首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Using genome‐wide SNP data, we calculated genomic inbreeding coefficients (FROH > 1 Mb, FROH > 2 Mb, FROH > 8 Mb and FROH > 16 Mb) derived from runs of homozygosity (ROH) of different lengths (>1, >2, >8 and > 16 Mb) as well as from levels of homozygosity (FHOM). We compared these values of inbreeding coefficients with those calculated from pedigrees (FPED) of 1422 bulls comprising Brown Swiss (304), Fleckvieh (502), Norwegian Red (499) and Tyrol Grey (117) cattle breeds. For all four breeds, population inbreeding levels estimated by the genomic inbreeding coefficients FROH > 8 Mb and FROH > 16 Mb were similar to the levels estimated from pedigrees. The lowest values were obtained for Fleckvieh (FPED = 0.014, FROH > 8 Mb = 0.019 and FROH > 16 Mb = 0.008); the highest, for Brown Swiss (FPED = 0.048, FROH > 8 Mb = 0.074 and FROH > 16 Mb = 0.037). In contrast, inbreeding estimates based on the genomic coefficients FROH > 1 Mb and FROH > 2 Mb were considerably higher than pedigree‐derived estimates. Standard deviations of genomic inbreeding coefficients were, on average, 1.3–1.7‐fold higher than those obtained from pedigrees. Pearson correlations between genomic and pedigree inbreeding coefficients ranged from 0.50 to 0.62 in Norwegian Red (lowest correlations) and from 0.64 to 0.72 in Tyrol Grey (highest correlations). We conclude that the proportion of the genome present in ROH provides a good indication of inbreeding levels and that analysis based on ROH length can indicate the relative amounts of autozygosity due to recent and remote ancestors.  相似文献   

2.
The study of Runs of Homozygosity (ROH) is a useful approach for the characterization of the genome of livestock populations. Due to their high relationship with autozygosity, ROH allow to make inference about population genetic history, to estimate the level of inbreeding, to assess within breed heterogeneity and to detect the footprints of selection on livestock genomes. Aim of this study was to investigate the distribution of runs of homozygosity in bulls belonging to five European Simmental populations and to assess the relationship between three production traits (milk yield, fat and protein contents) and autozygosity. ROH count, distribution and ROH‐based coefficient of inbreeding (FROH) were calculated for 3,845 Simmental bulls of five different European countries: Austria (AT), Switzerland (CH), Czech Republic (CZ), Germany (DE) and Italy (IT). Average values of ROH number per animal, and total genome length covered by ROH were 77.8 ± 20.7 and 205 ± 74.4 Mb, respectively. Bulls from AT, DE and IT exhibited similar ROH characteristics. Swiss animals showed the highest (12.6%), while CZ the lowest (4.6%) FROH coefficient. The relationship between ROH occurrence and milk production traits was investigated through a genome‐wide ROH‐traits association analysis (GWRA). A total of 34 regions previously associated with milk traits (yield and/or composition) were identified by GWRA. Results of the present research highlight a mixed genetic background in the 5 European Simmental populations, with the possible presence of three subgroups. Moreover, a strong relationship between autozygosity and production traits has been detected.  相似文献   

3.
Runs of homozygosity (ROH) are continuous segments of the genome that arose as a result of inbreeding, resulting in the inheritance of identical haplotypes from both parents who shared a common ancestor. In the present study, we performed a detailed characterization and comparison of ROH in four pig breeds, including intensively selected Polish Landrace as well as native unselected animals of Puławska and two Złotnicka breeds (White and Spotted). We used a medium-density PorcineSNP60 BeadChip assay (Illumina) and cgaTOH software to detect ROH covering a minimum of 30 adjacent SNPs and maintaining a size over 1 Mb. By analysing ROH distribution and frequency across the genome, we also identified genomic regions with high ROH frequency (so-called “ROH hotspots”). The obtained results showed that the analysed conserved breeds were characterized by a higher ROH span and higher ROH-based inbreeding coefficients (FROH), which likely result from past population bottlenecks, increasing the overall inbreeding level within these populations. The analysis of ROH distribution across the genomes revealed the presence of both shared and breed-specific ROH hotspots. These hotspots, presumably representing genome regions under selection, overlapped with a variety of genes associated with processes connected with immune system functioning, reproduction, glucose homeostasis and metabolism. The genome regions with ROH hotspots overlapping in all analysed populations, located on SSC4 (51.9–55.9 Mb) and 13 (92.6–97.8 Mb), covered thirty-one different genes, including MMP16, SLC7A13, ATP6V0D2, CNGB3, WWiP1, RiMDN1 and CPNE3. These genes are primarily associated with biological regulation and metabolism, processes that could be responsible for the variety of the selected production and functional features.  相似文献   

4.
Single nucleotide polymorphism (SNP) data enable the estimation of inbreeding at the genome level. In this study, we estimated inbreeding levels for 19,075 Finnish Ayrshire cows genotyped with a low‐density SNP panel (8K). The genotypes were imputed to 50K density, and after quality control, 39,144 SNPs remained for the analysis. Inbreeding coefficients were estimated for each animal based on the percentage of homozygous SNPs (FPH), runs of homozygosity (FROH) and pedigree (FPED). Phenotypic records were available for 13,712 animals including non‐return rate (NRR), number of inseminations (AIS) and interval from first to last insemination (IFL) for heifers and up to three parities for cows, as well as interval from calving to first insemination (ICF) for cows. Average FPED was 0.02, FROH 0.06 and FPH 0.63. A correlation of 0.71 was found between FPED and FROH, 0.66 between FPED and FPH and 0.94 between FROH and FPH. Pedigree‐based inbreeding coefficients did not show inbreeding depression in any of the traits. However, when FROH or FPH was used as a covariate, significant inbreeding depression was observed; a 10% increase in FROH was associated with 5 days longer IFL0 and IFL1, 2 weeks longer IFL3 and 3 days longer ICF2 compared to non‐inbred cows.  相似文献   

5.
The objective of this research was to examine the population structure of full‐blood (100%) Wagyu cattle registered in the United States with the American Wagyu Association, with the aim of estimating and comparing the levels of inbreeding from both pedigree and genotypic data. A total of 4132 full‐blood Wagyu cattle pedigrees were assessed and used to compute the inbreeding coefficients (FIT and FST) and the effective population size (Ne) from pedigree data for the period 1994 to 2011. In addition to pedigree analysis, 47 full‐blood Wagyu cattle representing eight prominent sire lines in the American Wagyu cattle population were genotyped using the Illumina BovineSNP50 BeadChip. Genotypic data were then used to estimate genomic inbreeding coefficients (FROH) by calculating runs of homozygosity. The mean inbreeding coefficient based on the pedigree data was estimated at 4.80%. The effective population size averaged 17 between the years 1994 and 2011 with an increase of 42.9 in 2000 and a drop of 1.8 in 2011. Examination of the runs of homozygosity revealed that the 47 Wagyu cattle from the eight prominent sire lines had a mean genomic inbreeding coefficient (FROH) estimated at 9.08% compared to a mean inbreeding coefficient based on pedigree data of 4.8%. These data suggest that the mean genotype inbreeding coefficient of full‐blood Wagyu cattle exceeds the inbreeding coefficient identified by pedigree. Inbreeding has increased slowly at a rate of 0.03% per year over the past 17 years. Wagyu breeders should continue to utilize many sires from divergent lines and consider outcrossing to other breeds to enhance genetic diversity and minimize the adverse effects of inbreeding in Wagyu.  相似文献   

6.
Maintaining genetic diversity and inbreeding control are important in Japanese Black cattle production, especially in remote areas such as the islands of Okinawa Prefecture. Using a single-nucleotide polymorphism (SNP) array, we evaluated the genetic diversity and genomic inbreeding in Japanese Black cows from the islands of Okinawa Prefecture and compared them to those from other locations across Japan. Linkage disequilibrium decay was slower in cows in the islands of Okinawa Prefecture. The estimated effective population size declined over time in both populations. The genomic inbreeding coefficient (FROH) was estimated using long stretches of consecutive homozygous SNPs (runs of homozygosity; ROH). FROH was higher in the cows on the islands of Okinawa Prefecture than on other locations. In total, 818 ROH fragments, including those containing NCAPG and PLAG1, which are major quantitative trait loci for carcass weight in Japanese Black cattle, were present at significantly higher frequencies in cows in the islands of Okinawa Prefecture. This suggests that the ROH fragments are under strong selection and that cows in the islands of Okinawa Prefecture have low genetic diversity and high genomic inbreeding relative to those at other locations. SNP arrays are useful tools for evaluating genetic diversity and genomic inbreeding in cattle.  相似文献   

7.
Runs of homozygosity (ROH) are contiguous homozygous regions of the genome. These regions can be used to identify genes associated with traits of economic interest, as well as inbreeding levels. The aim of the present study was to analyse the length and distribution of ROH islands in Gyr cattle and to identify genes within these regions. A population of 173 animals selected for beef production and a population of 291 animals selected for dairy production were used. Differences in the number of short ROH (ROH1-2 Mb) were observed between the two populations, while the number of long ROH (ROH>16 Mb) was similar. ROH islands with the highest incidences (>0.50) overlapped in several segments of the genome in the two populations. The genes identified were associated with milk production, growth, reproduction, immune response and resistance traits. Our results contribute to the understanding of how selection can shape the distribution of ROH and ROH islands within the same breed when animals are selected for different purposes such as dairy or beef production.  相似文献   

8.
The aim of this study was to assess the distribution of runs of homozygosity (ROH) and autozygosity islands in the composite Montana Tropical® beef cattle to explore hotspot regions which could better characterize the different biological types within the composite breed. Montana animals (n = 1,436) were genotyped with the GGP-LD BeadChip (~30,000 markers). ROH was identified in every individual using the plink v1.90 software. Medium and long ROH prevailed in the genome, which accounted for approximately 74% of all ROH detected. On an average, 2.0% of the genome was within ROH, agreeing with the pedigree-based inbreeding coefficient. The Montana cattle with a higher proportion of productive breed types showed the highest number of autozygosity islands (n = 17), followed by those with a higher proportion of breeds adapted to tropical environments (n = 15). Enriched terms (p < .05) associated with the immune and inflammatory response, homeostasis, reproduction, mineral absorption, and lipid metabolism were described within the autozygosity islands. In this regard, over-represented GO terms and KEGG pathways described in this population may play a key role in providing information to explore the genetic and biological mechanisms together with the genomic regions underlying each biological type that favoured their optimal performance ability in tropical and subtropical regions.  相似文献   

9.
Our aim was to ascertain inbreeding depression in the Spanish Purebred horses for eight body measurements. A total of 16,472 individuals were measured for height at withers, height at chest, leg length, body length, width of chest, heart girth circumference, knee perimeter and cannon bone circumference. Three different multivariate animal models including, respectively, no measure of inbreeding, individual inbreeding coefficients (Fi) or individual increase in inbreeding coefficients (ΔFi) as linear covariates were used. Significant inbreeding depression was assessed. Even though the models including measures of inbreeding fitted better with data, no effect on estimates of genetic parameters was assessed. However, the inclusion of inbreeding measures affected the ranking order according to the Expected Breeding Values (EBV). Due to the better fit with data and nice properties (the adjustment of individual inbreeding coefficients with the pedigree depth and linear behaviour) the use of ΔFi in the evaluation models can be recommended for morphological traits in horses.  相似文献   

10.
Data of the Elsenburg Dormer sheep stud, which was kept closed since inception, were collected over a period of 62 years (1941–2002). The breed is a composite, resulting from a cross of Dorset Horn rams with South African Mutton Merino ewes. These data were analysed to quantify the increase in actual level of inbreeding and to investigate the effect of inbreeding on phenotypic values, genetic parameters and estimated breeding values. After editing 11954 pedigree, 11721 birth weight (BW) and survival, 9205 weaning weight (WW) and 7504 reproduction records were available for analysis. The mean level of inbreeding (F) of all animals over all years was 16%; 14% for dams and 16% for sires. Mean, minimum and maximum F for the lambs in 1997 (when 3 rams from outside were introduced) were 22%, 21% and 24% respectively. Estimates of inbreeding depression for individual inbreeding of 1% were − 0.006 kg for birth and − 0.093 kg for weaning weight respectively. These were the only estimates that were significantly (P < 0.01) different from zero. No significant effects of inbreeding on the other traits were found. There were virtually no differences in the genetic parameters estimated when fitting the two models (inclusion or exclusion of inbreeding coefficients as covariates). Estimates of the phenotypic variance differed slightly for WW between the two models. Ranking of animals were studied for weaning weight when the two models were considered. The high correlation coefficients (0.990) indicate that the use of inbreeding coefficients did not cause important changes in ranking of animals and sires for WW. It was concluded that slow inbreeding (rate of inbreeding of approximately 1.53% per generation over 19 generations) allows natural selection to operate and to remove the less fit animals. At any given mean level of F, less inbreeding depression would then be expected among the individuals who accumulated the inbreeding over a larger number of generations. Nevertheless, inbreeding coefficients should be considered when mating decisions are made, to limit the possible deleterious effects of inbreeding on productive and reproductive traits and to detect animals “resilient to” higher levels of inbreeding.  相似文献   

11.
A pedigree including 1538 individuals of the endangered pig breed ‘Bunte Bentheimer’ and 3008 records of the fertility traits ‘number of piglets born alive’ (NBA) and ‘number of piglets weaned’ (NW) were used to i) characterize the population structure, ii) to estimate genetic (co)variance components and estimated breeding values (EBVs) and iii) to use EBVs for the application of the concept of optimal genetic contributions. The average coefficient of inbreeding increased from F = 0.103 to = 0.121 within the two recent cohorts. Average rate of inbreeding amounted to 1.66%, which resulted in an effective population size of Ne = 30 animals in the recent cohort. Average generation interval was 3.07 years considering the whole pedigree, and in total, only 612 sows and boars generated offspring. Estimated heritabilities for both traits NBA and NW were 0.12, and the estimated genetic correlation between both traits was 0.96. The variance component due to the service sire was higher than in commercial pig breeds, presumably due to the widespread use of natural service boars. The EBVs for NBA from 333 selection candidates (63 boars and 270 sows) were used to determine optimal genetic contributions. Based on selected animals and their optimal genetic contributions, specific mating designs were evaluated to minimize inbreeding in the next generation. Best results were achieved when using a simulated annealing algorithm and allowing artificial insemination.  相似文献   

12.
The productivity of herds may be negatively affected by inbreeding depression, and it is important to know how intense is this effect on the livestock performance. We performed a comprehensive analysis involving five Zebu breeds reared in Brazil to estimate inbreeding depression in productive and reproductive traits. Inbreeding depression was estimated for 13 traits by including the individual inbreeding rate as a linear covariate in the standard genetic evaluation models. For all breeds and for almost all traits (no effect was observed on gestation length), the performance of the animals was compromised by an increase in inbreeding. The average inbreeding depression was ?0.222% and ?0.859% per 1% of inbreeding for linear regression coefficients scaled on the percentage of mean (βm) and standard deviation (βσ), respectively. The means for βm (and βσ) were ?0.269% (?1.202%) for weight/growth traits and ?0.174% (?0.546%) for reproductive traits. Hence, inbreeding depression is more pronounced in weight/growth traits than in reproductive traits. These findings highlight the need for the management of inbreeding in the respective breeding programmes of the breeds studied here.  相似文献   

13.
Information is presented on the genetic diversity and relationship among six Indian sheep breeds/populations belonging to the Southern peninsular and Eastern agroecological zones, based on microsatellite markers. Parameters of genetic variation, viz., allele diversity, observed heterozygosity, gene diversity and population inbreeding estimates, were calculated for the six breeds. The allele diversity ranged from 6.40 to 7.92, whereas the gene diversity varied from 0.617 to 0.727. The highest allele and gene diversity was observed for Nellore sheep, while the lowest was exhibited by Garole breed. Within population inbreeding estimate (F IS) revealed a significant deficit of heterozygotes in Deccani, Madgyal, Nellore and Garole, whereas Ganjam and Chhotanagpuri sheep showed an excess of heterozygotes. The contribution of each breed to the total diversity of the breeds was quantified by the Weitzman approach. The marginal loss of diversity incurred with removal of Nellore and Garole breeds was higher (>27%), whereas removal of Deccani breed resulted in lowest loss of diversity (3.84%) from the set. Estimation of the genetic differentiation (F ST) and genetic distance (D A) between the pairs of breeds revealed a close relationship between Deccani and Madgyal sheep (F ST = 0.017; D A = 0.080) and greatest demarcation between Madgyal and Garole breeds (F ST = 0.110; D A = 0.622). The information generated would help in shaping genetic management and conservation programs for the sheep breeds under consideration.  相似文献   

14.
Reyna Creole cattle in Nicaragua comprise about 650 purebred animals, and the breed has been shown to have a high level of inbreeding. To characterize the breed, as basis for a conservation program, information from two herds on birth weight (BW, n = 1097), age at first calving (AFC, n = 449) and calving interval (CI, n = 1,347) was analysed. Overall averages were 27.8 kg for BW, 37.4 months for AFC and 424 days for CI. Large differences between the herds were observed for all traits. Thus, there would be opportunities for management interventions to improve reproduction results. The heritability for BW was 0.34. For CI, the heritability of 0.20 and the additive genetic standard deviation of 36 days were comparatively high values. No genetic variation was found in AFC. Estimated inbreeding effects were associated with large standard errors due to the small size of the data and incompleteness of pedigrees. Nevertheless, significant effects were shown of dam inbreeding level on all traits. For each percentage of increased inbreeding, BW decreased by 0.06 kg, AFC increased by 3.5 days and CI increased by 1.4 days. The effects of the inbreeding level of the individual itself were not significant. The relatively good reproduction traits of Reyna Creole cattle shown in this study, despite high inbreeding levels, will be supplemented with a characterization of milk production traits.  相似文献   

15.
The genetic diversity of the Red Bororo and White Fulani cattle breeds of Cameroon and Nigeria was assessed with a panel of 32 markers. Estimates for the various indices of genetic diversity, total number of alleles (TNA), mean observed number of alleles (MNA), mean effective number of alleles (MNE), observed heterozygosity (H ob) and expected heterozygosity (H ex), were higher at microsatellite loci than at protein loci. Mean H ex values were above 71% at microsatellite loci in all the breeds and ranged from 37% to 41.6% at milk protein loci and from 40.9% to 45.6% at blood protein loci. The highest TNA and MNA of microsatellites were recorded for the Nigerian White Fulani. MNE of milk protein loci was highest in the Cameroonian Red Bororo, while TNA of blood protein loci was highest in the Cameroonian White Fulani. The high genetic diversity levels indicate the presence of the necessary ingredients for improvement breeding and conservation. Multi-locus estimates of within-population inbreeding (f), total inbreeding (F) and population differentiation (θ) of the breeds were significantly different from zero, except for θ of blood proteins. A high level of gene flow was found between the breeds (5.829). The phylogenetic relationship existing among the four breeds is greatly influenced by location. The high gene flow between the breeds may lead to a loss of genetic diversity through genetic uniformity and a reduction in opportunities for future breed development. We propose an improvement scheme with aims to prevent loss of genetic diversity, improve productivity and reduce uncontrolled genetic exchanges between breeds.  相似文献   

16.
The aim of this study was to investigate the reproductive and productive performance of pure Egyptian (PE) buffaloes and their crosses with Italian buffaloes. In this study, 2969 dairy buffaloes were used (1599 PE; 615 F1 crosses, 50% PE and 50% Italian buffaloes; and 755 backcross [BC], 75% PE and 25% Italian buffaloes). When compared to PE, the BC and F1 had a significantly lower incidence of calving difficulty (odds ratio [OR] = 0.18, p < .0001 and .34, p < .0001, respectively) in conjunction with a lesser incidence of stillbirth (OR = 0.06, p < .0001 and 0.43, p < .0001, respectively). Backcross buffaloes were also noted to have a lower rate of not conceived after first insemination (OR = 0.74, p < .0001) in comparison with PE. The cross F1 buffaloes were superior in terms of productive traits, whereas PE buffaloes were best in most of the reproductive traits (days of non‐pregnant p = .001, service per conception p < .0001 and calf weight p = .01). Although the study results appeared to indicate towards a contrary association between milk production and reproductive traits, BC was similar to F1 in terms of production and similar to PE in terms of reproductive traits. Thus, the farmers should be encouraged to breed BC animals in their herds for enhancing milk yield to meet with the market demands.  相似文献   

17.
Level of genetic differentiation, gene flow and genetic structuring of nine Bos indicus and three Bos taurus cattle breeds in Cameroon and Nigeria were estimated using the genetic information from 16 microsatellite, five blood protein and seven milk protein markers. The global heterozygote deficit across all populations (Fit) amounted to 11.7% (p < 0.001). The overall significant (p < 0.001) deficit of heterozygotes because of inbreeding within breeds (Fis) amounted to 6.1%. The breeds were moderately differentiated (Fst = 6%, p < 0.001) with all loci except CSN1S2 contributing significantly to the Fst value. The 12 populations belong to two genetic clusters, a zebu and a taurine cluster. While inferred sub‐clusters within the taurine group corresponded extremely well to predefined breed categorizations, no real sub‐clusters, corresponding to predefined breeds, existed within the zebu cluster. With the application of prior population information, cluster analysis achieved posterior probabilities from 0.962 to 0.994 of correctly assigning individuals to their rightful populations. High gene flow was evident between the zebu populations. Positive and negative implications of the observed genetic structure of the breeds on their development, improvement and conservation are discussed. The study shows that the breeds are threatened by uncontrolled breeding and therefore are at risk to become genetically uniform in the future. This situation can be avoided by putting in place effective breeding and management measures aimed at limiting uncontrolled mating between the breeds and to preserve special characteristics, genetic as well as breed biodiversity. The first step towards realizing these goals might be to geographically demarcate the breeds.  相似文献   

18.
Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case–control genome‐wide association study (GWAS), the Bayesian population differentiation analysis (FST) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome‐wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome‐wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.  相似文献   

19.
Pedigree information was traditionally used to assess inbreeding. The availability of high-density marker panels provides an alternative to assess inbreeding, particularly in the presence of incomplete and error-prone pedigrees. Assessment of autozygosity across chromosomal segments using runs of homozygosity (ROH) has emerged as a valuable tool to estimate inbreeding due to its general flexibility and ability to quantify the chromosomal contribution to genome-wide inbreeding. Unfortunately, the identification of ROH segments is sensitive to the parameters used during the search process. These parameters are heuristically set, leading to significant variation in the results. The minimum length required to identify an ROH segment has major effects on the estimation of inbreeding and inbreeding depression, yet it is arbitrarily set. To overcome this limitation, a search algorithm to approximate mutation enrichment was developed to determine the minimum length of ROH segments. It consists of finding genome segments with significant effect differences in trait means between animals with high and low burdens of autozygous intervals with a specific length. The minimum length could be determined heuristically as the smallest interval at which a significant signal is detected. The proposed method was tested in an inbred Hereford cattle population genotyped for 30,220 SNPs. Phenotypes recorded for six traits were used for the approximation of mutation loads. The estimated minimum length was around 1 Mb for yearling weight (YW) and average daily gain (ADG) and 4 Mb for birth weight and weaning weight. These trait-specific thresholds estimated using the proposed method could be attributed to a trait-dependent effect of homozygosity. The detection of significant inbreeding effects was well aligned with the estimated thresholds, especially for YW and ADG. Although highly deleterious alleles are expected to be more frequent in recent inbreeding (long ROH), short ROH segments (<5 Mb) could contain a large number of less deleterious mutations with substantial joint effects on some traits (YW and ADG). Our results highlight the importance of accurate estimation of the ROH-based inbreeding and the necessity to consider a trait-specific minimum length threshold for the identification of ROH segments in inbreeding depression analyses. These thresholds could be determined using the proposed method provided the availability of phenotypic information.  相似文献   

20.
Conservation decisions based on neutral genetic diversity have been observed to promote retention of useful quantitative variation in biological populations. An experiment was undertaken to determine the association between microsatellite marker polymorphisms and phenotypic variation in semen production and cryosurvival traits in bulls. Thirty-five ejaculates were collected from ten bulls of two breeds and evaluated before and after cryopreservation for several semen traits. The bulls were also genotyped using a set of sixteen bovine-specific microsatellite marker loci. Fixation indices (FST), heterozygosity and Nei's genetic distance measures were computed from allele frequency data for each of the bulls. Molecular and phenotypic data were used to compute tri-distance matrices for the ten bulls and correlated using Mantel's test in GenAIEx 6.5. The study revealed extensive heterogeneity in semen traits, heterozygosity and FST values among the bulls. Large pairwise phenotypic and genetic distances were also observed. Correlation between pairwise genetic distances and phenotypic distances was significant and highly positive for sperm viability (r = .61, p < .001) and moderately positive for sperm motility (r = .40–42, p < .05) variables. For sperm morphology, ejaculate volume and sperm concentration, correlation with genetic distances was positive, low and not significantly different from zero (p > .05). A tendency for a triangular-shaped relationship between genetic and phenotypic distances for post-thaw motility and viability traits was also observed. Accordingly, association with neutral genetic diversity was absent for semen production traits and moderate to highly positive for sperm cryosurvival traits. Given these findings, conservation decisions based on neutral genetic diversity may capture variation in some adaptive traits, but not others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号