yet been explored in any depth. Our objectives (a) were evaluate the response of 124 accessions from the germplasm collection of the Minas Gerais State (GC), Brazil, and eight commercial cultivars of C. arabica to cercosporiosis and (b) determine the best way to perform early progenies selections via controlled greenhouse experiments. Three controlled greenhouse experiments (1–3) were run in different seasons to determine the best way to proceed the selection. The seedlings were inoculated with a four isolates mixture obtained from different regions. The experimental data were analyzed individually (1–3), in a joint analysis, and as repetitions of a randomized complete block design. In each analysis we estimated genetic parameters and E-BLUP (empirical best linear unbiased predictor) genotypic values of the access. There was genetic variability to C. coffeicola resistance among the coffee tree accessions germplasm collection. Therefore, genetic improvements could be obtained by selection. Experimental repetitions in different seasons increase the selection efficiency and reliability of resistant genotypes with low cercosporiosis severity. The genotype Sarchimor MG 8840 showed the highest resistance level followed by Guatenano and the Timor Hybrid UFV 377-34, Timor Hybrid UFV 376-14 BE 5, and Wush–Wush × Timor Hybrid UFV 366-08.  相似文献   

6.
Fruit setting after self-pollination, crosses and free-pollination appears to be erratic in the cultivated olive tree [Olea europaea subsp europaea L. (O. e. europaea L.)] because of a lack of a suitable model to enable prediction of rates. The same lack of prediction also applies to the wild taxon Olea europaea subsp cuspidata (O. e. cuspidata). Because of their close phylogenetic relationships, we hypothesize that O. e. cuspidata and cultivated olive share the same self-incompatibility system. We used data recently published in a wide study involving four O. e. cuspidata accessions and four olive cultivars. Because the olive varieties have been deciphered for their S-allele pair, that infer determinants present in the stigma and pistil, and that coat the pollen, we deciphered the S-alleles carried by three of the O. e. cuspidata accessions. Data are too scarce and the number of accessions too small to speculate on the O. e. cuspidata genetic population structure. The working hypothesis is confirmed. This study and data from the Italian team will enable us to embark on a large-scale hybridization program between the two subsp. to obtain a wide range of progenies for screening for responses to cold, diseases and pests.  相似文献   

7.
In a previous investigation on the reciprocal difference of interspecific hybridization between three different flower colors of Iris dichotoma and Iris domestica in the F1 offspring from crosses where I. domestica was a maternal parent were similar in morphological and cytological characters to their maternal parent. This could be evidence of apomixis; however, matroclinal progeny with complete morphological similarity to the maternal parent could be attributed to the heterozygosity for these characters in the pollen parent. The F1 plants were investigated in order to identify apomixis in I. domestica. Four matroclinal plants were randomly selected from each F1 population produced from Iris domestica × Iris dichotoma that had three different colors of flowers and were allowed to self-pollinate to establish an F2 population. All of the F2 plants had no segregation to I. domestica in their morphological characters. In addition, 13 reciprocal F1 plants were detected by 25,719 single nucleotide polymorphism (SNP) markers. When I. dichotoma plants with three different flower colors were used as maternal parents, all the progenies were genuine hybrids. When I. domestica were used as maternal parents, all the F1 plants were apomictic progenies. Apomixis of I. domestica was successfully identified and SNP markers identified F1 hybrids derived from six interspecific crosses between I. dichotoma and I. domestica, which provides a reference for authenticating offspring identity during Iris cross breeding in the future.  相似文献   

8.
Most forage cultivars released for the genus Paspalum belong to a section named Plicatula. The species of Plicatula are mostly apomictic and consequently the genetic diversity is locked for their genetic improvement. The objectives were to evaluate the crossability, hybrid fertility, heterosis, and genetic distances between apomictic accessions and a sexual genotype of species of Plicatula group of Paspalum. Crosses were made using 22 apomictic tetraploid accessions belonging to 12 different species as pollen donors, and a sexual tetraploid genotype induced by colchicine from a sexual diploid accession of P. plicatulum. Crossability varied between 0 and 16% among crosses. Viable hybrid offspring were recovered from 15 out of 22 crosses. The most successful crosses involved P. guenoarum, P. plicatulum, P. chaseanum, and P. oteroi. Fertility of the sampled hybrids varied between 1.6% for the cross involving P. lenticulare, and 40.1% for an intraspecific cross (P. plicatulum, accession Hojs388). The genetic distance between parents was estimated using amplified fragment-length polymorphism, and it varied between 0.34 and 0.53. There was no correlation between genetic distances and crossability or fertility of the hybrids. Hybrids from the most numerous families were classified for mode of reproduction using flow cytometric seed analysis. The ratio between sexual and apomictic hybrids varied between 0.6:1 and 1.6:1. A selected group of apomictic hybrids were evaluated for several agronomic traits in the field. Heterosis was observed for frost tolerance and cattle preference. The results indicated that gene transfer via hybridization is possible among several species of Plicatula. Superior hybrids for specific traits can be generated and fixed by apomixis.  相似文献   

9.
Cultivar pedigrees from two sugarcane origins, 9 Argentine (AR) and 7 American (AM) have been reconstructed, and their genetic similarities (based on coefficient of parentage, COP, estimates) show an average of 0.206 ± 0.054. CP clones that enter the pedigrees of AM cultivars are parents or grandparents of AR cultivars, demonstrating that these genotypes have a strong genetic lineage in common. On average, AR pedigrees are smaller and contain less number of founding species than AM pedigrees. However, the lower height of the former is not explained by the different participation of founding species in the pedigrees. The presence of founding species in AR and AM pedigrees increases with the year of cultivar selection, indicating that more founding species entered the pedigree in recently selected cultivars than in older ones. The ancestry of the 16 cultivars trace back to 3 founding species: Saccharum officinarum, S. barberi, and S. spontaneum, with S. officinarum showing the greatest percentage of participation. As S. sinensis participates in 13 pedigrees and S. robustum in 3, the 5 founding species are present in 2 out of 16 pedigrees. Interestingly, the genus Sorghum enters the pedigree of LCP 85-384 pedigree. Industrial parameters assayed indicate that AR and AM cultivars were preferentially selected for their relatively high sucrose content and sugar yield in accordance with two facts: (i) the genetic background and the sucrose genes of sugarcane hybrids provided by the 68% of participation S. officinarum clones, and (ii) no clones of high fiber S. spontaneum have entered the pedigrees in earlier generations.  相似文献   

10.
Molecular markers such as simple sequence repeats (SSR) are a useful tool for characterizing genetic diversity of Gossypium germplasm. Genetic profiles by DNA fingerprinting of cotton accessions can only be compared among different collections if a common set of molecular markers are used by different laboratories and/or research projects. Herein, we propose and report a core set of 105 SSR markers with wide genome coverage of at least four evenly distributed markers per chromosome for the 26 tetraploid cotton chromosomes. The core marker set represents the efforts of ten research groups involved in marker development, and have been systematically evaluated for DNA polymorphism on the 12 genotypes belonging to six Gossypium species [known collectively as the cotton marker database (CMD) panel]. A total of 35 marker bins in triplex sets were arranged from the 105 markers that were each labeled with one of the three fluorescent dyes (FAM, HEX, and NED). Results from this study indicated that the core marker set was robust in revealing DNA polymorphism either between and within species. Average value of polymorphism information content (PIC) among the CMD panel was 0.65, and that within the cultivated cotton species Gossypium hirsutum was 0.29. Based on the similarity matrix and phylogenetic analysis of the CMD panel, the core marker set appeared to be sufficient in characterizing the diversity within G. hirsutum and other Gossypium species. The portability of this core marker set would facilitate the systematic characterization and the simultaneous comparison among various research efforts involved in genetic diversity analysis and germplasm resource preservation.  相似文献   

11.
Phytophthora root rot caused by Phytophthora drechsleri Tucker is one of the most devastating sugar beet diseases in tropical areas. To identify genetic resources resistant to this disease, an aggressive isolate of P. drechsleri was selected. Then, a screening method was optimized based on the standard scoring scales of 1–9 (1: no symptoms, 9: complete plant death). Finally, 19 sugar beet lines, three cultivars, and 14 accessions of the wild species Beta vulgaris subsp. maritima, B. macrocarpa, B. procumbens, and B. webbiana were evaluated for resistance to the most aggressive isolate of P. drechsleri by using the optimized method (inoculum included 20 g of rice seed together with superficial wound creation). The isolates of P. drechsleri had significant variation in aggressiveness, and Kv10 was the most aggressive isolate on the susceptible variety Rasoul. The lines O.T.201-15, SP85303-0 (resistant check), and S2-24.P.107 had the lowest disease index with scores of 3.09, 3.13, and 3.27 respectively; they were categorized into the resistant group. The interaction between isolates and genotypes was not significant, which indicated the same response of each genotype to different isolates. Investigating the resistance of different generations of sugar beet revealed that progeny selection would be an effective method for increasing the resistance level of breeding materials to P. drechsleri. Among the wild species, the accession 9402 belonging to B. macrocarpa and the accession 7234 of B. vulgaris subsp. maritima had the lowest disease index (2.29 and 2.60, respectively) and were categorized into the resistant group.  相似文献   

12.
Pre-harvest sprouting (PHS) causes significant yield loss and degrade the end-use quality of wheat, especially in regions with prolonged wet weather during the harvesting season. Unfortunately, the gene pool of Triticum durum (tetraploid durum wheat) has narrow genetic base for PHS resistance. Therefore, finding out new genetic resources from other wheat species to develop PHS resistance in durum wheat is of importance. A major PHS resistance QTL, Qphs.sicau-3B.1, was mapped on chromosome 3BL in a recombinant inbred line population derived from ‘CSCR6’ (Triticum spelta), a PHS resistant hexaploid wheat and ‘Lang’, a PHS susceptible Australian hexaploid wheat cultivar. This QTL, Qphs.sicau-3B.1, is positioned between DArT marker wPt-3107 and wPt-6785. Two SCAR markers (Ph3B.1 and Ph3B.2) were developed to track this major QTL and were used to assay a BC2F8 tetraploid population derived from a cross between the durum wheat ‘Bellaroi’ (PHS susceptible) and ‘CSCR6’ (PHS resistant). Phenotypic assay and marker-assisted selection revealed five stable tetraploid lines were highly PHS resistant. This study has successfully established that PHS-resistance QTL from hexaploid wheat could be efficiently introgressed into tetraploid durum wheat. This tetraploid wheat germplasm could be useful in developing PHS resistant durum cultivars with higher yield and good end-use quality.  相似文献   

13.
14.
The use of molecular markers to detect polymorphism at DNA level is one of the most significant developments in molecular biology techniques. With the development of new next-generation sequencing technologies, the discovery of SNP became easier and faster, and the costs of data point were reduced. The development and use of SNP markers for coffee have provided new perspectives for the evaluation of genetic diversity and population structure via different statistical approaches. In this study, 72 Coffea canephora genotypes were analyzed to identify the SNP markers and apply them to genetic studies and selection of parents/hybrids in genetic breeding. As many as 117,450 SNP were identified using the RAPiD Genomics platform. After quality analyses, 33,485 SNP were validated for analyses of genetic diversity and population structure. Genotypes were separated based on their varietal groups, and Hybrids were differentiated using the clustering and Bayesian approach. Coffee accessions mistakenly identified in the germplasm and breeding program were detected. The Conilon varietal group presented the lowest genetic dissimilarity values, suggesting the introduction of new accessions in the germplasm bank. The highest genetic distances values were observed among genotypes of the heterotic groups (Conilon and Robusta). The markers were efficient in evaluating the genetic diversity and population structure of C. canephora. Promising crosses were selected within and between the varietal groups. Hybrids with greater genetic distances were selected, which were important for C. canephora breeding programs.  相似文献   

15.
16.
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) (Pam.) is the most devastating disease of cauliflower (Brassica oleracea var. botrytis L.; 2n = 2x = 18), taking a heavy toll of the crop. In this study, a random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) derived sequence characterized amplified region (SCAR) markers linked to the black rot resistance locus Xca1bo were developed and evaluated as a screening tool for resistance. The RAPD marker OPO-04833 and ISSR marker ISSR-11635 were identified as closely linked at 1.6 cM distance to the black rot resistance locus Xca1bo. Both the markers OPO-04833 and ISSR-11635 were cloned, sequenced and converted into SCAR markers and validated in 17 cauliflower breeding lines having different genetic backgrounds. These SCAR markers (ScOPO-04833 and ScPKPS-11635) amplified common locus and showed 100% accuracy in differentiating resistant and susceptible plants of cauliflower breeding lines. The SCAR markers ScOPO-04833 and ScPKPS-11635 are the first genetic markers found to be linked to the black rot resistance locus Xca1bo in cauliflower. These markers will be very useful in black rot resistance marker assisted breeding.  相似文献   

17.
This research was undertaken to find an efficient tissue culture system and Agrobacterium-mediated genetic transformation method for recalcitrant indica rice cultivars. For this, mature seeds of commercially important indica rice varieties, ASD16, ADT43, IR 64, and Pusa Basmati were cultured on MS and N6 medium supplemented with 2 mg l-1 2, 4-D + 30 g l-1 sucrose. The calli grown in N6 medium showed better friability and embryogenic response. Out of the four varieties tested, ASD16 and IR64 showed better callusing and embryogenic capacity as compared to ADT43 and Pusa Basmati. For genetic transformation studies, embryogenic calli of all the cultivars were co-cultivated with the Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pCambia 1305.1 with GUS gene. GUS assay was performed for the putative transformed calli and its activity was found to be qualitatively higher in ASD16 and IR64 than the other two varieties. The best responsive ASD16 transformed calli was regenerated and the putative transgenic lines were regenerated. ASD16 transformed calli were confirmed by GUS assay. PCR analysis confirmed the presence of both GUS and HPT genes in ASD16 transgenic lines.  相似文献   

18.
Sugarcane (Saccharum spp) is an important crop for both sugar and biofuel production. However, the sugarcane breeding process has resulted in modern sugarcane cultivars with a narrow genetic basis. To broaden the genetic basis and promote international collaborations in sugarcane cultivar development, we documented the peidgrees of representative sugarcane culativars widely used in China and the United States of America (USA), recruited more than six thousand simple sequence repeat (SSR) markers for sugarcane, and assessed the genetic diversity and relationships beween representative sugarcane cultivars and their potential ancestry accessions. The SSR gentoyping results indicated that both the USA and Chiniese cultivars had low genetic diversity, specifically the Chinese cultivars. The USA sugarcane cultivars experienced high presure of selection for sugar content as they had the closest relationship with S. officinarum, followed by Chinese cultivars, S. robustum, and S. spontaneum. The sugarcane accessions assessed could be divided into five and four groups through cluster and principal component analysis, respectively. S. spontaneum as a potential ancestor contributing to the stress tolerance of sugarcane cultivars was grouped into distinct clusters, and S. officinarum was grouped with sugarcane cultivars in both countries. S. robustum did not seem to contribute to the sugarcane cultivar development in China, but may have contributed to the USA cultivar development. This study not only provided a collection of easy to use SSR markers, but also detailed genetic diversity and relationship among the cultivars in the two counties, which will be referable to promote international collaboration and broaden the genetic basis of sugarcane cultivars.  相似文献   

19.
Purple plants with higher anthocyanin content have attracted increasing attention in recent years due to their advantageous biological functions and nutritional value. A spontaneous mutant with purple leaves, designated 1280-1, was discovered in Brassica juncea line 1280. A previous genetic analysis indicated that the purple leaf trait in 1280-1 was controlled by a dominant gene (BjPl1). In the present study, an analysis of total anthocyanin content further indicated that the purple leaf trait was controlled by a complete dominance gene. According to a survey of 426 primers available from public resources, BjPl1 was assigned to linkage group B2 of B. juncea. In the early stage of this research, based on comparative mapping in Brassica, two simple sequence repeat (SSR) markers developed from A2 of B. rapa delimited the BjPl1 gene to a 0.7-cM genetic interval in the corresponding linkage map. According to information on the B. juncea genome released recently, the location of BjPl1 was further narrowed to a 225-kb interval (17.74–17.97 Mb). Within the target region, whole-genome re-sequencing identified two candidate regions (17.74–17.78 Mb and 17.93–17.96 Mb). Through Blast analysis of the two candidate intervals, four homologous anthocyanin biosynthetic genes were identified and localized to a 17.93–17.96 Mb interval of B2 (approximately 27 kb), which might include BjPl1. This work lays the foundation for the isolation of BjPl1 and will further improve our understanding of the molecular mechanisms of the anthocyanin metabolic pathway in Brassica.  相似文献   

20.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号