首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The complex nature of physiological traits associated with drought tolerance and the difficulties associated with their measurements in segregating populations and large number of genotypes inhibited their use in the past in developing water-use efficient genotypes in breeding programmes. With new knowledge of easily measurable surrogates of transpiration efficiency (TE), a trait associated with drought tolerance—specific leaf area (SLA) and soil plant analytical development (SPAD) chlorophyll meter reading (SCMR), it is now possible to integrate TE through the surrogates in breeding and selection schemes in groundnut (Arachis hypogaea L.). As a noninvasive surrogate of TE, SCMR is easy to operate, reliable, fairly stable and low cost. However, in a large-scale breeding program, it is difficult to complete SCMR observations within a specified time. The present study addressed the issue as to what extent the SCMR measurements can be spread over time by evaluating 18 diverse groundnut genotypes for two physiological traits, SCMR and SLA in two postrainy (Nov–Apr) seasons (2002/2003 and 2003/2004) in India. Observations were recorded at different times during and after the release of moisture deficit stress. There was general agreement in genotype and trait performance in both the seasons. Interaction between SCMR and time of observation was significant in only one season (2002/2003) but its variance relative to genotypes and time of observation was very small. ICGV 99029 and ICR 48, which recorded higher SCMR and lower SLA values in both the seasons, will make good parents for water-use efficiency trait in breeding programmes. Other good parents include ICGS 76, TCGS 647 and TCGP 6. SCMR recorded at three different times under differing soil moisture deficit in each season showed highly significant correlation with each other. Similarly, SLA at different times also correlated significantly with each other. SCMR and SLA were significantly negatively correlated with each other and the relationship was insensitive to time of observation. The results of the present study indicated that SCMR/SLA observations can be recorded at any time after 60 days of crop growth, preferably under moisture deficit conditions. This gives groundnut breeders a large flexibility to record these observations in a large number of segregating populations and breeding lines in the field. Thus, making it easy to incorporate these physiological traits associated with drought tolerance in breeding and selection scheme in groundnut.  相似文献   

2.
Ten cowpea (Vigna unguiculata L. “Walp.”) genotypes were grown in a growth chamber under well-watered conditions up to early flowering and were then either subjected to water deficit or were continually well-watered. Water deficit was induced by withholding irrigation until the soil water potential was −75 kPa, which was then maintained for 10 days. Variation in water use efficiency (WUE), leaf area, specific leaf area (SLA), leaf area ratio (LAR) and leaf gas exchange (i.e. assimilation, transpiration, stomata conductance and internal CO2 concentration) in response to water deficit were investigated. Water deficit treatment reduced mean water use by 21%. This caused between 11 and more than 40% reduction of biomass across the genotypes. Reductions in biomass were due to decline in leaf gas exchange and leaf area during water deficit. Water deficit improved the WUE of two genotypes (IFH 27-8 and Lobia) by approximately 20%, but caused moderate to huge reductions in most genotypes. High relative water content (RWC) of leaves was maintained in some of the genotypes by stomata closure and a reduction of leaf area. Drought avoidance by maintaining high leaf water content was negatively associated with leaf area as well as SLA. High assimilation rate under water deficit was associated with high RWC. Decline in assimilation rate were due mainly to stomata closure, however, some evidence of non-stomatal regulation were also found. WUE and instantaneous water use efficiency (IWUE, a molar ratio of assimilation to transpiration) were not directly associated, but IWUE and leaf internal CO2 concentration (ci) were negatively related while ci was also moderately related with SLA. Overall, significant genotypic variations in leaf gas exchange parameters were found, which can give some indications of superiority when comparing cowpea genotypes for agronomic fitness under drought. The lack of relationship between WUE and IWUE was due to the instantaneous measurement of leaf gas exchange, which can be corrected by calculations to reflect the entire season.  相似文献   

3.
Groundnut (Arachis hypogaea L.) is an important oilseed crop grown in more than 100 countries across wide range of environments. Frequent occurrence of drought is one of the limiting factors adversely affecting groundnut productivity, especially in rainfed areas, and hence genotypes having high water use efficiency (WUE) under limited available water need to be developed. In groundnut, WUE is correlated with SPAD chlorophyll meter reading (SCMR) and specific leaf area (SLA). These two traits, SCMR and SLA, can be used as surrogate traits for selecting for WUE. In order to improve SCMR and SLA, and in turn WUE in groundnut, a good knowledge of the genetic system controlling the expressions of these traits is essential for the selection of the most appropriate and efficient breeding procedure. The present investigation was conducted to determine the gene action controlling the inheritance of SCMR and SLA in two crosses, ICG 7243 × ICG 9418 and ICG 6766 × Chico, and their reciprocals. Six generations of each cross (P1, P2, F1, F2, BC1P1, and BC1P2) were evaluated for SCMR and SLA at two stages of the crop growth viz., 60 and 80 days after sowing (DAS). For SCMR at 80 DAS, additive effects were important in both the crosses whereas predominance of dominance effects with duplicate epistasis was observed for SCMR at 60 DAS and SLA at both stages in both the crosses. Predominance of additive effect for SCMR at 80 DAS suggested effective selection could be practiced even in early generations whereas for SCMR at 60 DAS and SLA at both stages in both crosses, it would be better to defer selection to later generations. Further, recording of SCMR and SLA should be done between 60 and 80 DAS for screening the germplasm lines for drought tolerance.  相似文献   

4.
Developing tolerant genotypes is crucial for stabilizing maize productivity under drought stress conditions as it is one of the most important abiotic stresses affecting crop yields. Twenty seven genotypes of maize (Zea mays L.) were evaluated for drought tolerance for three seasons under well watered and water stressed conditions to identify interactions amongst various tolerance traits and grain yield as well as their association with SSR markers. The study revealed considerable genetic diversity and significant variations for genotypes, environment and genotype × environment interactions for all the traits. The ranking of genotypes based on drought susceptibility index for morpho-physiological traits was similar to that based on grain yield and principal component analysis. Analysis of trait – trait and trait – yield associations indicated significant positive correlations amongst the water relations traits of relative water content (RWC), leaf water potential and osmotic potential as well as of RWC with grain yield under water stressed condition. Molecular analysis using 40 SSRs revealed 32 as polymorphic and 62 unique alleles were detected across 27 genotypes. Cluster analysis resulted in categorization of the genotypes into five distinct groups which was similar to that using principal component analysis. Based on overall performance across seasons tolerant and susceptible genotypes were identified for eventual utilization in breeding programs as well as for QTL identification. The marker-trait association analysis revealed significant associations between few SSR markers with water relations as well as yield contributing traits under water stressed conditions. These associations highlight the importance of functional mechanisms of intrinsic tolerance and cumulative traits for drought tolerance in maize.  相似文献   

5.
Drought is the most important limitation to summer mungbean production in the tropics and subtropics dependent on usually insufficient summer rainfall. As increased irrigation is not a viable answer to the problem, an economically and environmentally desirable solution is new varieties with drought tolerance. However, there is little genotypic information on drought tolerance in summer mungbean. The objectives of this study were to assess the genotypic differences in physiological traits and dry matter partitioning in mungbean and to measure the association of these traits with crop performance under drought conditions. Six mungbean genotypes were tested in drought micro plots at CCS Haryana Agricultural University, Hisar, India. A split plot design was used; two irrigation treatments (watered and droughted) in the main plots and six mungbean genotypes in the subplots with three replicate micro plots. Drought decreased leaf water status, rates of photosynthesis (Pn) and altered dry matter partitioning in different plant parts. Our results showed that Pn did not limit yield, but it was partitioning of dry matter governed by leaf water content (RWC) which influenced the final yield. RWC was positively correlated to the number of pods per plant and seed yield, genotypes maintaining high RWC produced higher seed yield. Therefore, the drought tolerance of summer mungbean was related to the maintenance of high RWC, which can be used as a physiological marker to identify and develop superior genotypes suited to drought-prone environments.  相似文献   

6.
The present study investigates the potential use of a hand-held portable SPAD chlorophyll meter for rapid assessment of specific leaf area (SLA) and specific leaf nitrogen (SLN), which are surrogate measures of transpiration efficiency (TE) in peanut ( Arachis hypogaea L.). The effects of sampling (leaf position, time of sampling and leaf water status) and climatic factors (solar radiation and vapour pressure deficit, VPD) on SLA and SPAD chlorophyll meter reading (SCMR) were studied in a range of peanut genotypes grown under field and greenhouse conditions. The correlation between SLA and SCMR was significant (r=−0.77, P < 0.01) for the second leaf from the apex but the correlation declined for leaves sampled from lower nodal positions. The diurnal fluctuation in SLA ranged from −20 % to +10 %, whereas SCMR was relatively unaffected by these diurnal changes. Solar radiation and VPD during the sampling period had a significant influence on the relationship between SLA and SCMR, largely through their effects on SLA. However, standardization of SLA for these environmental factors significantly improved the relationship between SLA and SCMR from −0.50 to −0.80 (P < 0.01), suggesting that, when protocols for leaf sampling and SLA measurements are followed, SCMR can be a surrogate measure of SLA. There were significant relationships between SLN and SCMR (r=0.84, P < 0.01) and SLN and SLA (r=−0.81, P < 0.01). These significant interrelationships amongst SLA, SLN and SCMR suggested that SCMR could be used as a reliable and rapid measure to identify genotypes with low SLA or high SLN (and hence high TE) in peanut.  相似文献   

7.
The physiological basis of genetic variation in drought response and its association with yield and related indices is not clear in tall fescue. In this study thirty genotypes of tall fescue (Festuca arundinacea Schreb.) were sampled from a polycross population and evaluated under two levels of irrigation in 2010 (normal and intense stress) and 2011 (normal and mild stress). Physiological traits including relative water content (RWC), total chlorophyll (TChl), chlorophyll a (Chla), chlorophyll b (Chlb), Chla/Chlb, carotenoids (Car), TChl/Car and proline content along with forage yield, agro-morpholgical traits and selection indices (stress tolerance index, STI and drought susceptibility index, DSI) were studied. Large variation and moderate to high heritability was estimated for most of the studied traits. Intense drought condition decreased chlorophyll content while mild stress significantly increased it. In the other hand intense drought stress increased Chla/b while mild stress didn’t change it. Under mild drought stress condition STI was positively correlated with RWC while under intense drought stress condition STI was positively correlated with chlorophyll content. Although proline content was significantly increased in both intense and mild drought stress conditions, no relationship was found between proline accumulation with forage yield and STI. Applications of principle component analysis for screening suitable genotypes are also discussed.  相似文献   

8.
9.
The impact of the genotype‐specific leaf morphological and anatomical characteristics on the ability of wheat plants to preserve leaf water balance and cell membranes stability under drought stress was investigated. Seedlings of six modern semi‐dwarf (carriers of Rht, Reduced height genes) and six old tall bread wheat varieties were subjected to soil drought by withholding watering for 6 days. Morpho‐anatomical traits (leaf area, perimeter, thickness, stomata and trichome density) of daily watered (control) plants were characterized by light microscopy, scanning and image analyses. The leaf water status in both control and stressed plants was determined by measuring the relative water content (RWC). The leaf cell membranes stability in stressed plants was estimated by conductometric determination of the membranes injury index. On average, the modern semi‐dwarf varieties had less leaf area and leaf perimeter, and less dissection index, a parameter characterizing the leaf shape. Under drought stress, the modern genotypes maintained better water balance evidenced by significantly higher leaf RWC and better‐preserved the cell membranes stability supported by significantly lower Injury index. The correlations between morpho‐anatomical traits in control plants and drought tolerance‐related traits showed that the higher the leaf dissection index (i.e. more oblong leaves), the greater the water loss and the leaf membrane damages after desiccation were. The effect of shape of the evaporating surface on the water loss was modelled using wet filter paper. Similar to plant leaves, the evaporation and, respectively, water loss from paper pieces of more oblong shape (i.e. higher dissection index) was more intensive. The elucidation of the impact of the leaf shape on transpiration might contribute to better understanding of the mechanisms used by plants to maintain water reserves during drought stress and could be a basis for developing of simple and fast screening methods aiding the selection of drought tolerant genotypes.  相似文献   

10.
Chlorophyll stability during drought might be a promising criterion for selection for drought resistance in peanut. The study describes two field trials conducted at Khon Kaen University, Thailand which investigate genotype × drought interactions in a wide range of peanut germplasm in general and assess the relationship between chlorophyll stability and genotypic performance in particular, under drought. Two field experiments (during 2003/2004 and 2004/2005 dry seasons) were conducted in a split plot design with three water regimes [field capacity, 2/3 available water (AW) and 1/3 AW] as main, and 12 peanut genotypes as subtreatments, replicated four times. Observations on total dry matter (TDM), chlorophyll density (ChlD) (chlorophyll content per unit leaf area), chlorophyll content (chlorophyll content per plant) and SPAD chlorophyll meter readings (SCMR) were recorded at 30, 60 and 90 days after emergence. Transpiration (T) and transpiration efficiency (TE) were computed using the data on amount of water input and TDM. Drought stress significantly reduced TDM, T and chlorophyll content across genotypes but significantly increased TE and ChlD in peanut. However, there were significant differences among genotypes for TE and chlorophyll parameters. The genotype × drought interaction effects for chlorophyll characters (content and density) were not significant suggesting a strong genetic effect. The correlation coefficients between TDM and chlorophyll content (r = 0.51, P = 0.01 to r = 0.91, P = 0.01) and between TE and ChlD (r = 0.46, P = 0.05 to r = 0.77, P = 0.01) were positive and significant. These findings suggest that chlorophyll parameters are strongly linked with drought tolerance in peanut. There were highly significant and positive relationships between ChlD and SCMR (r = 0.67, P = 0.01 to r = 0.93, P = 0.01), between SCMR and TE (r = 0.41, P = 0.05 to r = 0.80, P = 0.01) suggesting that SCMR could be used as a tool for rapid assessment of relative chlorophyll status in peanut genotypes as well as for the indirect selection of drought tolerance in peanut.  相似文献   

11.
This paper reports the influence of the osmotic adjustment capacity and turgor potential (TP) on tolerance to drought in 12 cultivated genotypes, six breeding lines and six cultivars of barley (Hordeum vulgare L.) under terminal water‐stress conditions. When the crops reached the flag leaf stage, half of the experimental plots in which they were grown were submitted to water stress treatment and the remainder maintained under optimal irrigation conditions. Differences were seen in the osmotic adjustment, relative water content (RWC) and water potential (WP) of the different genotypes. Two of the breeding lines showed the greatest osmotic adjustment capacities, maintaining their TPs better than the other genotypes studied. A positive, significant correlation was found between yield and osmotic adjustment capacity, RWC and WP under water‐stress conditions. Osmotic adjustment capacity and TP were linearly related, indicating that as water stress increases osmotic adjustment favours the maintenance of higher TPs. Significant correlations were found between osmotic adjustment capacity and grain filling rate and grain yield. Under conditions of terminal water stress, yield was negatively correlated with the number of days to ear emergence; no correlation was found between osmotic adjustment capacity and earliness. Early ear emergence, a good osmotic adjustment capacity and high RWC values all contributed to yield increases under terminal water‐stress conditions.  相似文献   

12.
Twelve varieties of Oat ( Avena sativa L.) were screened for relative drought tolerance based on the magnitude of chlorophyll stability index (CSI), relative water content (RWC) and free proline accumulation. IGFR1-2670, IGFRI-3021, IGFRI-2688 and IGO-8 showed a lower magnitude of CSI under stress condition in comparison to other tested varieties whereas the values of RWC and tree proline accumulation were higher. Based on the observations of this study it is concluded that, of the varieties tested, IGFRI-2670, 3021 2688 and IGO-8 are relatively more drought tolerant than the other genotypes tested. A close agreement was also noticed amongst the trends of CSI and proline accumulation, and per cent reduction in yield in rainfed over irrigated conditions.  相似文献   

13.
Drought tolerance in plants is a complex trait involving morphological, physiological, and biochemical mechanisms. Hundreds of genes underlie the response of plants to the stress. For crops, selecting cultivars that can produce economically significant yields under drought is a priority. Potato (Solanum tuberosum L.) is considered as drought sensitive crop, although cultivar-dependent differences in tolerance have been described. Cultivar ‘Katahdin’ possesses many appropriate characteristics and is widely used for breeding purposes worldwide; it also has enhanced tolerance to drought stress. In this study, we evaluated cv. ‘Katahdin’ and a half-sib family of 17 Katahdin-derived cultivars for leaf relative water content (RWC) and tuber yield under drought stress. The yields of cultivars ‘Wauseon’, ‘Katahdin’, ‘Magura’, ‘Calrose’, and ‘Cayuga’ did not significantly decline under drought stress. Among these five, Wauseon exhibited the lowest reduction in both tuber yield and relative water content under water shortage. The data showed that ‘Wauseon’ is the most attractive cultivar for studies of molecular and physiological processes under drought and for potato breeding due to low yield losses that correspond with high RWC values. This cultivar can serve as a reservoir of potentially useful genes to develop cultivars with enhanced tolerance to this abiotic stress.  相似文献   

14.
Genetic architecture of seedling drought tolerance is complex and needs to be better understood. To address this challenge, we developed a protocol to identify the most promising drought-tolerant genotypes at the seedling stage in winter wheat. A population of 146 recombinant inbred lines (F9) derived from a cross between wheat cultivars, ‘Harry’ (seedling drought tolerant) and ‘Wesley’ (seedling drought susceptible) were used in this study. All genotypes were sown in three replications in a randomized complete block design under controlled conditions in a greenhouse. Seven traits were scored and grouped into tolerance traits; days to wilting, leaf wilting, and stay green and survival traits; days to regrowth, regrowth, drought survival rate, and recovery after irrigation. Three selection indices were calculated (1) tolerance index, (2) survival index, and (3) drought tolerance index (DTI). The same set of genotypes were also tested for grain yield in two low rainfall environments for two seasons. High genetic variation was found among all genotypes for all seedling traits scored in this study. Correlations between tolerance and survival traits were weak or did not exist. Heritability estimates ranged from 0.53 to 0.88. DTI had significant phenotypic and genotypic correlations with all seedling traits. Genotypes were identified with a high drought tolerance at the seedling stage combined with high grain yield in low rainfall. Breeding for tolerance and survival traits should be taken into account for improving winter wheat drought tolerance at seedling stage. The selected genotypes can be used for to further improve drought tolerance in high yielding wheat for Nebraska.  相似文献   

15.
Plant genotypes with higher drought tolerance through improved root characteristics are poorly studied in orchardgrass. In the current research, 30 orchardgrass genotypes were polycrossed and the resulting half‐sib families evaluated under both normal and water stress environments. Under water stress conditions, values for most root traits decreased at 0–30 cm soil depth, while at 30–60 cm depths, the root length (RL), root area (RA), root volume, percentage of root dry weight (RDW) and the ratio of root to shoot were increased. We identified drought‐tolerant genotypes with a high combining ability for root characteristics and a high yield potential. High estimates of heritability as well as genetic variation for root traits indicated that phenotypic selection would be successful in order to achieve genetic progress. Indirect selection to improve dry matter yield was most efficient when selecting for RL and RDW under water stress conditions. Significant associations between a drought tolerance index and RL, RA and root volume confirmed the importance of these traits in conferring drought tolerance of orchardgrass.  相似文献   

16.
Wild relatives harbor novel sources of variation, which can be used to enhance the genetic base of a cultivar gene pool. A total of 269 accessions from 20 wild Arachis species belonging to six sections were evaluated for 41 morpho-agronomic traits and 89 selected accessions for oil, protein and total sugar content. Six plants from each accession were grown in an open Arachis house in large-cylindrical concrete structures during the 2004?C2005 season at Patancheru, India. REML analysis showed significant differences between species and accessions for most of the traits studied. Hierarchical cluster analysis, based on the first five principal component scores accounted for 82.5% variation, resulting in four clusters. Variation in genome relationships and ploidy levels had no bearing on the clustering pattern which was predominated by life forms: clusters 1 and 2, contained mostly annuals and clusters 3 and 4 perennials. A large range of variations were noticed among species for some of the agronomic traits: days to flowering, pod and seed characteristics, specific leaf area (SLA) and for SPAD chlorophyll meter reading (SCMR). Arachis duranensis showed the maximum intraspecific variation as revealed by a high diversity index for 23 of the 41 traits which included: days to flowering, primary branches, plant width, pod length, pod width, SCMR and SLA. The other species with desirable traits were A. pusilla (earliest flowering) and A. villosa (high SCMR at 60 and 80 days after sowing). The latter species is cross compatible with cultivated groundnut, thus, is a good source to enhance the trait value in the cultigen??s gene pool. The best 20 accessions with superior agronomic, nutritional quality and drought related trait combinations have been identified for their use in introgression of diverse and unique alleles from wild Arachis species into A. hypogaea.  相似文献   

17.
This study was conducted to evaluate drought tolerance and persistence in a germplasm of smooth bromegrass and association of forage productivity with different traits. Thirty‐six genotypes of smooth bromegrass were clonally propagated and evaluated under two soil moisture environments for three years (2013–2015). High genotypic variation was observed among genotypes for all the measured traits. Drought stress decreased mean values for traits related to productivity. Also, the long‐term stress for three years reduced the persistence of plants. Results indicated that indirect selection based on components of forage yield, which had high heritability and high correlation with yield, would be more effective to improve drought tolerance in this germplasm. The results of principal component analysis showed that there was a negative relationship between phenological traits with the persistence‐related traits and yield production. This suggests that selection for earliness may indirectly promote persistent genotypes. The results showed that some Hungarian genotypes are valuable gene sources for persistence. The most persistent genotypes from both groups (Iranian and foreign) were identified using the biplot method. These genotypes may be useful for the development of populations for future studies.  相似文献   

18.
Drought tolerance is an increasingly important trait in common bean ( Phaseolus vulgaris L.) due to the reduction in water resources, a shift in production areas and increasing input costs. The objective of this study was to evaluate 29 genotypes for drought tolerance under drought stress (DS) and reduced stress treatments in Juana Diaz, Puerto Rico. The use of DS and reduced stress treatments facilitated the identification of drought tolerant germplasm that also had good yield potential under more optimal conditions. Based on the results of seed yield under DS and reduced stress conditions, and DS indices, including the geometric mean (GM), stress tolerance index (STI) and percent yield reduction (YR), genotypes were identified with greater yield potential under the tested environment. Based on average GM over the 2 years, the superior common bean genotypes identified were SEA 5, G 21212, A 686, SEN 21 and SER 21. These genotypes performed well in both years and under both treatment conditions and thus may serve as parents for DS improvement and genetic analysis.  相似文献   

19.
Polyethylene glycol and cell membrane stability (CMS) assay were used to evaluate drought and heat tolerance, respectively, among 14 wheat lines based on seedling traits and molecular analysis. Significant variation was evidenced for all the investigated seedling traits. Different levels of heritability and genetic advance were found among the tested traits, indicating whether the trait is controlled by additive or non-additive gene action. Drought caused a significant reduction in root and shoot lengths. However, root/shoot ratio under drought stress was increased. Root length showed a highly significant negative correlation with drought susceptibility index (DSI) under drought conditions. Cluster analysis based on seedling traits separated lines mainly by DSI and CMS. Some lines showed drought and heat tolerance by exhibiting a low DSI with high CMS. Sequence-related amplified polymorphism (SRAP) generated a total of 135 bands, with a level of polymorphism ranging from 30 to 86% among the tested lines. SRAP showed its efficiency in discriminating wheat genotypes by gathering all high-DSIlines in one sub-cluster and generating 10 and 3 unique and specific bands for high-DSI-lines and low-DSI-lines, respectively. These bands could be used for further work as SRAP markers associated with drought tolerance in wheat.  相似文献   

20.
Seven genotypes of French bean (Phaseolus vulgaris L.) were evaluated under semi-controlled conditions at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh to analyze genotypic variability in leaf water status under water stress. The plants were grown under two moisture regimes, viz. 80% field capacity (FC) and 50% FC throughout the growing season. The genotypes showed significant variation in water relation traits. Genotypes BB24 and BB43 maintained higher relative water content (RWC), but lower turgid weight/dry weight ratio (TW/DW) and water uptake capacity (WUC). When drought susceptibility index (DSI) among the genotypes was considered, BB24 was found the most tolerant to drought and BB04 was the most susceptible one. A close positive relationship between leaf TW/DW and DSI under drought was recorded (R 2 = 0.627). Leaf TW/DW was decreased considerably due to water stress by 10% in genotype BB24 followed by BB43 (13%), and both BARI bushbean-2 and BB04 (19%). Stomatal aperture and whole plant transpiration rate were found minimal in the BB24 and BB43 compared to that of BB04 and BARI bushbean-2. Considering these water relation traits, genotypes BB24 and BB43 may be considered as relatively tolerant to tissue dehydration. The study also revealed that the TW/DW, WUC, stomatal aperture, and whole plant transpiration rate was negatively and significantly associated with yield; however, the RWC was positively correlated with yield under water stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号