首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A study was conducted under controlled environment conditions in a phytotron to determine the nature of the inheritance of resistance Helminthosporium leaf blight (HLB) in a synthetic hexaploid wheat line, ‘Chirya‐3’, against the isolate KL‐8 of Bipolaris sorokiniana from the major wheat growing region of India. Crosses were made between two susceptible lines ‘WH 147’ and ‘Chinese Spring’. Analyses of F1 and F2 populations of these two crosses (‘WH 147’בChirya‐3’ and ‘Chinese Spring’בChirya‐3’) showed that resistance against the isolate in ‘Chirya‐3’ was governed by two recessive genes functioning in a complementary interaction giving an F2 segregation pattern of 1 : 15 (resistant : susceptible). The segregation pattern of the resistant F2 progenies in F3 families from both crosses confirmed that two homozygous recessive genes were responsible for resistance to the isolate of Bipolaris sorokiniana in the synthetic line ‘Chirya‐3’. It is proposed that the genes be designated as hlbr1 and hlbr2.  相似文献   

2.
Inheritance of resistance to anthracnose caused by Colletotrichum capsici (Syd.) Butler & Bisby was studied in interspecific Capsicum populations derived from a cross between a Thai elite cultivar Capsicum annuum L.‘Bangchang’ and a resistant line C. chinense Jacq.‘PBC932′. The resistance was assessed by measuring lesion area per fruit area (LFA) on detached chili fruits, using a laboratory‐based injection inoculation. Nil symptoms resembling the resistant parent ‘PBC932’ were also identified in the progeny F2 and BC1 populations. Segregation of resistance (nil LFA) and susceptibility in the F2 fitted a 1: 3 Mendelian ratio, indicating that resistance was responsible by a single recessive gene. The segregation of the trait in the testcrosses in both BC1s also confirmed the 1: 3 gene segregating model as found in the F2.  相似文献   

3.
J. Liu  D. Liu  W. Tao  W. Li  S. Wang  P. Chen  S. Cheng  D. Gao 《Plant Breeding》2000,119(1):21-24
Breeding durable resistance to pathogens and pests is a major task for modern plant breeders and pyramiding different resistance genes into a genotype is one way of achieving this. Three powdery mildew resistance gene combinations, Pm2+Pm4a, Pm2+Pm21, Pm4a+Pm21 were successfully integrated into an elite wheat cultivar ‘Yang047′. Double homozygotes were selected from a small F2 population with the help of molecular markers. As the parents were near‐isogenic lines (NILs) of ‘Yang158′, the progenies showed good uniformity in morphological and other non‐resistance agronomic traits. The present work illustrates the bright prospects for the utilization of molecular markers in breeding for host resistance.  相似文献   

4.
A set of 21 monosomic (2n ‐ 1) and the disomic (2n) lines of the ‘Chinese Spring’ cultivar were crossed with ‘Chirya‐3′, the CIMMYT synthetic wheat line which has been identified as highly resistant for Helminthosporium leaf blight disease (HLB), in order to locate the genes governing disease resistance. The F1 and segregating populations were challenged and screened against the most virulent pure mono‐conidial HLB isolate KL‐8 (Karnal, India). The F1 progenies of the crosses were found to be susceptible because of the recessive nature of resistance. The F2 progeny of the control cross (‘Chinese Spring’בChirya‐3’), segregated in the ratio of 1: 15 (resistant: susceptible), indicating that resistance to HLB was controlled by a pair of recessive genes. While the F2 progeny of 19 monosomic crosses segregated in the ratio of 1: 15 (resistant: susceptible), the progeny of the remaining two crosses, 7B and 7D, deviated significantly from the ratio, revealing that 7B and 7D were the critical chromosomes for resistance genes that were located one on each chromosome. Moreover, the critical lines, 7B and 7D, confirmed the digenic complementary recessive nature of gene action by fitting well with the overall pooled F2 segregation ratio of 13: 51 (resistant: susceptible) as expected for digenic complementary recessive resistance. The F3 segregation ratios of the critical crosses, based on their pooled F2 analysis, was estimated as 19: 32: 13 (non‐segregating susceptible: segregating as susceptible and resistant: non‐segregating resistant). F3 progenies when tested with these ratios showed goodness‐of‐fit, confirming that the two pairs of recessive resistance genes were located on chromosomes 7B and 7D.  相似文献   

5.
V. Lind 《Plant Breeding》2000,119(6):449-453
Two diallels were analysed for general combining ability (GCA) and specific combining ability (SCA) to study the resistance of crosses‐between wheat genotypes, advanced to the F5 generation, to Pseudocer‐cosporella herpotrichoides. The parents either carried the resistance‐gene Pch‐1 or had different levels of quantitative resistance, one genotype was susceptible. At medium milk‐ripening, significant effects were‐found for GCA and SCA. GCA effects were the more important. Diallel crosses between genotypes, all carrying Pch‐1, revealed interactions‐of the gene with the genotypic background. Some combinations had a‐higher level of resistance than the best parent. In these populations'CH‐75417’ was involved as a parent. Both ‘CH‐75417’ and ‘F–210.13.4.42’ had significant GCA effects. Crosses between quantitatively resistant parents yielded populations that transgressed both parents. The increased resistance level was associated with ‘Cappelle‐Desprez’, distinguished by its high GCA. In some crosses SCA contributed significantly to an increase in resistance level. Selection for resistance within the best advanced populations is recommended since it‐takes advantage of additive gene action and the high heritability estimates based on ELISA values in plant progenies.  相似文献   

6.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

7.
Inheritance of resistance to four Philippine races of bacterial Might caused by Xanthomonas campestris pv. oryzae was investigated in four cultivars of rice, Oryza sativa L. Resistance to three races in ‘Benamuri’ and ‘Aus 192’ is governed by xa-5. In ‘Tepal Boro’ and ‘Bazail 975′, resistance to races 1, 2. and 3 is conferred by xa-5, but another recessive gene confers resistance to race 4. This recessive gene is closely linked to xa-5 and may be allelic to xa-13. Rice cultivars with xa-13 are resistant to prevalent races of bacteria] blight in the Indian subcontinent and should thus prove useful as donors for resistance to bacterial blight in rice breeding programs.  相似文献   

8.
The inheritance of resistance to root‐lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half‐diallel design of F1 and F2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line ‘GS50a’, the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F1 and F2 populations. The synthetic hexaploid wheat line ‘CPI133872’ was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than ‘GS50a’ The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.  相似文献   

9.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

10.
Triticum tauschii provides breeders with a valuable source of resistance and tolerance genes. Elucidation of the inheritance of traits in this species that hinder its use in breeding programmes is therefore of interest to wheat breeders. Inheritance of threshability was investigated in the crosses of four non-free-threshing (NFT) synthetic hexaploids (Triticum turgidum×T. tauschii) and two free-threshing (FT) T. aestivum cultivars during four crop seasons over 3 years at E1 Batan and Ciudad Obregon, Mexico. The parents, their F1 Hybrids and individual F2 plant-derived F3 progenies of the crosses revealed that ‘Altar 84’/T. tauschii (219), ‘Chen’/T. tauschii (205), ‘Chen’/T. tauschii (224), and ‘Duergand’/T. tauschii (214) have independently segregating loci with two dominant alleles controlling threshability. Intercrosses among the synthetics, except ‘Altar 84’/T. tauschii (219), showed the genes to be allelic to each other. The cross between the FT cultivars showed no segregation in the F3 generation, indicating common recessive genes. Based on these findings, population sizes of the synthetic-derived breeding materials should be increased to improve the chances of selecting FT desirable plants in the programme.  相似文献   

11.
Inheritance of green peach aphid resistance in the peach cultivar 'Rubira'   总被引:4,自引:0,他引:4  
The green peach aphid (GPA) is a serious pest of peach tree in many areas of the world. To date, only one GPA resistance gene has been assigned in peach. This study was initiated to determine the inheritance of GPA resistance in the red leaf peach rootstock cultivar ‘Rubira’. Crosses were made between ‘Rubira’ and the susceptible green leaf peach rootstock cultivar ‘Pamirskij 5′. Genetic analysis was performed on the parents, F1 and F2 progenies. Analyses of segregation patterns of plants in F1 (1:0) and F2 (3:1) indicated single dominant gene control of GPA resistance in ‘Rubira’. Reddish spots, probably due to aphid feeding punctures, are associated with, but not themselves responsible for, the GPA resistance in ‘Rubira’. No relationship was found between GPA resistance and the red leaf character of ‘Rubira’.  相似文献   

12.
S. Chen    C. G. Xu    X. H. Lin  Q. Zhang 《Plant Breeding》2001,120(2):133-137
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (X00), is one of the most devastating diseases of rice world‐wide; it is also a serious problem of hybrid rice production in China. In this study, a molecular marker‐assisted introgression of Xa21, a gene highly resistant to a broad spectrum of Xoo strains, from ‘IRBB21’ was performed to improve the BB resistance of‘6078′, a new restorer line with high yielding potential. The entire process took one generation of crossing followed by three generations of backcrossing and one generation of selfing. The presence of Xa21 in each generation was determined by both polymerase chain reaction (PCR) and pathogen inoculation. Recombinations between Xa21 and flanking markers were identified by PCR analysis. Background selection was conducted in BC1F1 and BC2F1 using amplified fragment length polymorphism (AFLP) markers detecting a total of 129 polymorphic bands between‘6078’ and ‘IRBB21′. The individual selected in BC3F2, or‘6078′(Xa21), carried a fragment of less than 3.8 cM from the donor line in the Xa21 region on chromosome 11, and about 98.8% of the genetic background from the recurrent parent. The results showed that‘6078′(Xa21) had the same level and spectrum of BB resistance as the donor parent ‘IRBB21′, while maintaining the agronomic performance and combining ability of the original 6078. A significant increase in BB resistance was also achieved in the hybrid using 6078(Xa21) as the restorer line.  相似文献   

13.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

14.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

15.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):520-522
Recessively inherited gene Sr2 has provided the basis of durable resistance to stem rust (caused by Puccinia graminis tritici) in wheat (Triticum aestivum L.) worldwide. The associated earhead and stem melanism or ‘pseudo‐black chaff’ is generally used as a marker for this gene. Sr2 has been postulated in many wheat cultivars of India including ‘Lok 1’, based on associated pseudo‐black chaff in adult plants, and leaf chlorosis in seedlings. However, dominant inheritance of the resistance factor operating in ‘Lok 1’, and a 13 : 3 (resistant : susceptible) F2 segregation in the ‘Sr2‐line’ (‘Chinese Spring’6 × ‘Hope’ 3B) × ‘Lok 1’ cross confirmed that Sr2 was absent in ‘Lok 1’. Susceptible plants with a pseudo‐black chaff phenotype were observed in F2 populations of ‘Agra Local’ (susceptible) × ‘Lok 1’, and the ‘Sr2‐line’ × ‘Lok 1’ crosses. Most of the F3 families derived from the susceptible F2 segregants with pseudo‐black chaff phenotypes were true breeding for the expression of pseudo‐black chaff with susceptibility to stem rust. Thus, linkage of pseudo‐black chaff with Sr2 in wheat can be broken, and hence, caution may be exercised in using pseudo‐black chaff as a marker for selecting Sr2 in breeding programmes.  相似文献   

16.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

17.
The leaf rust resistance gene on chromosome 7AL of ‘Chinese Spring’ transfer no. 12 derived from Thinopyrum ponticum, was transferred to durum wheat by standard backcrossing. In ‘Agatha’ and ‘Indis’ a leaf rust resistance gene from Thinopyrum ponticum and Thinopyrum ponticum respectively, is found on a translocated segment on chromosome arm 7DL. The use of the ‘Langdon’ disomic D-chromosome substitution lines for 7A and 7B resulted in the recovery of tetraploid leaf-rust resistant lines from the crosses with ‘Agatha’ in the B2F1 generation. Tetraploid lines carrying the ‘Indis’ translocation segment were recovered in the B2F2 generation. The F2 segregation ratios for rust resistance after selfing or back-crossing generally fitted a 1: 1 ratio indicating non-transmission of the translocation segments in the male gametes. Homozygous resistant plants were not obtained. Meiotic instability was observed in 28 chromosome B2 F2 derivatives of the crosses between ‘Chinese Spring’ transfer no. 12 and durum wheat.  相似文献   

18.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

19.
M. T. Assad 《Plant Breeding》2002,121(2):180-181
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a major economic pest of small grains in many countries. An experiment was therefore conducted to determine the inheritance of gene(s) controlling resistance to RWA in a resistant tetraploid durum wheat line. This resistant line,‘1881′, was crossed to a susceptible line, ‘Orejy‐e‐Kazeroon’, and then F1 F2 and BCF1 (backcross to susceptible line) seedlings were screened in a greenhouse for RWA resistance following artificial infection. Resistance in ‘1881’ was apparently controlled by one dominant gene. Since Dnl, Dn2, dn3, Dn4 and Dn5 have been reported to be located on genome D, it was reasoned that the resistance gene in ‘1881’ is not allelic to them.  相似文献   

20.
J. P. Wilson 《Plant Breeding》1997,116(3):239-243
Quantitative disease resistance should be exploited to complement the use of genes for qualitative or hypersensitive resistance. The expression and inheritance of partial rust resistance of pearl millet inbreds 700481-21-8 and ‘ICMP 501’ crossed to moderately susceptible Tift 383’ were evaluated in seedling assays in the greenhouse and in generation mean and single-seed descent populations in the field. Uredinium sizes on seedling leaves of hybrids were generally intermediate to those of the parental inbreds and consistent differences could be discerned in uredinium lengths. Area under the disease progress curves (AUDPCs) of individual plants of the parents, F1, F2, and backcross F1S to each parent were determined from field trials. Broad-sense heritability estimates for both crosses were 43%. In generation mean analyses, additive genetic effects were significant in the cross of 700481–21–8 × Tift 383′, whereas additive, dominance, and dominance × dominance epistatic effects were significant for ‘ICMP 501’בTift 383’. The number of genes conferring partial resistance was estimated to be two for 700481–21–8 and 2.5 for ‘ICMP 501’. A hierarchical single-seed descent analysis revealed significant differences in AUDPC among F3-derived F4 progenies in the F6 generation. Selection for progenies with greater resistance should be possible among F4 families. Higher levels of resistance were observed in progeny derived from ‘ICMP 501’. Because segregation of resistance differed among progeny derived from 700481–21–8 and ‘ICMP 501’, the genetic basis for resistance probably differs between the two inbreds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号