首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Germination and emergence are critical life stages for annual plants and so their full understanding is essential for managing arable plant populations. This study investigated the most important species‐specific environmental cues that regulate seed germination and emergence (temperature and light) of the arable Ranunculaceae species Consolida orientalis, Consolida pubescens, Delphinium gracile, Delphinium halteratum ssp. verdunense and Nigella gallica, to propose management strategies for their preservation in agro‐ecosystems. Growth chamber and outdoor pot experiments were conducted for two consecutive seasons to analyse light (complete darkness or 12 h light) and temperature (5/10, 5/15 and 10/20°C) requirements and emergence patterns. The relative light germination requirement (ΔGlight), which extends from ?100 (complete darkness) to 100 (light), was estimated. Weibull functions were fitted to observed emergence (%) in pots. For all species, germination was higher in complete darkness than with a light regime (?60 < ΔGlight < ?95). This dark requirement indicates better germination for buried seeds. A tillage operation just after seed shed is therefore recommended. Consolida spp. germinate and emerge almost exclusively in autumn–winter, while Delphinium spp. and N. gallica can also germinate in spring. These arable plants would be able to adapt to delayed sowings, an important strategy for avoiding early‐emerging competitive weeds. Facultative winter‐germinating species could face early herbicide treatments if sufficient emergence occurs in winter–spring. These results bring new information to help develop conservation strategies for these species in agro‐ecosystems.  相似文献   

2.
Seed germination partly depends on both base temperature (Tb) and base water potential (Ψb), which currently are known only for a small number of species. Laboratory experiments were conducted to estimate these parameters for 14 weed species using the ‘x‐intercept’ method. Tb and Ψb (°C and MPa) for the 14 weed species were as follows: Amaranthus retroflexus (8.9 and ?0.95), Ambrosia artemisiifolia (3.6 and ?1.28), Avena fatua (2.2 and ?1.02), Capsella bursa‐pastoris (4.5 and ?0.95), Chenopodium album (5.9 and ?0.80), Echinochloa crus‐galli (6.2 and ?1.19), Geranium dissectum (0.6 and ?3.31), Matricaria perforata (2.0 and ?0.75), Picris echioides (5.2 and ?0.79), Polygonum lapathifolium (5.8 and ?1.55), Senecio vulgaris (2.5 and ?1.23), Setaria pumila (8.6 and ?0.75), Solanum nigrum (11.6 and ?0.89) and Veronica hederifolia (0.2 and ?1.67). The two parameters were used to determine potential germination times during expected non‐dormancy periods for three contrasting climatic years in Dijon, France. The number of potential germination days varied little among the tested climatic years, but substantially among species, ranging from 95 ± 9 days for V. hederifolia to 280 ± 7 days for M. perforata. These results may be of value for development of predictive growth models and understanding times when weed control may be most feasible.  相似文献   

3.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

4.
T K Das  D K Das 《Weed Research》2018,58(3):188-199
Variable dormancies result in periodicity in the germination of weeds and make weed control a repetitive practice. Under some conditions, repeated applications of selective herbicides can lead to the dominance of perennial weeds like Cyperus rotundus . Our hypothesis was that applying a chemical dormancy breaker (DB ) plus herbicide mixture would better control a mixture of weed species. Three experiments were designed to develop a cost‐effective DB treatment and to evaluate its dose with herbicides tank‐mixtures for effective weed management. KNO 3 and gibberellic acid GA 3 as dormancy breakers offered comparable effects, but KNO 3 was more economical than GA 3. KNO 3 at a 6% concentration was more effective in promoting weed germination than a 3% concentration in soyabean. A combination of KNO 3 (6%) and pre‐emergence pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 controlled annual weeds by 99% and reduced C. rotundus growth by 83%. This treatment gave significantly higher soyabean yield and net returns. Similarly, a tank‐mixture comprising of clodinafop 0.06 kg a.i. ha?1 + metsulfuron 0.006 kga.i. ha?1 was more effective against weeds than pre‐emergence tank‐mix application of pendimethalin 0.75 kg a.i. ha?1 + carfentrazone‐ethyl 0.02 kg a.i. ha?1 and isoproturon 0.75 kg a.i. ha?1. The use of pre‐emergence tank‐mixture of pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 should exhaust seed/tuber bank if repeated and reduce the application cost of herbicides by 50% and the dose, residue and cost of pendimethalin by 25%.  相似文献   

5.
Raphanus raphanistrum (Brassicaceae) is considered amongst the world's worst agricultural weeds. We address critical issues in its management by studying the pathway of colonisation at local scales. For this, we assessed the small‐scale spatial genetic structure of 231 samples collected from three different sites across the Cape Floristic Region, South Africa, using 11 nuclear microsatellite markers. Although natural pollen and seed dispersal were expected to be restricted, we found no significant relationship between genetic and geographical distance within sites. Instead, our results suggest that R. raphanistrum had colonised new habitats via jump dispersal, rather than through natural diffusive dispersal at local scales. We did not find evidence for road verges as dispersal corridors, as evidenced by a lack of isolation‐by‐distance at local scales. Instead, the absence of spatial genetic structure suggests that R. raphanistrum had rapidly spread throughout its current range, possibly facilitated by human‐mediated actions. Management plans addressing containment or suppression of the weedy species R. raphanistrum (and possibly other weedy species) should take the high degree of connectivity between distant geographical localities into account.  相似文献   

6.
The ascomycete fungus Microdochium nivale is a major pathogen of many species of the gramineae. Control measures rely heavily on chemical fungicides, making alternative means of disease reduction desirable. Phosphite (PO33?), has proven efficacy in reducing susceptibility of different species of gramineae to oomycetes, and has adverse effects on the in vitro growth of numerous other pathogens. The effect of phosphorous acid (H3PO3), phosphoric acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium phosphate (KH2PO4) and potassium hydroxide (KOH) on the in vitro mycelial growth and development of M. nivale was determined. Radial growth on amended potato dextrose agar (PDA) was used to calculate mean daily growth and percentage inhibition. PO33? had a significant inhibitory effect on mycelial growth, with EC50 values ranging between 35.9 and 40.99 μg mL?1, whilst PO43? and KOH had no significant inhibitory effect. Microscopic examination of mycelia showed morphological deformities in hyphae growing on PO33? amended PDA, whilst hyphal growth was normal on PO43? and KOH amended PDA. Conidial germination of M. nivale was significantly reduced following immersion in solutions of 50, 100 and 250 μg mL?1 of PO33?, while PO43? and KOH at the same concentrations induced no inhibitory affect. These results show that PO33? is a significant inhibitor of the growth of M. nivale and may have the potential to be used as a chemical control agent in the field.  相似文献   

7.
The effects of irrigation on verticillium wilt in olive, in terms of morphological, biomass and physiological parameters were evaluated on pot‐grown trees maintained in the field for 3 years. Plants inoculated and noninoculated with Verticillium dahliae were irrigated to high and low range of soil water content (HR and LR) at daily (DF; about 2 days/event), weekly (WF) and daily‐weekly (DWF) drip‐irrigation frequency. Morphological parameters, relative biomass and biomass water‐use efficiency were higher at LR than at HR (with few exceptions) and at DF than at other frequencies in noninoculated and inoculated plants, but the fungus reduced those parameters by 17.0–38.5%. Lower root weight ratio, relative biomass and shoot length as area originated at HR in noninoculated plants, could be favourable to the accumulation of root infections and the amount of fungus per tissue length in inoculated plants because higher infection was known at HR. Moreover, higher aerial biomass and length promoted by irrigation at DF could prevent the more severe expression of symptoms, which occurred at WF and DWF in the presence of Verticillium. Negative correlations were found between indicated parameters and disease. Lower water stress (SΨ), and higher stomatal conductance (gs) and net photosynthesis at DF in noninoculated plants could limit the disease by improving water status, as SΨ was increased by the fungus only at WF and DWF, and gs and disease were negatively correlated. LR‐DF treatment minimized the disease and kept the growth, water‐use efficiency and physiological parameters in inoculated plants to levels close to noninoculated plants.  相似文献   

8.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

9.
Portulaca oleracea, an r‐strategist, is one of the world's most troublesome weeds. During hot seasons, P. oleracea frequently becomes monodominant in choy sum (Brassica parachinensis) fields in Guangzhou city, southern China. Here, we studied the seasonal dynamics of P. oleracea's germinable soil seedbank, population density and above‐ground biomass in choy sum fields that had been cultivated continuously for several years. Using P. oleracea seeds collected from these fields, we tested seed dormancy, survival and germination, seedling growth and generation time. Portulaca oleracea occurred at high levels during the hot season, but its occurrence was low, and the germinable soil seedbank was much greater during the cold season. The weed's opportunistic characteristics allowed it to avoid freezing and to proliferate during optimal conditions. Portulaca oleracea's generation time was very flexible, as short as 31 days during the hot season, but longer than 100 days during the colder season. Seed dormancy tended to be shorter when the seeds were stored at a higher temperature. At a temperature of 35°C, both seed germination and seedling growth showed advantages over those of choy sum. Storage for one year at a temperature of ?20°C or burial in a paddy field did not significantly reduce P. oleracea seed germination. Nevertheless, seed storage at a temperature of 15°C and soil coverage of 0.5 cm on top of the seeds significantly constrained seed germination. ‘Stale seedbed’ and/or coverage of the surface with soil are recommended during the hot season. However, rotation of rice and upland crops is not an efficient method for managing Portulaca oleracea infestation.  相似文献   

10.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

11.
A recent study on fungal mating type genes revealed two MAT alleles within homothallic Sclerotinia sclerotiorum differentiated by an inversion, Inv? (inversion negative) and Inv+ (inversion positive). An analysis of mating type in closely related S. minor was conducted to shed light on the evolution of this MAT inversion. Inv? and Inv+ MAT alleles were identified in S. minor and were characterized. Both MAT alleles in S. minor were flanked by APN2 and SLA2, and consisted of two idiomorphs fused as in other homothallic ascomycetes. However, in the Inv+ MAT, the 3·6 kb MAT region was inverted relative to the Inv? MAT. Except for the inversion, both Inv? and Inv+ MAT in S. minor were equal in size and identical in nucleotide sequence. The MAT inversion in Inv+ S. minor was at exactly the same place as in Inv+ S. sclerotiorum and affected three of four MAT genes: MAT1‐1‐1 was truncated and MAT1‐2‐4 and MAT1‐2‐1 were inverted. Unlike S. sclerotiorum, expression of MAT genes did not differ between Inv? and Inv+ S. minor. The 250 bp inverted repeat motif that flanked the inverted MAT region in S. sclerotiorum and believed responsible for the MAT inversion was also found in S. minor, but was 256 bp. Depending on the MAT genes, 93–96% nucleotide identity was observed between Sclerotinia species. Both Inv+ and Inv? MAT S. minor and S. sclerotiorum isolates were commonly found in lettuce fields of Arizona along with MAT heterokaryons.  相似文献   

12.
We developed 20 microsatellite markers to genotype over 100 populations of the parasitic weed Phelipanche ramosa, which covers a wide host crop and geographic range. A representative core collection of 15 populations was also used in cross‐infestation assays to study host preference during germination, attachment and shoot formation. We observed low genetic differentiation within most of the populations, but high genetic differentiation between populations partitioned into 3 genetic groups with different host preferences and geographic distributions. Genetic group 1 is detected exclusively in western France and on various host crops, notably winter oilseed rape (WOSR) and not hemp. Cross‐infection assays confirmed its incompatibility with hemp and showed its preference for WOSR and tobacco in terms of germination and attachment success. The group 2 populations share a large geographic distribution in France and Europe, low germination success with WOSR and high germination success, attachment success and shoot formation with hemp, tobacco or tomato. The subclades 2a and 2b include most of the French populations in hemp crops in eastern France and in tobacco fields in several European countries respectively. The genetic analyses revealed the potential of the three groups to increase their geographic range in the future. Intermediate genetic groups showed higher intrapopulation diversity and represent potential stocks for new host race emergence. Those findings argue in favour of the existence of host races in P. ramosa and should be considered for appropriate management strategies, notably in breeding programmes for resistance against this parasitic weed.  相似文献   

13.
Increased atmospheric carbon dioxide (CO2) and soil nitrogen (N) may confer competitive advantages to invasive species over native plant species. We conducted a two‐way factorial experiment, growing the model invasive plant Arundo donax in CO2 growth chambers to test how CO2 and N availability interact to affect plant growth and biomass allocation. CO2 was supplied at c. 400 mg L?1 and c. 750 mg L?1. N was supplied as ammonium nitrate at 640, 320 and 80 mg L?1. We hypothesised that the fertilisation effect of CO2 enrichment would offset limitations from N deficiency. The results indicated that A. donax plants grown with enriched CO2 and abundant N accumulated approximately 50–100% more biomass and allocated approximately 50% more biomass to rhizomes than plants grown under ambient CO2 conditions. Neither treatment affected the leaf area per unit mass (specific leaf area; SLA). Greater growth will likely increase A. donax's competitive potential, because increased rhizome biomass has been associated with increased stress tolerance and post‐disturbance resprouting capacity. The consistent SLA under all treatments suggests that A. donax has a morphological strategy that prioritises increasing leaf quantity over increasing individual leaves' photosynthetic potential. These results reveal the ecological strategies that contribute to the successful establishment, dominance and persistence of this invasive plant species.  相似文献   

14.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

15.
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol?1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol?1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust‐infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.  相似文献   

16.
The use of soil-surface applications of finely powdered calcium hydroxide (Ca(OH)2) to inhibit Sclerotinia minor sclerotial germination and infection at the collar region of lettuce plants is described. In the laboratory, a pH > 8·0 reduced sclerotial germination of the three S. minor isolates tested. In the glasshouse, surface applications of 2–10 t Ca(OH)2 ha−1 raised the pH of the top 1–2 cm of a duplex sandy loam soil above 8·5 for at least 8 weeks without affecting soil pH within the transplant root zone. There was a linear relationship between the rate of Ca(OH)2 applied and disease control, with complete disease suppression at 10 t Ca(OH)2 ha−1. In field trials on two soil types (duplex sandy loam, pH 6·0; and red ferrosol, pH 6·9), a rate of 2·5 t Ca(OH)2 ha−1, maintained soil-surface pH above 8·5 for 1–3 weeks and provided up to 58% reduction in lettuce drop. Application of polyvinyl alcohol (a soil-conditioning polymer) over the Ca(OH)2 layer appeared to reduce Ca(OH)2 loss by wind, but did not improve retention of raised soil-surface pH or disease suppression. Ca(OH)2 treatment gave similar disease control to the industry standard treatment of a procymidone-based fungicide seedling drench. A combined treatment of Ca(OH)2 and fungicide drench gave greater control than either individual treatment, and equivalent control to fungicide drench and three procymidone foliar sprays, offering integrated management options. The use of soil-surface-applied Ca(OH)2 with fungicides, rotation and drip irrigation offers an opportunity for enhanced and sustainable control of lettuce drop.  相似文献   

17.
Orobanche minor is a parasitic weed that attaches to the roots of red clover (Trifolium pratense) and a number of other broad‐leaved plant species in the Pacific Northwest USA. Orobanche minor seed must be stimulated by host plant exudates for germination and attachment to occur. However, plant species called false‐hosts can stimulate parasitic seed germination without attachment. These species could be utilized as trap crops to reduce the amount of parasitic seed in infested soil. Wheat (Triticum aestivum), was found to be a false‐host of O. minor; therefore, growth chamber, glasshouse and field soil experiments were conducted to evaluate the effect of six soft white winter wheats (T. aestivum), one durum wheat (Triticum turgidum), and one triticale (Triticale hexaploide) on O. minor germination. In growth chamber experiments, wheat and triticale induced 20–70% of O. minor seeds to germinate. In glasshouse studies, O. minor attachment was minimal on red clover plants grown in pots previously planted to wheat or triticale. In pots that did not receive a false‐host treatment, red clover plants averaged 4.2 O. minor attachments per plant. Red clover plants also had fewer O. minor attachments when grown in field soil taken from the plots where wheat or triticale were grown compared with plants grown in soil where no wheat or triticale were previously grown. Our results demonstrate that wheat may have the potential to be effectively integrated into an O. minor management system.  相似文献   

18.
Botrytis cinerea isolates from pear blossoms (Pyrus communis) in South Africa were collected from four orchards in two production areas in the Western Cape. The cryptic species status based on vegetative‐incompatibility alleles of the Bc‐hch gene indicated that all the isolates belonged to B. cinerea. A microsatellite analysis of B. cinerea populations was performed to assess the genetic population structure. Total gene diversity (H) was high, with a mean of 0.69 across all populations. Some genotype flow was evident between orchards as indicated by the spread of microsatellite multilocus genotypes, in agreement with the moderate, but significant population differentiation among orchards (mean φPT = 0.118, = 0.001). Index of association analyses (IA and r?d) suggest that the populations reproduce mostly asexually, even though mating type distribution did not differ significantly from a 1:1 ratio, suggesting frequency‐dependent selection. Isolates resistant to benomyl were evident in one orchard only. This orchard was also significantly differentiated from all other populations, suggesting infrequent localized selection for benomyl resistance. Overall, the findings of this study highlight the dangers of a mixed reproduction system, and stress the importance of regularly monitoring fungicide resistance levels towards developing more efficient management practices.  相似文献   

19.
Broomrapes (Orobanche spp.) are parasitic weeds that cause significant losses of crop yield. Experiments were conducted to investigate the seed response to the artificial germination stimulant GR24 in three species of Orobanche subjected to preconditioning under various temperatures, water potentials and with plant growth regulators. The highest germination percentages were observed in Orobanche ramosa, Orobanche aegyptiaca and Orobanche minor seeds conditioned at 18°C for 7 days followed by germination stimulation at 18°C. With the increase of the conditioning period (7, 14, 21 and 28 days), the germination percentage of O. ramosa and O. aegyptiaca progressively decreased. When conditioned at −2 MPa, the germination percentage was lower than at 0 and −1 MPa, especially at 13 and 28°C. Orobanche minor seeds could retain relatively high germination if conditioned at 18, 23 or 28°C, even after significantly extended conditioning periods (up to 84 days). GA3 (30–100 mg L−1), norflurazon and fluridone (10–100 mg L−1), and brassinolide (0.5–1.0 mg L−1) increased seed germination, while 0.01 mg L−1 uniconazole significantly reduced germination rates of all three Orobanche spp. The promotional effects of GA3 and norflurazon and the inhibitory effect of uniconazole were evident, even when they were treated for 3 days. Germination of Orobanche seeds was much lower when the unconditioned seeds were directly exposed to GR24 at 10−6 m . This early GR24-induced inhibition was however alleviated or even eliminated by the inclusion of GA3 or norflurazon (10–50 mg L−1) in the conditioning medium. On the contrary, the inclusion of uniconazole increased the inhibitory effect of GR24, particularly in the case of O. ramosa.  相似文献   

20.
Ascochyta blight of field pea, caused by Didymella pinodes, Phoma medicaginis var. pinodella, Phoma koolunga and Didymella pisi, is controlled through manipulating sowing dates to avoid ascospores of D. pinodes, and by field selection and foliar fungicides. This study investigated the relationship between number of ascospores of D. pinodes at sowing and disease intensity at crop maturity. Field pea stubble infested with ascochyta blight from one site was exposed to ambient conditions at two sites, repeated in 2 years. Three batches of stubble with varying degrees of infection were exposed at one site, repeated in 3 years. Every 2 weeks, stubble samples were retrieved, wetted and placed in a wind tunnel and up to 2500 ascospores g?1 h?1 were released. Secondary inoculum, monitored using seedling field peas as trap plants in canopies arising from three sowing dates and external to field pea canopies, was greatest in early sown crops. A model was developed to calculate the effective number of ascospores using predictions from G1 blackspot manager (Salam et al., 2011b; Australasian Plant Pathology, 40 , 621–31), distance from infested stubble (Salam et al., 2011a; Australasian Plant Pathology, 40 , 640–7) and winter rainfall. Maximum disease intensity was predicted based on the calculated number of effective ascospores, soilborne inoculum and spring rainfall over two seasons. Predictions were validated in the third season with data from field trials and commercial crops. A threshold amount of ascospores of D. pinodes, 294 g?1 stubble h?1, was identified, above which disease did not increase. Below this threshold there was a linear relationship between ascospore number and maximum disease intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号