首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This study investigated the effects of mild steam treatment (0.1 MPa for 2 h) of natural bio-based fibers and orientation (0° and 90°) of those fibers in various fiberboards. Ramie bast, pineapple leaf, and sansevieria fiber bundles were used as materials. The composite fiberboards were prepared using phenol-formaldehyde (PF) resin. To investigate the effect of mild steam treatment on wettability, contact angles of PF resin to the fiber were measured. The mechanical properties of the boards were examined as well as their dimensional stability. The contact angle data showed that mild steam treatment was effective in improving the wettability of fibers. Unioriented steam-treated boards showed better performance of internal bond (IB), moduli of rupture (MOR) and elasticity (MOE), thickness swelling (TS), and water absorption (WA) than other boards. Unioriented steam-treated sansevieria board with longitudinal fiber direction showed higher average values of MOR (403 MPa), MOE (39.2 GPa), and IB (1.33 MPa) and lower values of TS (5.15%) and WA (8.68%) than other boards. The differences in the mechanical properties and dimensional stability of boards were found mainly due to the differences in the ratios of fiber fraction of the boards to the density of the fiber bundles.  相似文献   

2.
Manufacture and properties of ultra-low-density fiberboard   总被引:6,自引:0,他引:6  
Low-density fiberboards with densities ranging from 0.05 to 0.50g/cm3 were manufactured with steam injection pressing. Bond-type and foam-type isocyanate compound resin adhesives were used separately at 10% and 30% resin content levels. Two types of different-size fibers from softwood were used. Mechanical, dimensional, thermal, and sound insulation properties of the fiberboards were tested. The results are as follows: (1) Bond-type isocyanate adhesive showed higher mechanical and dimensional properties of low-density fiberboards than the foam-type adhesive. (2) Fiberboards produced from small fibers have better mechanical and dimensional properties than those made from large fibers. (3) Thermal conductivity of fiberboards depends more on the board density than on the type of resin or fiber dimension. At a board density lower than 0.2 g/cm3, the thermal conductivity is almost equivalent to those of thermal insulation materials such as polystyrene foam and rock wool, (4) Generally, the sound absorption coefficient of low-density fiberboards tends to increase at higher sound frequency. As the board thickness increases, low-frequency sounds are more readily absorbed by boards.Part of this report was presented at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 1996  相似文献   

3.
Abstract Binderless boards were prepared from kenaf core under various manufacturing conditions and their water resistance properties were evaluated. The board properties evaluated were retention ratios of modulus of rupture (MOR) and modulus of elasticity (MOE), internal bonding strength after water treatment (IB), thickness swelling (TS), water absorption (WA), and linear expansion (LE). These values were then compared with those of boards bonded with urea-formaldehyde (UF), urea melamine formaldehyde (UMF), and phenol-formaldehyde (PF) resins, and their water resistance properties were assessed. We found that pressing temperature was one of the most important conditions for the improvement of water resistance properties. The retention ratios of MOR, MOE, and IB of kenaf core chip binderless boards (pressing temperature 200°C, target density 0.8g/cm3, and the three-step pressing of 6MPa for 10min, then 4MPa for 3min, and 2MPa for 3min) were 37.1%, 49.9%, and 55.7%, respectively, compared with values for UMF-bonded boards of 22.5%, 27.1%, and 40.7%, and values for PF-bonded boards of 42.8%, 41.8%, and 54.1%, respectively. The results showed that the water resistance properties of binderless boards were higher than those of UMF-bonded boards and almost as high as those of PF-bonded boards. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

4.
To produce a highly stable wood-based product with increased mechanical properties, phenol formaldehyde (PF) resin impregnation was combined with the viscoelastic thermal compression (VTC) process. Dimensional stability and bending stiffness were evaluated. Two PF resins with weight average molecular weights of 172 and 780 were studied at three different concentrations, 5, 10 and 20%. After 24-h room temperature water soak and 2-h boil, both PF treatments at all concentration levels showed high levels of dimensional stability compared to non-impregnated VTC processed controls. The higher molecular weight PF provided greater stability with an average thickness swell value of 12% compared to 20 and 37% for the lower molecular weight PF resin treatment and control, respectively. High anti-swelling efficiency values were recorded for both low and high molecular weight resins, implying these modifications were effective at reducing the volumetric swelling which occurred in the unmodified control. PF treatments were also extremely effective at reducing irreversible swelling. The low and high molecular weight resin treatments had 1/5th and 1/7th the irreversible swelling than the unmodified VTC processed controls, respectively. All dimensional stability values improved as resin concentrations increased. Both resin types at all concentration levels reduced Young’s modulus.  相似文献   

5.
Summary Particleboards were treated with a low molecular-weight phenol-formaldehyde resin and their properties were evaluated. Particles were dipped into aqueous solutions of resin or sprayed with resin solutions before spraying the conventional phenol-formaldehyde resin adhesive, or sprayed with a mixture of low molecular-weight resin and the adhesive resin in a single step. Though mechanical properties and dimensional stability of the phenolic-resin-treated boards were affected considerably by the incorporated resin loading (IRL), the methods of treatment did not produce significantly different results. After boiling for 2-hours, the boards treated at 10% IRL retained 80% of their strength values in the dry condition. The internal bond strength increased with increasing IRL values, and the boards with 20% IRL showed twice the value of untreated controls at the same level of board density. Treated particleboards showed a dramatic reduction in the rate of swelling even at low resin loading. Results obtained from accelerated laboratory tests of biodegradation suggested that incorporated resin-solids worked well to enhance decay and termite resistance of particleboards. For a brown-rot fungus, the weight loss was substantially reduced at 15% IRL, whereas attack was suppressed almost entirely even at low resin loadings for the white-rot fungus.  相似文献   

6.
This study investigates the dimensional stability and mechanical properties of plywood boards made of thermally modified and unmodified beech veneers that have undergone plasma pre-treatment before melamine resin impregnation. The water and melamine resin uptake and resulting weight percent gain of the veneers were investigated, whereby the air plasma pre-treated veneers showed improved liquid uptake. Five-layer plywood boards were then manufactured and tested for their dimensional stability, compressive strength, bending strength, and tensile strength. Plywood boards made of thermally modified and plasma pre-treated veneers showed a significantly improved dimensional stability, along with small influences on their mechanical properties.  相似文献   

7.
为改善竹重组材防白蚁效果,研究分别在酚醛树脂合成前端和后端加入硼化物,制备竹重组材用改性酚醛树脂,并对改性酚醛树脂压制的板材进行性能测试。研究结果表明:改性酚醛树脂可将竹重组材抗白蚁等级从 8 级提高至 9 级以上;前端改性酚醛树脂压制的竹重组材抗白蚁效果和物理力学性能均优于后端改性酚醛树脂。  相似文献   

8.
Wood-based materials are fabricated with adhesives composed of various materials derived from fossil fuels. It is difficult to identify replacements for these chemical adhesives. This study explored nanofiber technologies as an alternative to these adhesives. In this study, we focused on reinforcement effects of lingo-cellulose nanofiber (LCNF) on fiberboards made from softwood and hardwood fiber. We discuss the density effects of reinforcement with LCNF because the density of medium-density fiberboard (MDF), which is widely used for construction, is standardized at about 0.60–0.80 g/cm3. Fiberboards were manufactured with three densities (0.60, 0.75, and 1.00 g/cm3). For softwood fiberboards, the bending properties for LCNF-mixed boards were higher than those for the control fiberboards at all densities. In this paper, control fiberboard means fiberboard with fiber only. For hardwood fiberboards, the bending properties for LCNF-mixed fiberboard for 1.00 g/cm3-density board were higher than those for the control fiberboard. For internal bond strength (IB), the IB for LCNF-mixed fiberboard was higher than that for the control fiberboard. The thickness swelling (TS) and weight change (WC) with water absorption for fiberboards containing LCNF were lower than those for control fiberboards. As a conclusion, physical and mechanical properties of the resulting fiberboards were significantly improved with the addition of LCNF, especially for softwood fiberboards, due to close binding between LCNF and wood fibers.  相似文献   

9.
Binderless fiberboards with densities of 0.3 and 0.5 g/cm3 were developed from kenaf core material using the conventional dry-manufacturing process. The effects of steam pressure (0.4–0.8 MPa) and cooking time (10–30 min) in the refining process, fiber moisture content (MC) (10%, 30%), and hot-pressing time (3–10 min) on the board properties were investigated. The results showed that kenaf core binderless fiberboards manufactured with high steam pressure and long cooking time during the refining process had high internal bond (IB) strength, low thickness swelling (TS), but low bending strength values. The binderless fiberboards made from 30% MC fibers showed better mechanical and dimensional properties than those from air-dried fibers. Hot-pressing time was found to have little effect on the IB value of the binderless board at the refining conditions of 0.8 MPa/20 min, but longer pressing time resulted in lower TS. At a density of 0.5 g/cm3, binderless fiberboard with the refining conditions of 0.8 MPa/20 min recorded a modulus of rupture (MOR) of 12 MPa, modulus of elasticity (MOE) of 1.7 GPa, IB of 0.43 MPa, and 12% TS under the optimum board manufacturing conditions. Part of this article was presented at the 54th Annual Meeting of the Japan Wood Research Society, Hokkaido, August 3–5, 2004  相似文献   

10.
采用不同质量分数的低分子量三聚氰胺-脲醛树脂(MUF),及其与硼酸、硼砂复配的改性液,分别对柳杉木材进行浸渍处理。结果表明:树脂溶液和复配改性液均对木材具有良好的渗透性,且木材增重率随改性液质量分数的增大而增加,两种改性液均能有效提高柳杉的物理、力学和阻燃性能。  相似文献   

11.
High-density and high-resin-content boards were produced by phenolic resin impregnation into board materials prepared by the water-vapor-explosion process (WVE) to develop high-durability wood composite boards for exterior use. Wet-dry cyclic tests and accelerated weathering tests were conducted, and the fundamental properties were determined to examine the effect of resin impregnation on board qualities. Bending and internal bond strength of resin-impregnated boards (I-board) satisfied the criterion for 18-type particleboard described in JIS A 5908. Thickness swelling (TS) after 24-h water immersion was approximately 2%. Resin impregnation improved the dimensional stability of the boards. In wet—dry cyclic testing, TS of I-board was the same as that of plywood. The retention ratio of modulus of rupture of I-board was large; thus, I-board had high bond durability. Color change of I-board was less than that of ordinary particleboard after a 500-h accelerated weathering test. I-Board had lower surface roughness than boards produced by a spray application method (S-board) and higher water repellency, although the difference in resin contents of the face layer was small. Thus, it is suggested that the surface properties and weatherability of I-board were improved by impregnation of phenolic resin. High-density and resin-impregnated boards made from the WVE elements are expected to withstand actual exterior use. Part of this report was presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

12.
Waste paper could potentially be used as raw material for fiber- or particle-based composites without resorting, deinking and decontamination required for paper manufacturing. The objective of this study was the evaluation of one-layer boards made of various ratios (0:100,15:85, 25:75, 50:50, 75:25 and 100:0) of waste paper flakes to wood particles mixtures (wt:wt). Three types of waste paper (newspaper, office paper and magazine paper) in pure form or mixed all together were used for board manufacture. PMDI resin at three different levels of 5, 8 and 10% without or with the addition of various amounts of wax (0.7, 1.0, 1.5 and 2.0%) were applied. The participation of waste paper flakes in boards made their appearance more attractive than ordinary particleboards and fiberboards made of wood. In contrast to internal bond, screw-holding strength and thickness swelling, properties that deteriorated substantially as the waste paper percentage increased, the bending strength was only slightly affected. By increasing the resin content all properties of boards and particularly internal bond and thickness swelling were improved. The addition of wax reduced considerably the thickness swelling of boards containing waste paper; however, even at a 2.0% level, it remained greater than the maximum permitted value specified by the relevant standard. Among the three types of waste paper tested, newspaper proved to be the most appropriate for board manufacture, and magazine paper the least appropriate. With the exception of screw-holding strength, the substitution of wood particles by mixed waste paper flakes in amounts up to 50% resulted in acceptable mechanical properties for specific applications in interior uses.  相似文献   

13.
Physical and mechanical properties of medium density fiberboards (MDF) made from various mixtures of wood fibers and stone pine (Pinus pinea L.) cones were evaluated using European standards. MDF panels were manufactured using standardized procedures that simulated industrial production at the laboratory. Six panel types were made from mixtures of wood fiber/cone flour, 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 percents, respectively. Addition of the cone flour into the MDF significantly reduced formaldehyde emission from the panel. In addition, the addition of 10% cone flour also improved water resistance of the MDF panels made using urea–formaldehyde (UF) resin. However, further addition of the cone flour into the panel negatively influenced their water resistance. Flexural properties and internal bond strength decreased with the increase of cone flour content in the panel. The UF resin is the main source of formaldehyde emission from the UF-bonded wood-based panels. Depending on addition of the cone flour in the panels, the formaldehyde emission values ranged from 2.6% to 55.3% lower than the panels made from 100% wood fiber. Based on the findings obtained from this study, pine cone can be used as a renewable biological formaldehyde catcher as an alternative to the traditional formaldehyde catchers for E1 Class MDF manufacture.  相似文献   

14.
This study describes a laboratory evaluation of the efficacy of two alkylammonium compounds [didecyldimethylammonium tetrafluoroborate (DBF) and didecyldimethylammonium chloride (DDAC)] when applied via vacuum impregnation or superficial treatment. Treated wood specimens were tested for their termite and microbial resistance under controlled laboratory conditions. The higher chemical retentions were needed to suppress the feeding by Coptotermes formosanus ≦3% mass loss in the multichoice test than in the no-choice test. The DBF and DDAC retention levels necessary to meet the performance requirement ≦3% mass loss after 12-week fungal exposure varied with wood species. The retention level of 3 kg/m3 for DBF and DDAC was generally high to keep the nondurable wood species free of decay. Although there was no difference between DBF and DDAC in the efficacy against decay and termite attack, the former slightly outperformed the latter as an antimold and antisapstain agent.  相似文献   

15.
以苎麻纤维作为植物增强材料添加到木纤维表面并压制成低密度纤维板,通过对改性低密度纤维板的物理力学性能进行分析,认为苎麻作为木材纤维增强材料完全可行.  相似文献   

16.
Bamboo has gained increasing attention as an alternative raw material for use in the manufacture of composite boards. Three-layer OSBs were made using Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne) strands to evaluate the effects of strand length and pre-treatment techniques on the physical, mechanical, and durability properties. Three different strand lengths, namely 50, 60, and 70?mm, were prepared. Prior to the manufacture into OSB, the strands were immersed in cold water for 24?h and in 6% acetic anhydrides solution for 48?h. The OSBs were fabricated using 5% MDI resin based on the strand dry weight. The results indicated that MOR and MOE values in perpendicular to the grain direction were much influenced by strand length. The dimensional stability of OSB was slightly improved by immersing the strands in acetic anhydride solution. Immersing strands in cold water and acetic anhydride solution improved the resistance of OSB against subterranean termite (Macrotermes gylvus) attack under the adopted experimental condition. All OSB parameters manufactured in this experiment were better than the minimum requirement of CSA 0437.0 (Grade O–2) standard.  相似文献   

17.
To enhance dimensional stability and biological properties, low molecular weight phenolic resins of a conventional alkaline type and neutralized type were impregnated into Japanese cedar wood (Cryptomeria japonica D. Don) and heat-cured. The treatment with the neutralized type resin retained the original wood color, whereas the alkaline treatment changed the color of wood to red-brown. The concentrations of the resin solutions and the weight gains due to the resin loading of wood after treatment were highly correlated, and the target resin loading could be assessed from the solution concentration. A high dimensional stability of 60% antiswelling efficiency was attained when both types of resins were impregnated at about 30% resin loading and no significant difference was recognized between the two. To suppress decay attack from brown-rot and white-rot fungi, 15% and 10% resin loading due to treatment was required for the neutralized and alkaline types of phenolic resins, respectively. The penetration of resin into wood cell walls was investigated by means of light microscopy, Scanning Electron Microscopy (SEM), and Electron Probe X-ray Microanalysis (EPMA). A m-Bromophenol-formaldehyde resin of three levels of an average molecular weight was used to detect the presence of resin by bromine signals. The phenolic resins with low and medium molecular weights (290 and 470) were shown to penetrate into the cell walls the furthest, thereby contributing to the enhancement of dimensional stability and decay resistance in the resin-impregnated wood. Also, for phenolic resin with a high molecular weight (820), only the resin components of low molecular weight appeared to be present in the walls, making very little contribution to the dimensional stability.  相似文献   

18.
Leachability,decay, and termite resistance of wood treated with metaborates   总被引:1,自引:0,他引:1  
The formation of insoluble metaborates in wood was investigated by impregnating the wood with borax and metallic salts, after which their properties (e.g., leachability in running water and biological resistance) were evaluated. The solubility of three metaborates in acidic solutions was also evaluated. Double-diffusion treatment was carried out to form the precipitates of metaborates in sapwood specimens of Japanese cedar (Cryptomeria japonica) at room temperature. Water-saturated wood specimens were first impregnated by a saturated borax solution and then diffuse-penetrated with Zn2+, Ca2+, or Pb2+ solution. The precipitates of the three metaborates in the wood proved to be insoluble or hardly soluble in water by the leaching test. With the decay test using a brown-rot fungus (Fomitopsis palustris) and a white-rot fungus (Trametes versicolor) and with the termite test using a virulent subterranean termite (Coptotermes formosanus), the metaborate-treated woods showed generally good decay and termite resistance with negligible mass loss of the specimens. Particularly, the lead metaborate formed in the wood provided superb biological resistance against decay and termite attacks. In addition, the precipitates of these metaborates were found to be soluble in acidic solution, suggesting a way to remove these chemicals from wood when disposing of waste materials.  相似文献   

19.
The feasibility of sodium fluoride (NaF) incorporation as a biocide in the manufacture of particleboard was examined. Laboratory-scale particleboards prepared from untreated wood particles were incorporated with NaF powder at target retentions of 1, 1.5 and 3% of the total particle weight. An in-line treatment method was used to introduce the biocide during the blending stage just before adhesive application. Standard static bending and water resistance (water absorption and thickness swelling) tests indicated that embedding of the powder biocide up to the 3% level did not cause any detrimental effects on mechanical and physical properties. The laboratory decay and termite resistance tests showed that even the lower retention levels of 1 and 1.5% NaF were enough to suppress fungal and termite activity and significantly reduce the mass loss and consumption rate values of the specimens when compared to the untreated controls. Spectrophotometric analysis of leachate waters and the mass losses of the leached specimens revealed the tendency of the NaF to be depleted from the composite specimens. Therefore, the tested biocide was found to be appropriate for interior or protected above-ground outdoor exposure conditions.  相似文献   

20.
A two-cycle accelerated aging boil test was conducted on kenaf core binderless boards to estimate their bond durability. This is one of the methods to estimate the bond quality of kenaf core binderless boards, as stipulated by Notification 1539 of the Ministry of Land, Infrastructure, and Transport, October 15, 2001, for the Building Standard Law of Japan. Generally, retention ratios of modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond (IB) strength after the boil test increased with increased pressing temperature. In particular, the MOR retention ratio of boards with a pressing temperature of 200°C (average 106.4%) was higher than that of a commercial medium-density fiberboard (MDF) (melamine-urea-formaldehyde resin) (average 72.7%), and the value sometimes exceeded 100%. The durability of kenaf core binderless boards with a pressing temperature of 200°C compared favorably with that of the commercial MDF (melamine-urea-formaldehyde resin), having almost the same retained strength values after the boil test. Part of this article was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27–30, 2005, Yokohama, Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号