首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Urea, labelled with15N, was applied, at rates equivalent to 0–400 kg N ha?1, to mixed L + F horizon soil materials from a jack pine (Pinus banksiana Lamb.) forest. The L + F materials were held at 13°C and 33 kPa moisture in three experiments lasting from 6 to 128 days. In the first experiment the immobilization of fertilizer N was determined, in the second the stimulation of microbial activity was measured, and in the third urea reactions in a forest floor without microorganisms were examined. Urea stimulated microbial activity and microbial mineralization of soil N. Total amounts of N immobilized and recovered as organic N, after 128 days, increased with rate of application from 50 to 400 kg urea-N ha?1. The pH and C contents of water extracts of soil increased with increasing rates of urea application. Organic matter in a forest floor treated with urea was shown to solubilize after microbial activity was inhibited by gamma radiation, and this suggests that chemical C release was brought on by the urea. Results from this study were consistent with the hypothesis that microbial activity in urea-treated soil is stimulated by increased availability of C in soil.  相似文献   

2.
SW Sweden has very acidic forest soils because of deposition ofair-borne pollutants. Large-scale liming and fertilization have been proposed as countermeasures against a possible future development of forest decline. To test the effects of suggested treatments, liming (3 or 6 t ha1) and fertilization with easily soluble PK (25 or 50 kg P, 80 or 160 kg K ha1) or N(20 kg N ha1 annually in the form of NH4 NO3) were applied in different combinations in four experiments in 30–60 yr-old Picea abies forests in SW Sweden. Four yearsafter the initial application of the fertilizers, samples were taken from the O-horizon and the two uppermost 5 cm thick layersof the mineral soil. Their pH(H2O) and easily extractable Ca, Mg, K, P and inorganic N contents were analyzed. Samples werealso incubated to estimate net N mineralization and potential nitrification rates. Liming increased the pH by 0.6–1 unit in the O-horizon, and by 0.1 unit in the mineral soil. The Ca + Mg content increased by 15–25 kmolc ha1 (4–8 foldincrease) in the O-horizon of the limed plots, while an increaseof 5 kmolc ha1 (two-fold increase) was observed in theuppermost 5 cm of the mineral soil. Liming did not affect extractable P, K or inorganic N contents. Net N mineralization and potential nitrification rates in the O-horizon were enhanced 1.5- and 6-fold, respectively, by liming, but it had no apparenteffect in the mineral soil. N fertilization caused a slight increase (1.5 kg ha1) in the content of inorganic N, buthad no effects on the other variables measured. The amount ofextractable P was raised by 16 kg ha1 in plots given the high P dose (50 kg ha1), but no other effects of PK fertilization were detected.  相似文献   

3.
High rates of atmospheric nitrogen (N) deposition have raised questions about shifting patterns of nutrient limitation in northern hardwood forests. Of particular interest is the idea that increased supply of N may induce phosphorus (P) limitation of plant and microbial processes, especially in acid soils where P sorption by Al is high. In this study, we established field plots and plant-free laboratory mesocosms with P and Ca additions to test the hypotheses that 1) microbial biomass and activity are limited by P in the northern hardwood forest soils at the Hubbard Brook Experimental Forest in NH USA; 2) elevated Ca increases inherent P availability and therefore reduces any effects of added P and 3) P effects are more marked in the more carbon (C) rich Oie compared to the Oa horizon. Treatments included P addition (50 kg P ha−1), Ca addition (850 kg Ca ha−1) and Ca + P addition (850 kg Ca ha−1 and 50 kg P ha−1). The P treatments increased resin-available P levels and reduced phosphatase activity, but had no effect on microbial biomass C, microbial respiration, C metabolizing enzymes, potential net N mineralization and nitrification in the Oie or Oa horizon of either field plots or plant free mesocosms, in either the presence or absence of Ca. Total, prokaryote, and eukaryote PLFA were reduced by P addition, possibly due to reductions in mycorrhizal fungal biomass. These results suggest that increased N deposition and acidification have not created P limitation of microbial biomass and activity in these soils.  相似文献   

4.
Forest floors in the temperate climate zone are frequently subjected to strong changes in soil moisture, but the consequences for the soil N cycle are poorly known. In a field experiment we tested the hypotheses that soil drying leads to a decrease of gross N turnover and that natural rewetting causes a pulse of gross N turnover and an increase of N leaching from the forest floor. A further hypothesis was that optimal water availability induced by irrigation causes maximum N turnover and N leaching. Replicated control, throughfall exclusion and irrigation plots were established in a Norway spruce forest to simulate different precipitation patterns during a growing season. Gross N turnover rates were determined in undisturbed soil cores from Oi + Oe and Oa + EA horizons by the 15N pool dilution technique. Forest floor percolates were periodically collected by suction plates. After 142 mm throughfall was excluded, the median soil water potential at the throughfall exclusion plots increased from pF 1.9 to 4.5 in the Oi + Oe horizon and from pF 1.8 to 3.8 in the Oa + EA horizon. Gross ammonification ranged from 14 to 45 mg N kg−1 soil day−1 in the Oi + Oe horizon and from 4.6 to 11.4 mg N kg−1 soil day−1 in the Oa + EA horizon. Gross ammonification of both horizons was smallest in the throughfall exclusion plots during the manipulation, but the differences between all treatments were not statistically significant. Gross nitrification in both horizons was very small, ranging from 1.6 to 11.1 mg N kg−1 soil day−1. No effects of decreasing water potential and rewetting on gross nitrification rates were observed because of the small rates and huge spatial variations. Irrigation had no effect as the differences from the control in soil water potential remained small. N leaching from the forest floor was not affected by the treatments. Our findings suggest that ammonification in forest floors continues at considerable rates even at small water potentials. The hypotheses of increased N turnover and N leaching following rewetting of dry forest floor or irrigation were not confirmed.  相似文献   

5.
《Soil biology & biochemistry》2012,44(12):2441-2449
High rates of atmospheric nitrogen (N) deposition have raised questions about shifting patterns of nutrient limitation in northern hardwood forests. Of particular interest is the idea that increased supply of N may induce phosphorus (P) limitation of plant and microbial processes, especially in acid soils where P sorption by Al is high. In this study, we established field plots and plant-free laboratory mesocosms with P and Ca additions to test the hypotheses that 1) microbial biomass and activity are limited by P in the northern hardwood forest soils at the Hubbard Brook Experimental Forest in NH USA; 2) elevated Ca increases inherent P availability and therefore reduces any effects of added P and 3) P effects are more marked in the more carbon (C) rich Oie compared to the Oa horizon. Treatments included P addition (50 kg P ha−1), Ca addition (850 kg Ca ha−1) and Ca + P addition (850 kg Ca ha−1 and 50 kg P ha−1). The P treatments increased resin-available P levels and reduced phosphatase activity, but had no effect on microbial biomass C, microbial respiration, C metabolizing enzymes, potential net N mineralization and nitrification in the Oie or Oa horizon of either field plots or plant free mesocosms, in either the presence or absence of Ca. Total, prokaryote, and eukaryote PLFA were reduced by P addition, possibly due to reductions in mycorrhizal fungal biomass. These results suggest that increased N deposition and acidification have not created P limitation of microbial biomass and activity in these soils.  相似文献   

6.
Soil moisture changes, arising from seasonal variation or from global climate changes, could influence soil nitrogen (N) transformation rates and N availability in unfertilized subtropical forests. A 15?N dilution study was carried out to investigate the effects of soil moisture change (30–90 % water-holding capacity (WHC)) on potential gross N transformation rates and N2O and NO emissions in two contrasting (broad-leaved vs. coniferous) subtropical forest soils. Gross N mineralization rates were more sensitive to soil moisture change than gross NH4 + immobilization rates for both forest soils. Gross nitrification rates gradually increased with increasing soil moisture in both forest soils. Thus, enhanced N availability at higher soil moisture values was attributed to increasing gross N mineralization and nitrification rates over the immobilization rate. The natural N enrichment in humid subtropical forest soils may partially be due to fast N mineralization and nitrification under relatively higher soil moisture. In broad-leaved forest soil, the high N2O and NO emissions occurred at 30 % WHC, while the reverse was true in coniferous forest soil. Therefore, we propose that there are different mechanisms regulating N2O and NO emissions between broad-leaved and coniferous forest soils. In coniferous forest soil, nitrification may be the primary process responsible for N2O and NO emissions, while in broad-leaved forest soil, N2O and NO emissions may originate from the denitrification process.  相似文献   

7.
To evaluate the effects of avian-derived N deposition on forest C and N status, we investigated quantity and quality of litterfall, and chemical quality and N transformations in the forest floor from five sites that had been exposed to waterbird breeding colonies to differing degrees. The highest litterfall input of 2.6 t ha?1 month?1 was observed in the forest stand (Site 2) where intense bird breeding activity had been observed. Litterfall C/N was highest at the control site (no breeding activity) and decreased as the colonization stages advanced. Nitrogen concentration in litterfall and the forest floor was higher at those sites (Sites 3 and 4) where bird breeding had ceased and which represented the 'post-colony' situation, and consequently C/N and lignin/N of forest floor decreased. NH4-N pool size in the forest floor was higher at Site 2, probably due to ongoing input and mineralization of bird excreta. Nitrification rate and percent nitrification were highest at Sites 3 and 4. From these results we conclude that study sites exposed to bird colonies show signs of N excess even after colonies are abandoned.  相似文献   

8.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

9.
Abstract

There is a large number of hill people in northern Thailand, who practices shifting cultivation. In order to analyze the soil ecological problems involved in the transition from traditional shifting cultivation to more intensive upland farming, the authors carried out comparative studies on the dynamics of organic matter and its related properties in soils both in the traditional shifting cultivation systems adopted by Karen people and more intensive upland farming practiced by Thai and Hmong people in the area. The contents of organic matter and available N in the surface 10 cm layers of soil from the fields continuously cultivated were lower than those in soils under prolonged fallow (more than 10 y) or natural forest. Based on the rate of soil respiration, the amount of organic matter decomposed within 1 y was estimated to reach nearly 10% of that stored in the upper 50 cm layers of the soil profile in the upland crop fields. These results indicate that the organic matter-related resources markedly decreased under continuous cropping. The contents of C, N, and P in the microbial biomass of the surface 10 cm layers of soil ranged from 0.37 to 2.09 mg C g?l soil, from 22.7 to 188 µg N g?l soil, and from 6.1 to 65.7 µg P g?l soil, respectively. Since the contents of microbial C, N, and P in the surface soils were generally higher under prolonged fallow and natural forests than in the fields continuously cultivated, the microbial activity and/or the amounts of C, N, and P available for biological activity seemed to have declined under continuous upland farming. The incubation experiment to assess the N mineralization pattern showed two remarkable characteristics: 1) there was an initial time lag until active mineralization of N occurred in the soils from young fallow forest and 2) the soil burning effect was observed after burning in the fields under prolonged fallow. The active process of nitrification after N mineralization was always associated with a sharp fall in soil pH, suggesting that soil acidification was promoted and basic cations were lost from the soils. In conclusion, rapid deterioration of the soil organic matter-related properties in cropping fields can be considered to be one of the ecological reasons why upland fields must be returned to fallow again a few years after forest reclamation in traditional shifting cultivation systems. Therefore, in alternative farming systems with more intensive land use, it is essential to apply organic materials into soils to decrease the rate of soil degradation, or to improve the soil fertility, in avoiding soil acidification along with nitrification.  相似文献   

10.
Summary Large-scale argicultural development in high latitude regions could lead to large losses of soil C due to accelerated decomposition. Changes in decomposition rates of forest floor material upon land clearing in interior Alaska were simulated by measuring, over a 2-year period, changes in mass, cellulose, lignin, and N of forest floor materials and in mass of filter papers and wood in a forest floor and a fallowed field. All materials decomposed slowly at the surface, with about 90% of the original weight remaining after 2 years. Decomposition rates were higher for materials buried in the field than the forest. Cellulose loss in forest floor materials closely followed mass loss, whereas lignin loss was not significant. However, weight loss of wood was rapid when buried in the field, with about 20% of the initial mass remaining after 2 years. Relationships between mass loss of buried forest floor materials and soil degree days were significant (r=70%–80%). Temperature was a major, but not the only factor, controlling decomposition rates. Forest floor materials showed significant N losses, indicating net N mineralization and that N deficiency was not a factor affecting decomposition. C loss to the atmosphere due to decomposition of forest floor materials after forest clearing will be minimal and similar to that in the undisturbed forest if left on the soil surface, but will be substantial if incorportated into the soil. Incorporation is necessary for cropping; thus some accelerated decomposition is unavoidable in clearing subarctic forests for cultivation.  相似文献   

11.
Rates of N mineralization were measured in 27 forest soils encompassing a wide range of forest types and management treatments in south-east Australia. Undisturbed soil columns were incubated at 20°C for 68 days at near field-capacity water content, and N mineralization was measured in 5-cm depth increments to 30 cm. The soils represented three primary profile forms: gradational, uniform and duplex. They were sampled beneath mature native Eucalyptus sp. forest and from plantations of Pinus radiata of varying age (<1 to 37 years). Several sites had been fertilized, irrigated, or intercropped with lupins. The soils ranged greatly in total soil N concentrations, C:N ratios, total P, and sand, silt, and clay contents. Net N mineralization for individual soil profiles (0–30 cm depth) varied from 2.0 to 66.6 kg ha-1 over 68 days, with soils from individual depths mineralizing from <0 (immobilization) to 19.3 kg ha-1 per 5 cm soil depth. Only 0.1–3.1% of the total N present at 0–30 cm in depth was mineralized during the incubation, and both the amount and the percentage of total N mineralized decreased with increasing soil depth. N fertilization, addition of slash residues, or intercropping with lupins in the years prior to sampling increased N mineralization. Several years of irrigation of a sandy soil reduced levels of total N and C, and lowered rates of N mineralization. Considuring all soil depths, the simple linear correlations between soil parameters (C, N, P, C:N, C:P, N:P, coarse sand, fine sand, silt, clay) and N mineralization rates were generally low (r<0.53), but these improved for total N (r=0.82) and organic C (r=0.79) when the soils were grouped into primary profile forms. Prediction of field N-mineralization rates was complicated by the poor correlations between soil properties and N mineralization, and temporal changes in the pools of labile organic-N substrates in the field.  相似文献   

12.
To evaluate the effect of climate change on ecosystem functioning, the temperature and moisture response of microbial C, N, and P transformations during decomposition of Calluna vulgaris (L.) Hull. litter was studied in a laboratory incubation experiment. The litter originated from a dry heathland in the Netherlands where P limited vegetation growth. Fresh litter was incubated at 5, 10, 15, or 20°C and at a moisture content of 50, 100, or 200% in a full factorial design. Microbial nutrient transformations and activity were evaluated during two successive periods: an initial period of 48 days characterized by microbial growth and a second period from 48 to 206 days in which microbial growth declined significantly. Temperature and moisture response of respiration rate, the metabolic quotient (qCO2), C, N, and P immobilization, net N and P mineralization and nitrification rates were evaluated by performing linear regressions. Microbial nutrient transformations and microbial activity depended both on temperature and moisture. In the first period, the respiration rate, qCO2, microbial C and N immobilization, net P mineralization, net N mineralization and net nitrification rates were more strongly affected by temperature, while the microbial P immobilization rate was more strongly affected by moisture. The respiration rate, qCO2, P immobilization rate, net P and N mineralization rate, and nitrification rate increased with temperature and moisture, while the C and N immobilization rate decreased with increasing temperature and increased with moisture. In the second period, C, N, and P immobilization and net N and P mineralization rates were significantly lower. The respiration rate and qCO2 continued to increase with temperature and moisture, but C and N immobilization rates increased with temperature and declined with increasing moisture. Net P mineralization rate decreased at higher temperature and moisture, and nitrification rate declined with increasing temperature and increased with moisture. It was concluded that plant growth in these P-limited systems is very sensitive to climate change as it strongly relies on the competition for P with microbes, and temperature and moisture have a large effect on the immobilization rate of available P.  相似文献   

13.
Improving fallow quality in upland rice-fallow rotations in West Africa through the site-specific use of leguminous cover crops has been shown to sustain the productivity of such systems. We studied the effects of a range of residue management practices (removal, burning, mulching and incorporation) on fallow biomass and N accumulation, on weed biomass and yield response of upland rice and on changes in soil physical and chemical characteristics in 2-year field trials conducted in three agroecological zones of Côte d'Ivoire. Across fallow management treatments and agroecological zones, rice yields were on average 20–30% higher in legume than in natural fallow plots. Weed biomass was highest in the savanna zone and lowest in the bimodal forest and tended to be less following a legume fallow. Regardless of the type of fallow vegetation and agroecological zone, biomass removal resulted in the lowest rice yields that varied from 0.5?t ha–1 in the derived savanna zone to 1.5?t ha–1 in the Guinea savanna zone. Burning of the fallow vegetation significantly increased yield over residue removal in the derived savanna (0.27?t ha–1, P<0.05) and bimodal forest zones (0.27?t ha–1, P<0.01), but not in the Guinea savanna. In both savanna environments, residue incorporation was superior to the farmers' practice of residue removal and rice yield increases were related to amounts of fallow N returned to the soil (r2=0.803, P<0.01). In the forest zone, the farmers' practice of residue burning produced the highest yield (1.43?t ha-1 in the case of legumes) and resulted in the lowest weed biomass (0.02?t ha–1). Regardless of the site, improving the quality of the fallow or of its management had no significant effects on either soil physical or soil chemical characteristics after two fallow cycles. We conclude that incorporation of legume residues is a desirable practice for rice-based fallow rotation systems in savanna environments. No promising residue management alternatives to slash-and-burn were apparent for the forest zone. Determining the possible effects on soil productivity will require longer-term experiments.  相似文献   

14.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

15.
The influence of charcoal on biotic processes in soils remains poorly understood. Charcoal is a natural product of wildfires that burned on a historic return interval of ∼100 years in Scots pine (Pinus sylvestris L.) forests of northern Sweden. Fire suppression and changes in forest stand management have resulted in a lack of charcoal production in these ecosystems. It is thought that charcoal may alter N mineralization and nitrification rates, however, previous studies have not been conclusive. Replicated field studies were conducted at three late-succession field sites in northern Sweden and supporting laboratory incubations were conducted using soil humus collected from these sites. We used activated carbon (AC), as a surrogate for natural-occurring fire-produced charcoal. Two rates of AC (0 and 2000 kg ha−1), and glycine (0 and 100 kg N as glycine ha−1) were applied in factorial combination to field microplots in a randomized complete block pattern. Net nitrification, N mineralization, and free phenol concentrations were measured using ionic and non-ionic resin capsules, respectively. These same treatments and also two rates of birch leaf litter (0 and 1000 kg ha−1) were applied in a laboratory incubation and soils from this incubation were extracted with KCl and analyzed for NH4+ and NO3. Nitrification rates increased with AC amendments in laboratory incubations, but this was not supported by field studies. Ammonification rates, as measured by NH4+ accumulation on ionic resins, were increased considerably by glycine applications, but some NH4+ was apparently lost to surface sorption to the AC. Phenolic accumulation on non-ionic resin capsules was significantly reduced by AC amendments. We conclude that charcoal exhibits important characteristics that affect regulating steps in the transformation and cycling of N.  相似文献   

16.
Abstract

A new method for microsite assessment of soil nutrient supply in forest soil was developed. The method involves the use of ion exchange membranes to assess differences in soil nitrogen (N), phosphorus (P), and potassium (K) supply rates in‐field over small depth increments in the forest floor (i.e., the L, F, and H horizons). Ion exchange membranes were buried and retrieved from the forest floor in an aspen forest stand in Saskatchewan, Canada. Small (6 mm diameter) sections of the membrane were cut out and ion concentration on the sections measured to provide a nutrient supply rate at that location. Soil nutrient supply rates at the site ranged from 4.6–6.0, 7.3–8.5, 11.6–21.5, and 122–196μg 10 cm2#lb2 h‐1 for NH4 +‐N, NC3 ‐N, P, and K, respectively. On average, the highly humified H horizon had the highest N and P supply rates, followed by the F horizon, with the surface litter (L horizon) having the lowest N supply rates. The simplicity and sensitivity of the procedure make this method appropriate for in‐field assessment of differences in soil nutrient supply over small vertical and horizontal distance and was especially appropriate for the forest floor horizons in forest soils.  相似文献   

17.
Understanding cover crop influences on N availability is important for developing N management strategies in conservation tillage systems. Two cover crops, cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.), were evaluated for effects on N availability to cotton (Gossypium hirsutum L.) in a Typic Kanhapludult soil at Watkinsville, Ga. Seed cotton yields following clover and rye were 882 kg ha–1 and 1,205 kg ha–1, respectively, in 1997 and were 1,561 kg ha–1 and 2,352 kg ha–1, respectively, in 1998. In 1997, cotton biomass, leaf area index, and N were greater on some dates following crimson clover than following rye but not in 1998. During 1997, net soil N mineralized increased with time in both systems, but a similar response was not observed in 1998. Net soil N mineralization rates following crimson clover and rye averaged, respectively, 0.58 kg and 0.34 kg N ha–1 day–1 in 1997 and 0.58 kg and 0.23 kg N ha–1 day–1 in 1998. Total soil N mineralized during the cotton growing season ranged from 60 kg ha–1 to 80 kg ha–1 following crimson clover and from 30 kg ha–1 to 50 kg ha–1 following rye. Soil N mineralization correlated positively with heat units and cumulative heat units. Net soil N mineralization rates were 0.023 kg ha–1 heat unit–1 once net mineralization began. Soil heat units appeared to be a useful tool for evaluating N mineralization potential. Nearly 40% of the rye and 60% of the clover biomass decomposed during the 6 weeks prior to cotton planting, with nearly 35 kg N ha–1 mineralized from clover.  相似文献   

18.
Summary Information on the mineralization of inorganic phosphate (Pi) from organically bound P (Po) during decomposition of forest floor and soil organic matter is vital for understanding P supply in forest ecosystems. Carbon (C) and phosphorus (P) fluxes were determined for forest floor samples from three Pinus radiata plots which had received no P (Control), 62.5 kg P ha–1 (Low P) and 125 kg P ha–1 (High P) 20 years before sampling. The P concentration of the forest floor samples had increased with fertilizer application, and the C:P ratio ranged between 585 and 1465. During a 9-week laboratory incubation 8.2–19.0% of the forest floor C was evolved as CO2-C. The amount of CO2 evolved from the forest floor of the Control plot was more than twice the amounts from the Low P and High P plots. There was little change in net P mineralization in the Control and Low P treatments throughout the incubation, but it increased slightly for the High P samples, suggesting a critical forest floor C:P ratio of 550 for net P mineralization. Changes in the 32P-specific activities of the Pi and microbial P pools during incubation, and concurrent changes in microbial-32P and 32Pi, indicated internal P cycling between these pools. The rate of internal P cycling varied with forest floor quality, and was highest in the High P forest floor. The High P samples had microbial C:P ratios of 22 : 1 which remained constant during the incubation, suggesting the microorganisms had adequate P levels. Received: 2 July 1997  相似文献   

19.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

20.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号