首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Structured subsoil horizons are characterized by biopores and shrinkage cracks, which may serve as preferential flow paths. The surfaces of cracks and biopores may be coated by clay‐organic material. The spatially‐distributed organic matter (OM) composition at such structural surfaces was studied at the millimetre scale using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the mid‐infrared range (MIR). Intact biopores such as earthworm burrows and root channels, and crack surfaces of nine subsoil horizons were analysed. The samples were from arable and forest Luvisols, one Regosol, one Stagnosol and Cambisols developed from loess, till, mudstone and limestone. For better comparison between soils, the DRIFT signal intensities were corrected for the particle‐size effects. The OM was characterized by the ratio between alkyl‐ (C–H) and carbonyl (C=O) functional groups (C–H/C=O), which represent an index of the potential wettability (PWI) of the OM. The PWI was larger for biopores than for crack surfaces and the soil matrix, indicating a smaller potential wettability of OM at biopore surfaces. The millimetre‐scale spatial variability of OM was especially large for the surfaces of root channels. Samples from till‐derived Luvisols had smaller PWI (with greater potential wettability than surfaces from loess‐derived Luvisols) than other soil types. The mean PWI of the arable Luvisol crack surfaces was less than that of the forest Luvisol samples. The results suggest that the spatial distribution of OM properties at intact structural surfaces may be important for describing sorption and mass transfer processes during preferential flow.  相似文献   

2.
《CATENA》2005,59(1):69-78
The wetting capacity of Hapludands and Palehumults under grassland and forest in southern Chile was assessed by measuring contact angles of solid, water and air interfaces. Microaggregates obtained from natural aggregates of two sizes (4–6.3 and 10–12 mm) were spread onto microscope slides and drops of saturated aqueous KCl solution were placed on the surface of the aggregates. The wetting angles of the drops were measured with a microscope with a horizontal viewing direction and an ocular containing a goniometer. The wetting capacity was determined on layers peeled progressively from the walls of aggregates toward their centres, and the organic matter content of the different aggregate layers was determined. The water stability of the aggregates was measured by dry and wet sieving. Hapludands always showed greater hydrophobicity than Palehumults. The wetting resistance of the soil matrix samples was less than that of the single layers of aggregates. The wetting resistance of aggregates generally increased from the exterior to their centre. The increase was strongest in the topsoil under grassland. Smaller aggregates under both grassland and forest showed a greater hydrophobicity than larger ones. Organic matter content increased towards the aggregate interiors, especially in the fine aggregates. Aggregates with greater water repellence were more stable to dry and wet sieving, especially under forest. Therefore, intensive management decreases wetting resistance and makes the soil less stable.  相似文献   

3.
Afforestation of sandy arable soils in northern Europe is likely to lead to an increase in the soil's acidity and changes in the behaviour of the organic matter, and this might affect the ability of the soil to retain heavy metals. It is important to assess the impact of such a change in the land use on the solubility of the heavy metals and to assess the risk of leaching to surface‐ and groundwater and the possible entrapment of heavy metals in the tree canopy. The impact of afforestation was assessed by excavating soil profiles in adjacent 34‐year‐old Norway spruce stands and arable plots at four different sites. We found that after 34 years the pH had decreased and cations were depleted in the topsoil under forest. The aqua regia‐extractable heavy metals were determined, and the heavy metal binding within the soil was assessed using a modified version of the BCR (Community Bureau of Reference) sequential extraction procedure. Higher contents of heavy metal were found in the arable plots in the loamy sand soils. Cadmium was found only in the most mobile fractions. The content of Pb in the subsoil was strongly correlated with the clay content, but not in the topsoil, which suggested that Pb had been added to the topsoil. We found strong correlations between the clay content and the Cu, Ni and Zn in the residual fraction, leading us to conclude that much of the Cu, Ni and Zn is of geological origin. No significant differences in the heavy metal fractionation between forest and arable soil were found, presumably because 34 years of different land use is not long enough to produce such differences.  相似文献   

4.
Appropriate management of sewage sludge is an important worldwide issue due to the still growing amount of wastewaters. In the study we examined to what extent the addition of dairy sewage sludge compared with mineral fertilization affects porosity, repellency index, and hydraulic conductivity of variously sized aggregates from two soil depths of Eutric Cambisol derived from loess: 5–15 cm and 25–35 cm. The repellency index was calculated as a ratio of ethanol and water sorptivity. Data on water and ethanol sorptivities of initially air‐dry soil aggregate fractions were obtained from steady state flow measurements using an infiltration device. Hydraulic conductivity was determined by measuring water infiltration at five pressure heads: –8, –6, –4, –2, and 0 cm of water column with the same device as for sorptivity determination. Addition of sewage sludge to the soil decreased the soil repellency index by an average of 27% in topsoil and 32% in subsoil for both aggregate sizes, respectively, and increased hydraulic conductivity about four times in both layers. Smaller aggregates (15–20 mm diameter) from soil amended with sewage sludge, in comparison with larger ones (30–35 mm diameter), had a higher repellency index by 36 and 24% in topsoil and subsoil, respectively. As for aggregates from soil with mineral fertilization, those differences were smaller and equal to 15% in subsoil, in topsoil smaller aggregates even had slightly lower repellency index (by 5%). Aggregates taken from the upper soil layer were more water repellent and had smaller hydraulic conductivity than those taken from subsoil, regardless of soil treatment and aggregate size.  相似文献   

5.
Uniform and preferential flow produces typical infiltration patterns. We made three tracer experiments in a Norway spruce forest soil and qualitatively identified the dominant flow regime based on stained patterns. We analysed soil texture, fine root density and soil bulk density from preferential flow paths and the soil matrix by means of linear mixed‐effects models. These models can account for dependences in the data structure caused by hierarchical sampling and can deal with missing values. There were between 44% (topsoil) and 76% (subsoil) larger root densities in preferential flow paths than in the soil matrix. No significant differences in soil texture were detected. The bulk density was greater in the soil matrix by 0.12 g cm−3, which is probably because of a greater soil organic matter content of preferential flow paths. Using flow patterns and model results we identified the dominant flow mechanisms. At this study site, roots constituted the main preferential flow paths and induced macropore flow, especially in the topsoil. In the subsoil, root density decreased and inhomogeneous infiltration from preferential flow paths into the soil matrix caused unstable flow.  相似文献   

6.
Conversion of meadow and forest ecosystems to agricultural land generally leads to changes in soil structure. This comparative study presents the composition and stability of structural aggregates in humus horizons (0–30 cm) of noncarbonate silty‐clay Fluvisols in the Kolubara River Valley, W Serbia. Aggregates collected from under a native forest were compared to aggregates from meadows and arable fields which underwent crop rotation for > 100 y. The results show that size distribution and stability of structural aggregates in the humus horizons of arable soil are significantly impaired due to long‐term anthropogenization. In the humus horizons, the content of the agronomically most valuable aggregates (0.25–10 mm) decreased by a factor of ≈ 2, from 68%–74% to 37%–39%, while the percentage of cloddy aggregates (>10 mm) increased by a factor of ≈ 2, from 23%–31% to 48%–62%, compared to forest aggregates. The long‐term‐arable soil had significantly (p < 0.05) lower aggregate stability, determined by wet sieving, than meadow and forest soils. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ≈ 2.5–3 times lower in arable soil (13%–16%) than in forest soil (32%–42%) at a depth of 0–20 cm. The largest mean weight diameters of dry aggregates (dMWD) with a range between 12.6 and 14.7 mm were found in arable soil, vs. 9.5–9.9 mm in meadow and 6.5–8.3 mm in forest. The arable soil had significantly lower mean weight diameters of wet‐stable aggregates (wMWD) and a lower structure coefficient (Ks) than forest and meadow soils. The dispersion ratio (DR) of arable soil was significantly higher than that of forest and meadow soils. Forest and meadow showed a significantly higher soil organic‐matter content (SOM) by 74% and 39%, respectively, compared with arable soil, while meadow uses decreased the SOM content by 57% compared with forest at a depth of 0–10 cm. In conclusion, the results showed that long‐term conventional tillage of soils from natural forest and meadow in the lowland ecosystems of W Serbia degraded soil aggregate–size distribution and stability and reduced SOM content, probably resulting in lower productivity and reduced crop yields.  相似文献   

7.
Surface mining is known to drastically reduce soil organic carbon (OC) pools through various mechanisms associated with topsoil salvage, stockpiling and respreading. Stockpiling is an important management practice; however, the effects of this practice on reductions and recovery of soil aggregation and aggregate OC are poorly understood. Objectives of this research were to monitor soil aggregation and aggregate OC in the surface of a short‐term stockpile (<3 yr) followed by a second movement of stockpiled soils to a temporary location. Samples were analysed for aggregate size distribution, aggregate fractions, OC, and organic matter turnover using 13C natural abundance. Macroaggregate proportions increased and microaggregate proportions decreased after 3 yr of storage, possibly indicating recovery of soil structure. Following the removal of the stockpile and placement in a temporary pile, macroaggregation decreased and free silt and clay fractions increased relative to initially stockpiled soils. The second disturbance resulted in greater destruction of aggregate structure than the initial disturbance during topsoil salvage. Aggregate organic matter (as indicated by OC) increased significantly between the early sampling of the stockpiled soils (<1 yr in storage) and the placement of the topsoil in a temporary pile in macroaggregates and remained the same for microaggregates. Organic matter not protected within aggregates decreased with storage time as this material was available for utilization by microbes while aggregate protected organic matter (OM) remained unchanged or slightly increased for macro‐ and microaggregates with stockpile storage time. Aggregate δ13C values did not indicate inclusion of new OM within soil aggregates after 3 yr of topsoil stockpiling. Short‐term stockpiling was beneficial for aggregation in the surface layers where plant roots and microbial communities were active; however, subsequent movement of the topsoil resulted in a greater loss of soil aggregation relative to the initial topsoil salvage without impacting soil OC.  相似文献   

8.
In the clay‐illuvial horizons (Bt) of Luvisols, surfaces of biopores and aggregates can be enriched in clay and organic matter (OM), relative to the bulk of the soil matrix. The OM composition of these coatings determines their bio‐physico‐chemical properties and is relevant for transport and transformation processes but is largely unknown at the molecular scale. The objective of this study was to improve the interpretation of spectra from Fourier transform infrared spectroscopy in diffuse reflectance mode (DRIFT) by using thermograms and released ion intensities obtained with pyrolysis‐field ionization mass spectrometry (Py‐FIMS) for a more detailed analysis of the mm‐scale spatial distribution of OM components at intact structural surfaces. Samples were separated from earthworm burrow walls, crack coatings, uncoated cracks, root channels, and pinhole fillings of the Bt‐horizons of Luvisols. The information from Py‐FI mass spectra enabled the assignment of OM functional groups also from spectral regions of overlapping DRIFT signal intensities to specific OM compound classes. In particular, bands from C=O and C=C bonds in the infrared range of wave numbers between 1,641 and 1,605 cm?1 were related to heterocyclic N‐compounds, benzonitrile, and naphthalene. The OM at earthworm burrow walls was composed of chemically labile aliphatic C‐rich and rather stable lignin and alkylaromatic compounds whereas the OM of thick crack coatings and pinholes was dominated by heterocyclic N and nitriles and high‐molecular compounds, likely originating from combustion residues. In combination with Py‐FIMS, DRIFT applications to intact samples seem promising for generating a more detailed mm‐scale spatial distribution of OM‐related sorption and wettability properties of crack and biopore surfaces that may serve as preferential flow paths in structured soils.  相似文献   

9.
Various methods exist for the isolation of particulate organic matter (POM), one of the soil‐organic‐matter (SOM) fractions reacting most sensitive on land‐use or soil‐management changes. A combination of density separation and ultrasonic treatment allows to isolate two types of POM: (1) free POM and (2) POM occluded in soil aggregates. POM fractions are closely linked to their biochemical function for the formation and stabilization of aggregates, therefore methods using different aggregate sizes may result in different POM fractions isolated. We evaluated two physical fractionation procedures to reveal whether they yield different POM fractions with respect to amount and composition, using grassland and arable soils with sandy‐loam to sandy–clay‐loam texture and thus low macroaggregate stability. Method I used air‐dried aggregates of <2.0 mm size and a low‐energy sonication for aggregate disruption, method II used field‐moist aggregates <6.3 mm and a high‐energy–sonication procedure for aggregate disruption. POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C‐NMR spectroscopy. With both methods, about similar proportions of the SOM are isolated as free or occluded POM, respectively. The free‐ and occluded‐POM fractions obtained with method I are also rather similar in C and N concentration and composition as shown by 13C‐NMR spectroscopy. Method II isolates a free‐ and occluded‐POM fraction with significantly different C and N concentrations. NMR spectra revealed significant differences in the chemical composition of both fractions from method II, with the occluded POM having lower amounts of O‐alkyl C and higher amounts of aryl C and alkyl C than the free POM. Due to the use of larger, field‐moist aggregates with minimized sample pretreatment, two distinctly different POM fractions are isolated with method II, likely to be more closely linked to their biochemical function for the formation and stabilization of aggregates. High‐energy sonication as in method II also disrupts small microaggregates <63 µm and releases fine intraaggregate POM. This fraction seems to be a significant component of occluded POM, that allows a differentiation between free and occluded POM in sandy soils with significant microaggregation. It can be concluded, that microaggregation in arable soils with sandy texture is responsible for the storage of a more degraded occluded POM, that conversely supports the stabilization of fine microaggregates.  相似文献   

10.
The effects of soil organic matter content, soil water content and duration of wet-sieving on aggregate stability of soils with contrasting cropping histories were investigated. Long-term pasture samples had a greater aggregate stability than long-term arable samples. However, air-drying aggregates before wet-sieving increased the aggregate stability of long-term pasture samples, but decreased that of long-term arable samples. With increasing duration of wet-sieving, the proportion of water-stable aggregates declined until a near-constant value was reached for each sample. Thus, within a sample there are aggregates possessing a wide range of stabilities; with increasing time under arable cropping there is an increase in the proportion of unstable aggregates present, and the measured aggregate stability, therefore, declines. Unstable aggregates (defined as those dispersed after wet-sieving for 1 min) generally had lower organic matter content than stable ones (those still intact after sieving for 15 min). The aggregate stability of a regrassed site (13 years of arable plus 2 years of pasture) was markedly higher than that of a corresponding site from 15 years of arable cropping. Nonetheless, levels of organic matter (organic C, total N and hydrolysable carbohydrate) were almost identical at the two sites. However, aggregates from the regrassed site did have a higher biomass C and water-extractable carbohydrate content than those from the 15-year arable site. For a group of soils with varying cropping histories, aggregate stability was significantly more closely correlated with hot water-extractable carbohydrate content than with organic C or hydrolysable carbohydrate content. It is suggested that the hot water-extractable carbohydrate fraction may represent a pool of carbohydrate involved in the formation of stable aggregates.  相似文献   

11.
Short‐rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long‐term no‐tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3‐ and 6‐year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short‐rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic‐C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic‐C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial‐C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of β‐glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long‐term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil.  相似文献   

12.
We know much about the influence of management on stocks of organic matter in subtropical soils, yet little about the influence on the chemical composition. We therefore studied by CPMAS 13C NMR spectroscopy the composition of the above-ground plant tissue, of the organic matter of the whole soil and of silt- and clay-size fractions of the topsoil and subsoil of a subtropical Acrisol under grass and arable crops. Soil samples were collected from three no-till cropping systems (bare soil; oats−maize; pigeon pea + maize), each receiving 0 and 180 kg N ha−1 year−1, in a long-term field experiment. Soil under the original native grass was also sampled. The kind of arable crops and grass affected the composition of the particulate organic matter. There were no differences in the composition of the organic matter in silt- and clay-size fractions, or of the whole soil, among the arable systems. Changes were observed between land use: the soil of the grassland had larger alkyl and smaller aromatic C contents than did the arable soil. The small size fractions contain microbial products, and we think that the compositional difference in silt- and clay-size fractions between grassland and the arable land was induced by changes in the soil's microbial community and therefore in the quality of its biochemical products. The application of N did not affect the composition of the above-ground plant tissue nor of the particulate organic matter and silt-size fractions, but it did increase the alkyl C content in the clay-size fraction. In the subsoil, the silt-size fraction of all treatments contained large contents of aromatic C. Microscopic investigation confirmed that this derived from particles of charred material. The composition of organic matter in this soil is affected by land use, but not by variations in the arable crops grown.  相似文献   

13.
The degree and rate of the aggregate swelling in loamy sandy, loamy, and clayey soddy-podzolic soils of northwestern Russia have been measured using the methods of image analysis. The results of the study have shown that the degree of swelling of the soil aggregates depended on the proportions of the fine (0.005 mm) and sandy fractions, and the rate of the swelling depended on the density of the soil solid phase. A reliable effect of the soil organic matter content on the swelling rate of the studied objects has been established. The aggregates of the arable soddy-podzolic soils with the highest content of organic matter, as well as the aggregates of the native soils, have been characterized by the lowest swelling rates. A method has been developed for the determination of the swelling rate of soil aggregates that has enabled the assessment of the soil structure. The regression dependences of the degree and rate of the aggregate swelling on the properties and composition of soddy-podzolic soils have been plotted.  相似文献   

14.
Effective management of soil structure and organic matter are essential in organic cropping to ensure good rooting conditions and to optimize the production of mineralized N and thus minimize greenhouse gas emissions. We investigated how mid‐winter or early spring ploughing and three grazing duration treatments prior to ploughing influenced soil structure, soil organic matter and plant root growth under the first spring barley crop after a grass–clover ley. The experiment was carried out over two seasons. We also studied the soil under first‐year oats in a long‐term rotations experiment where 2 or 3 years of arable crops followed 3 or 4 years of grass. Pore size distribution and pore continuity, bulk density, particulate (light fraction) organic matter, readily oxidizable organic matter (ROM), aggregate size distribution and root length densities were measured. Macroporosity appeared to be the best indicator of soil physical fertility; it was sensitive to changes in soil structure arising from compaction and root growth. This, along with visual examination, revealed the loosening resulting from ploughing. The generally favourable macroporosity amongst small, stable aggregates reduced the likelihood of development of anaerobism. Macroporosity and aggregate size can be estimated from visual examination of the soil, a method that offers the advantage of being quick and of sampling a large volume. The content of ROM was high 6.1–6.4 g 100 g?1 whole soil. However, particulates formed only a small fraction (6–9%) of the ROM. Despite the favourable ROM and structure, the soil was susceptible to compaction damage during seedbed preparation in wet soil after ploughing which reduced grain yield in some plots. Grazing by sheep before ploughing and date of ploughing had minor effects on soil quality. Grazing for 2 months prior to ploughing increased root length density in the upper topsoil in the following arable crop, possibly because of the higher quality of the animal and grass–clover residues. Conservation of soil quality was related more to secondary tillage and sowing operations after ploughing than to duration and timing of grazing.  相似文献   

15.
Human‐caused trampling that results from excessive recreational use has caused damage to soil and vegetation in forest ecosystems in the Belgrad Forest of Istanbul. The objectives of this study were to examine effects of exclosure on selected soil properties and to determine the recovery time required for soil characteristics in a broadleaf forest recreation site. Litter biomass and topsoil (0–15 cm) were sampled in the forest, exclosure and recreational sites, and soil samples were analysed for saturation capacity, permeability, bulk density, total porosity, organic matter, root biomass, electrical conductivity and soil pH. Results showed that saturation capacity, permeability, total porosity and organic matter increased whereas bulk density decreased significantly in the topsoil under the exclosure, and all these soil properties in the topsoil of the exclosure were greater than those of recreational site. When effects of main factors were compared, averaging over sampling year and soil sampling depth, soils from the exclosure had significantly greater saturation capacity, permeability, total porosity, organic matter and litter biomass and lower bulk density values than the soils from recreational site. Six years of exclosure was effective in improving most of the soil properties in the topsoil. When topsoil and subsoil are considered together, it is obvious that a longer time period is needed for soil recovery in the forest recreational sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
《Pedobiologia》2014,57(3):161-169
C mineralization and aggregate stability directly depend upon organic matter and clay content, and both processes are influenced by the activity of microorganisms and soil fauna. However, quantitative data are scarce. To achieve a gradient in C and clay content, a topsoil was mixed with a subsoil. Single soils and the soil mixture were amended with 1.0 mg maize litter C g soil−1 with and without endogeic earthworms (Aporrectodea caliginosa). The differently treated soils were incubated for 49 days at 15 °C and 40% water holding capacity. Cumulative C mineralization, microbial biomass, ergosterol content and aggregate fractions were investigated and litter derived C in bulk soil and aggregates were determined using isotope analyses. Results from the soil mixture were compared with the calculated mean values of the two single soils. Mixing of soil horizons differing in carbon and clay content stimulated C mineralization of added maize residues as well as of soil organic matter. Mixing also increased contents of macro-aggregate C and decreased contents of micro-aggregate C. Although A. caliginosa had a stimulating effect on C mineralization in all soils, decomposition of added litter by A. caliginosa was higher in the subsoil, whereas A. caliginosa decreased litter decomposition in the soil mixture and the topsoil. Litter derived C in macro-aggregates was higher with A. caliginosa than with litter only. In the C poor subsoil amended with litter, A. caliginosa stimulated the microbial community as indicated by the increase in microbial biomass. Furthermore, the decrease of ergosterol in the earthworm treated soils showed the influence of A. caliginosa on the microbial community, by reducing saprotrophic fungi. Overall, our data suggest both a decrease of saprotrophic fungi by selective grazing, burrowing and casting activity as well as a stimulation of the microbial community by A. caliginosa.  相似文献   

17.
Aliphatic C most probably derived from ester‐bound moieties was found to be present in sandy subsoil horizons. The hydrophobic nature of such compounds may increase their stabilization potential. Therefore, the aim of this study was to investigate the potential of aliphatic compounds in mineral soil horizons along a Dystric Cambisol profile under beech forest to increase hydrophobicity. The conceptual approach included the analyses of soil samples before and after solvent extraction and base hydrolysis for elemental and isotopic composition. Additionally, the advancing contact angle was measured to quantify hydrophobicity. Curie‐point pyrolysis GC/MS was carried out to characterize the nature of alkyl C present in subsoil samples. A close correlation between the 14C activity and the stable‐C‐isotope ratio (δ13C) indicates isotopic fractionation upon C stabilization in subsoils. Free lipids contributed less than 10% to the organic C found in subsoil horizons. Base hydrolysis revealed very high amounts of hydroxyalkanoic acids in the B horizons of the acid forest soil. Hydrophobicity of SOM was not found to be correlated to esterified‐ or free‐lipid content. The contact angle was in a similar range for all bulk soil horizons, suggesting greater hydrophobicity of organic matter in subsoil horizons considering their very low concentrations of organic C compared to the A horizon. The quantity and nature of pyrolysis products change with increasing depth in the soil profile. Aliphatic products cannot be detected in B and C horizons by Curie‐point pyrolysis GC/MS.  相似文献   

18.
Abstract

The effect of retaining living trees in situ following manual land clearing on soil physical properties was studied in a Typic Kandiudult in southern Cameroon. Soil compaction in the surface 100 mm was greatest with complete clearing and least under forest, with retention of living trees resulting in soil compaction levels which were intermediate to both the former. Soil compaction in the surface 100 mm also increased with increasing distance from the tree trunk (or tree stump with complete clearing). Both the above observations were attributed to a combination of high root density, high macrofaunal activity, high ground cover, high organic matter content and low traffic under forest and at the base of trees or tree stumps. Increasing soil compaction also occurred with increasing depth, and was attributed to the existence of few biopores in the subsoil horizons. Absence of biopores was thought to be due to low root densities in the subsoil caused by a combination of low macroporosity, low air porosities during the wet season and low pH. In comparison to sub‐humid and semi‐arid ecologies, therefore, the beneficial effects of retaining living trees in situ following land clearing at this site were less.  相似文献   

19.
The spatial variability of soil aggregate stability and its relationship to runoff and soil erosion were examined in a catena of soils and vegetation in a semiarid environment at the Rambla Honda field site (Tabernas, Almería, SE Spain) to evaluate the validity of structural stability as a soil erosion indicator in sandy loam range soils. The influence of soil properties and topography on the variability of aggregate stability was also examined. Methods include: 1) aggregate stability assessment at 12 sites (3 repetitions per site) on the hillslope by two methods: a) aggregate size distribution by dry sieving b) water drop test; 2) soil organic carbon content; 3) particle size distribution determination; 4) terrain attributes derived from a digital elevation model (1-m resolution); 5) monitoring runoff and erosion for nearly 3 years in eight (10 × 2 m) plots distributed over the hillslope. Results: 41% of the average soil mass is formed by > 2-mm aggregates. However, wet aggregate stability is poor, with a mean (of a total of 1440 aggregates) of only 26 drop impacts necessary to break up a wet aggregate (pF = 1). Significant relationships were found in the number of water drops required for aggregate breakdown and runoff and erosion rates. However, no significant relationships between the mean weight diameter of aggregates under dry conditions and runoff or erosion rates were observed. The relationships of aggregates with other soil properties, hillslope position and proximity to plants are also analysed. The most significant correlation found was between the number of drop impacts and soil organic matter content. The stability of topsoil aggregates seems to be a valuable indicator of field-assessed runoff and inter-rill erosion of sandy loam range soils under semiarid conditions.  相似文献   

20.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号