首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial patterns of large natural fires in Sierra Nevada wilderness areas   总被引:1,自引:0,他引:1  
The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels.  相似文献   

2.
Fire and grazing are ecological processes that frequently interact to modify landscape patterns of vegetation. There is empirical and theoretical evidence that response of herbivores to heterogeneity is scale-dependent however the relationship between fire and scale of heterogeneity is not well defined. We examined the relationship between fire behavior and spatial scale (i.e., patch grain) of fuel heterogeneity. We created four heterogeneous landscapes modeled after those created by a fire–grazing interaction that differed in grain size of fuel patches. Fire spread was simulated through each model landscape from 80 independent, randomly located ignition points. Burn area, burn shape complexity and the proportion of area burnt by different fire types (headfire, backfire and flankfire) were all affected by the grain of fuel patch. The area fires burned in heterogeneous landscapes interacted with the fuel load present in the patch where ignition occurred. Burn complexity was greater in landscapes with small patch grain than in landscapes with large patch grain. The proportion of each fire type (backfire, flankfire and headfire) was similar among all landscapes regardless of patch grain but the variance of burned area within each of the three fire types differed among treatments of patch grain. Our landscape fire simulation supports the supposition that feedbacks between landscape patterns and ecological processes are scale-dependent, in this case spatial scale of fuel loading altering fire spread through the landscape.  相似文献   

3.
Fire has historically been an important ecological factor maintaining southeastern U.S. vegetation. Humans have altered natural fire regimes by fragmenting fuels, introducing exotic species, and suppressing fires. Little is known about how these alterations specifically affect spatial fire extent and pattern. We applied historic (1920 and 1943) and current (1990) GIS fuels maps and the FARSITE fire spread model to quantify the differences between historic and current fire spread distributions. We held all fire modeling variables (wind speed and direction, cloud cover, precipitation, humidity, air temperature, fuel moistures, ignition source and location) constant with exception of the fuel models representing different time periods. Model simulations suggest that fires during the early 1900's burned freely across the landscape, while current fires are much smaller, restricted by anthropogenic influences. Fire extent declined linearly with patch density, and there was a quadratic relationship between fire extent and percent landscape covered by anthropogenic features. We found that as little as 10 percent anthropogenic landcover caused a 50 percent decline in fire extent. Most landscapes (conservation or non-conservation areas) are now influenced by anthropogenic features which disrupt spatial fire behavior disproportionately to their actual size. These results suggest that land managers using fire to restore or maintain natural ecosystem function in pyrogenic systems will have to compensate for anthropogenic influences in their burn planning. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The effects of weather, terrain, fuels on fire severity were compared using remote sensing of the severity of two large fires in south-eastern Australian forests. The probability of contrasting levels of fire severity (fire confined to the understorey vs. tree canopies consumed) was analysed using logistic regression. These severities equate to extremes of fire intensity (<1,500 vs. >10,000 kW m?1), consequent suppression potential (high vs. nil) and potential adverse ecological impacts on vertebrate fauna and soils (low vs. high). Weather was the major influence on fire severity. Crown fire was absent under non-extreme weather and but more likely under extreme weather, particularly on ridges in vegetation unburnt for >10 years. Crown fire probability was very low in recently burnt vegetation (1–5 years) and increased at higher fuel ages. In all cases, fire severity was lower in valleys, probably due to effects of wind protection and higher fuel moisture in moderating fire behaviour. Under non-extreme weather, fires are likely to be suppressible and burn heterogeneously, due to the influence of topographic position, slope and fuel load. Under extreme weather, fires are influenced only by fuel and topographic position, and probability of suppression on accessible ridges will be low except in recently burnt (i.e. 1–5 year old) fuels. Topographically imposed variation may mitigate adverse ecological effects on arboreal fauna and soil erosion potential.  相似文献   

5.
Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey of unmanaged forest lands (1,446 plots) we described fuel loadings and spatial patterns of fine and coarse fuels. We attempted to explain the variability in fuel loading of each time-lag fuel class using landscape and seasonal variables through a multiple regression modeling approach. Size class distributions of woody fuels were generally homogeneous across the region except in the glaciated portions of Illinois where loadings appeared lower. Temporally, litter depths progressively decreased from leaffall (November). A fire hazard model that combined seasonal changes in litter depth and fuel moisture content depicted the degree of regional spatial variability during the transition between extreme dry and wet conditions. In the future, fire hazard indices could be paired with ignition probabilities in order to assess spatio-temporal variability of fire risk within the region.  相似文献   

6.
In the southwestern U.S., wildland fire frequency and area burned have steadily increased in recent decades, a pattern attributable to multiple ignition sources. To examine contributing landscape factors and patterns related to the occurrence of large (⩾20 ha in extent) fires in the forested region of northern Arizona, we assembled a database of lightning- and human-caused fires for the period 1 April to 30 September, 1986–2000. At the landscape scale, we used a weights-of-evidence approach to model and map the probability of occurrence based on all fire types (n = 203), and lightning-caused fires alone (n = 136). In total, large fires burned 101,571 ha on our study area. Fires due to lightning were more frequent and extensive than those caused by humans, although human-caused fires burned large areas during the period of our analysis. For all fires, probability of occurrence was greatest in areas of high topographic roughness and lower road density. Ponderosa pine (Pinus ponderosa)-dominated forest vegetation and mean annual precipitation were less important predictors. Our modeling results indicate that seasonal large fire events are a consequence of non-random patterns of occurrence, and that patterns generated by these events may affect the regional fire regime more extensively than previously thought. Identifying the factors that influence large fires will improve our ability to target resource protection efforts and manage fire risk at the landscape scale.  相似文献   

7.
The complexity inherent in variable, or mixed-severity fire regimes makes quantitative characterization of important fire regime attributes (e.g., proportion of landscape burned at different severities, size and distribution of stand-replacing patches) difficult. As a result, there is ambiguity associated with the term ‘mixed-severity’. We address this ambiguity through spatial analysis of two recent wildland fires in upper elevation mixed-conifer forests that occurred in an area with over 30 years of relatively freely-burning natural fires. We take advantage of robust estimates of fire severity and detailed spatial datasets to investigate patterns and controls on stand-replacing patches within these fires. Stand-replacing patches made up 15% of the total burned area between the two fires, which consisted of many small patches (<4 ha) and few large patches (>60 ha). Smaller stand-replacing patches were generally associated with shrub-dominated (Arctostaphylos spp. and Ceanothus spp.) and pine-dominated vegetation types, while larger stand-replacing patches tended to occur in more shade-tolerant, fir-dominated types. Additionally, in shrub-dominated types stand-replacing patches were often constrained to the underlying patch of vegetation, which for the shrub type were smaller across the two fire areas than vegetation patches for all other dominant vegetation types. For white and red fir forest types we found little evidence of vegetation patch constraint on the extent of stand-replacing patches. The patch dynamics we identified can be used to inform management strategies for landscapes in similar forest types.  相似文献   

8.
Landscape dynamics in crown fire ecosystems   总被引:21,自引:3,他引:18  
Crown fires create broad-scale patterns in vegetation by producing a patch mosaic of stand age classes, but the spread and behavior of crown fires also may be constrained by spatial patterns in terrain and fuels across the landscape. In this review, we address the implications of landscape heterogeneity for crown fire behavior and the ecological effects of crown fires over large areas. We suggest that fine-scale mechanisms of fire spread can be extrapolated to make broad-scale predictions of landscape pattern by coupling the knowledge obtained from mechanistic and empirical fire behavior models with spatially-explicit probabilistic models of fire spread. Climatic conditions exert a dominant control over crown fire behavior and spread, but topographic and physiographic features in the landscape and the spatial arrangement and types of fuels have a strong influence on fire spread, especially when burning conditions (e.g., fuel moisture and wind) are not extreme. General trends in crown fire regimes and stand age class distributions can be observed across continental, latitudinal, and elevational gradients. Crown fires are more frequent in regions having more frequent and/or severe droughts, and younger stands tend to dominate these landscapes. Landscapes dominated by crown fires appear to be nonequilibrium systems. This nonequilibrium condition presents a significant challenge to land managers, particularly when the implications of potential changes in the global climate are considered. Potential changes in the global climate may alter not only the frequency of crown fires but also their severity. Crown fires rarely consume the entire forest, and the spatial heterogeneity of burn severity patterns creates a wide range of local effects and is likely to influence plant reestablishment as well as many other ecological processes. Increased knowledge of ecological processes at regional scales and the effects of landscape pattern on fire dynamics should provide insight into our understanding of the behavior and consequences of crown fires.  相似文献   

9.
Power law frequency-size distributions of forest fires have been observed in a range of environments. The scaling behaviour of fires, and more generally of landscape patterns related to recurring disturbance and recovery, have previously been explained in the frameworks of self-organized criticality (SOC) and highly optimized tolerance (HOT). In these frameworks the scaling behaviour of the fires is the global structure that either emerges spontaneously from locally operating processes (SOC) or is the product of a tuning process aimed at optimizing the trade-offs between system yield and tolerance to risks (HOT). Here, we argue that the dominant role of self-organized or optimised fuel patterns in constraining unplanned-fire sizes, implicit in the SOC and HOT frameworks, fails to recognise the strong exogenous controls of fire spread (i.e. by weather, terrain, and suppression) observed in many fire-prone landscapes. Using data from southern Australia we demonstrate that forest fire areas and the magnitudes of corresponding weather events have distributions with closely matching scaling exponents. We conclude that the spatial scale invariance of forest fires may also be a mapping of the meteorological forcing pattern. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Fuel characteristics play an important role in driving fire ignition and propagation; at the landscape scale fuel availability and flammability are closely related to vegetation phenology. In this view, the NDVI profiles obtained from high temporal resolution satellites, like MODIS, are an effective tool for monitoring the coarse-scale vegetation seasonal timing. The aim of this paper is twofold: our first objective consists in classifying by means of multitemporal NDVI profiles the coarse-scale vegetation of Sardinia into ??phenological clusters?? in which fire incidence is higher (preferred) or lower (avoided) than expected from a random null model. If fires would burn unselectively, then fires would occur randomly across the landscape such that the number of fires in a given phenological cluster would be nearly proportional to the relative area of that land cover type in the analyzed landscape. Actually, certain vegetation types are more fire-prone than others. That is, they are burnt more frequently than others. In this framework, our second objective consists in investigating the temporal parameters of the remotely sensed NDVI profiles that best characterize the observed phenology?Cfire selectivity relationship. The results obtained show a good association between the NDVI temporal profiles and the spatio-temporal wildfire distribution in Sardinia, emphasizing the role of bioclimatic timing in driving fire regime characteristics.  相似文献   

11.
The frequency and size of wildfires within the Mojave Desert are increasing, possibly due to climate and land cover changes and associated increases in non-native invasive plant biomass, as measured by normalized difference vegetation index (NDVI). These patterns are of particular concern to resource managers in regions where native plant communities are not well adapted to fire. We used an information-theoretic and mixed-model approach to quantify the importance of multiple environmental variables in predicting, separately, the probabilities of occurrence of all fires and the occurrence large (>20 ha) fires in five management units administered by the National Park Service in the Mojave Desert Network and based on fire ignition data obtained for the period 1992–2011. Fire occurrence was strongly associated with areas close to roads, high maximum NDVI values in the year preceding ignition, the desert montane ecological zone, and high topographic roughness. Large fire probability was strongly associated with lightning-caused ignition events, high maximum NDVI values in the spring preceding ignition, high topographic roughness, the middle-elevation shrubland ecological zone, and areas further from roads. Our probabilistic models and maps can be used to explore patterns of fire occurrence based upon variability in NDVI values and to assess the vulnerability of Mojave Desert protected areas to undesirable fire events.  相似文献   

12.
Connectivity of forest fuels and surface fire regimes   总被引:8,自引:0,他引:8  
Miller  Carol  Urban  Dean L. 《Landscape Ecology》2000,15(2):145-154
The connectivity of a landscape can influence the dynamics of disturbances such as fire. In fire-adapted ecosystems, fire suppression may increase the connectivity of fuels and could result in qualitatively different fire patterns and behavior. We used a spatially explicit forest simulation model developed for the Sierra Nevada to investigate how the frequency of surface fires influences the connectivity of burnable area within a forest stand, and how this connectivity varies along an elevation gradient. Connectivity of burnable area was a function of fuel loads, fuel moisture, and fuel bed bulk density. Our analysis isolated the effects of fuel moisture and fuel bed bulk density to emphasize the influence of fuel loads on connectivity. Connectivity was inversely related to fire frequency and generally increased with elevation. However, certain conditions of fuel moisture and fuel bed bulk density obscured these relationships. Nonlinear patterns in connectivity across the elevation gradient occurred as a result of gradients in fuel loads and fuel bed bulk density that are simulated by the model. Changes in connectivity with elevation could affect how readily fires can spread from low elevation sites to higher elevations.  相似文献   

13.
Understory fire modeling is a key tool to investigate the cornerstone concept of landscape ecology, i.e. how ecological processes relate to landscape structure and dynamics. Within this context, we developed FISC??a model that simulates fire ignition and spread and its effects on the forest carbon balance. FISC is dynamically coupled to a land-use change model to simulate fire regimes on the Amazonian landscapes of the Xingu Headwaters under deforestation, climate change, and land-use management scenarios. FISC incorporates a stochastic cellular automata approach to simulate fire spread across agricultural and forested lands. CARLUC, nested in FISC, simulates fuel dynamics, forest regrowth, and carbon emissions. Simulations of fire regimes under modeled scenarios revealed that the major current and future driver of understory fires is forest fragmentation rather than climate change. Fire intensity proved closely related to the landscape structure of the remaining forest. While climate change may increase the percentage of forest burned outside protected areas by 30% over the next four decades, deforestation alone may double it. Nevertheless, a scenario of forest recovery and better land-use management would abate fire intensity by 18% even in the face of climate change. Over this time period, the total carbon balance of the Xingu??s forests varies from an average net sink of 1.6?ton?ha?1?year?1 in the absence of climate change, fire and deforestation to a source of ?0.1?ton?ha?1?year?1 in a scenario that incorporates these three processes.  相似文献   

14.
Context

Lack of quantitative observations of extent, frequency, and severity of large historical fires constrains awareness of departure of contemporary conditions from those that demonstrated resistance and resilience to frequent fire and recurring drought.

Objectives

Compare historical and contemporary fire and forest conditions for a dry forest landscape with few barriers to fire spread.

Methods

Quantify differences in (1) historical (1700–1918) and contemporary (1985–2015) fire extent, fire rotation, and stand-replacing fire and (2) historical (1914–1924) and contemporary (2012) forest structure and composition. Data include 85,750-ha tree-ring reconstruction of fire frequency and extent; >?375,000-ha timber inventory following >?78,900-ha fires in 1918; and remotely-sensed maps of contemporary fire effects and forest conditions.

Results

Historically, fires?>?20,000 ha occurred every 9.5 years; fire rotation was 14.9 years; seven fires?>?40,469 ha occurred during extreme drought (PDSI <?? 4.0); and stand-replacing fire occurred primarily in lodgepole (Pinus contorta var. murrayana). In contemporary fires, only 5% of the ecoregion burned in 30 years, and stand-replacing fire occurred primarily in ponderosa (Pinus ponderosa) and mixed-conifer. Historically, density of conifers?>?15 cm dbh exceeded 120 trees/ha on?<?5% of the area compared to 95% currently.

Conclusions

Frequent, large, low-severity fires historically maintained open-canopy ponderosa and mixed-conifer forests in which large fire- and drought-tolerant trees were prevalent. Stand-replacing patches in ponderosa and mixed-conifer were rare, even in fires >?40,469 ha (minimum size of contemporary “megafires”) during extreme drought. In this frequent-fire landscape, mixed-severity fire historically influenced lodgepole and adjacent forests. Lack of large, frequent, low-severity fires degrades contemporary forest ecosystems.

  相似文献   

15.
An important challenge in global-change research is to simulate short-term transient changes in climate, disturbance regime, and recruitment that drive long-term vegetation distributions. Spatial features (e.g., topographic barriers) and processes, including disturbance propagation and seed dispersal, largely control these short-term transient changes. Here we present a frame-based spatially explicit model (ALFRESCO) that simulates landscape-level response of vegetation to transient changes in climate and explicitly represents the spatial processes of disturbance propagation and seed dispersal. The spatial model and the point model from which it was developed showed similar results in some cases, but diverged in situations where interactions among neighboring cells (fire spread and seed dispersal) were crucial. Topographic barriers had little influence on fire size in low-flammability vegetation types, but reduced the average fire size and increased the number of fires in highly flammable vegetation (dry grassland). Large fires were more common in landscapes with large contiguous patches of two vegetation types while a more heterogeneous vegetation distribution increased fires in the less flammable vegetation type. When climate was held constant for thousands of years on a hypothetical landscape with the same initial vegetation, the spatial and point models produced identical results for some climates (cold, warm, and hot mesic), but produced markedly different results at current climate and when much drier conditions were imposed under a hot climate. Spruce migration into upland tundra was slowed or prevented by topographic barriers, depending on the size of the corridor. We suggest that frame-based, spatially explicit models of vegetation response to climate change are a useful tool to investigate both short- and long-term transients in vegetation at the regional scale. We also suggest that it is difficult to anticipate when non-spatial models will be reliable and when spatially explicit models are essential. ALFRESCO provides an important link between models of landscape-level vegetation dynamics and larger spatio-temporal models of global climate change.  相似文献   

16.

Context

Wildfires destroy thousands of buildings every year in the wildland urban interface. However, fire typically only destroys a fraction of the buildings within a given fire perimeter, suggesting more could be done to mitigate risk if we understood how to configure residential landscapes so that both people and buildings could survive fire.

Objectives

Our goal was to understand the relative importance of vegetation, topography and spatial arrangement of buildings on building loss, within the fire’s landscape context.

Methods

We analyzed two fires: one in San Diego, CA and another in Boulder, CO. We analyzed Google Earth historical imagery to digitize buildings exposed to the fires, a geographic information system to measure some of the explanatory variables, and FRAGSTATS to quantify landscape metrics. Using logistic regression we conducted an exhaustive model search to select the best models.

Results

The type of variables that were important varied across communities. We found complex spatial effects and no single model explained building loss everywhere, but topography and the spatial arrangement of buildings explained most of the variability in building losses. Vegetation connectivity was more important than vegetation type.

Conclusions

Location and spatial arrangement of buildings affect which buildings burn in a wildfire, which is important for urban planning, building siting, landscape design of future development, and to target fire prevention, fuel reduction, and homeowner education efforts in existing communities. Landscape context of buildings and communities is an important aspect of building loss, and if taken into consideration, could help communities adapt to fire.
  相似文献   

17.
Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine – Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire-scarred trees and inferences from forest stand ages. We crossdated 153 fire-scarred trees from an approximately 4000 ha study area that recorded 77 total fire years from 1197 to the present. Spatial extent of burned areas during fire years varied from the scale of single trees or small clusters of trees to fires that burned across the entire landscape. Intervals between fire years varied from 1 to 29 years across the entire landscape to 3 to 58 years in one stand, to over 100 years in other stands. Large portions of the landscape did not record any fire for a 128 year-long period from 1723 to 1851. Fire severity varied from low-intensity surface fires to large-scale, stand-destroying fires, especially during the 1851 fire year but also possibly during other years. Fires occurred throughout tree growing seasons and both before and after growing seasons. These results suggest that the fire regime has varied considerably across the study area during the past several centuries. Since fires influence plant establishment and mortality on the landscape, these results further suggest that vegetation patterns changed at multiple scales during this period. The fire history from Cheesman Lake documents a greater range in fire behavior in ponderosa pine forests than generally has been found in previous studies.  相似文献   

18.
Land use history has altered natural disturbance dynamics, causing widespread modifications of the earth’s forests. The aim of this study is to reconstruct a regional, spatially-explicit, fire and logging history for a large southern boreal forest landscape (6,050 km2) of eastern Canada. We then examined the long-term influence of land use history, fires, and physiographical gradients on the area’s disturbances regimes, present-day age structure and tree species composition. Spatially-explicit fire (1820–2005) and logging (1900–2005) histories were reconstructed from forestry maps, terrestrial forest inventories and historical records (local newspapers, travel notes, regional historical reviews). Logistic regression was used to model the occurrence of major boreal tree species at the regional scale, in relation to their disturbance history and physiographical variables. The interplay of elevation and fire history was found to explain a large part of the present-day distribution of the four species studied. We conclude that human-induced fires following the colonization activities of the nineteenth and twentieth centuries have increased fire frequency and the dominance of fire-adapted species at lower elevations. At higher elevations, the low historical fire frequency has fostered the dominance of fire-sensitive species. Twentieth-century forestry practices and escaped settlement fires have generated a forest landscape dominated by younger forest habitats than in presettlement times. The expected increase of wildfire activity in North America’s eastern boreal forest, in conjunction with continued forest management, could have significant consequences on the resilience of boreal forests.  相似文献   

19.

Context

Wildfires are common in localities where there is sufficient productivity to allow the accumulation of biomass combined with seasonality that allows this to dry and transition to a flammable state. An understanding of the conditions under which vegetated landscapes become flammable is valuable for assessing fire risk and determining how fire regimes may alter with climate change.

Objectives

Weather based metrics of dryness are a standard approach for estimating the potential for fires to occur in the near term. However, such approaches do not consider the contribution of vegetation communities. We aim to evaluate differences in weather-based dryness thresholds for fire occurrence between vegetation communities and test whether these are a function of landscape aridity.

Methods

We analysed dryness thresholds (using Drought Factor) for fire occurrence in six vegetation communities using historic fires events that occurred in South-eastern Australia using logistic regression. These thresholds were compared to the landscape aridity for where the communities persist.

Results

We found that dryness thresholds differed between vegetation communities, and this effect could in part be explained by landscape aridity. Dryness thresholds for fire occurrence were lower in vegetation communities that occur in arid environments. These communities were also exposed to dry conditions for a greater proportion of the year.

Conclusions

Our findings suggest that vegetation driven feedbacks may be an important driver of landscape flammability. Increased consideration of vegetation properties in fire danger indices may provide for better estimates of landscape fire risk and allow changes to fire regimes to be anticipated.
  相似文献   

20.
Not all wildfire ignitions result in burned areas of a similar size. The aim of this study was to explore whether there was a size-dependent pattern (in terms of resulting burned area) of fire ignitions in Portugal. For that purpose we characterised 71,618 fire ignitions occurring in the country in the period 2001–2003, in terms of population density in the local parish, land cover type and distance to roads. We then assigned each ignition into subsets of five classes according to the resulting burned area: >5 ha, >50 ha, >100 ha, >250 ha, >500 ha. The probability of an ignition resulting in different burned area classes was modelled using binary logistic regression, and the relative importance, strength and signal (positive or negative) of the three explanatory variables compared across the models obtained for the different classes. Finally, we explored the implications of land cover and population density changes during the period 1990–2000 in Portugal for the likelihood of ignitions resulting in wildfires >500 ha. Population density was the more important variable explaining the resulting burned area, with the probability of an ignition resulting in a large burned area being inversely related to population density. In terms of land cover, ignitions resulting in large burned areas were more likely to occur in shrubland and forest areas. Finally, ignitions farther away from roads were more likely to result in large burns. The current land cover trends (decrease of agricultural land and increase in shrublands) and population trends (decline in population densities except near the coast) are increasing the probability that ignitions will result in large fires in vast regions of the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号