首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Genetic variation within and among several Sorghum populations from different agroecological zones in Malawi were investigated using random amplified polymorphic markers (RAPDs). DNA samples from individual plants were analyzed using 35 oligonucleotides of random sequence. Twenty five of these primers allowed amplifications of random polymorphic (RAPD) loci. Overall, 52% of the scored loci were polymorphic. Every accession was genetically distinct. The analysis of molecular variance revealed that the within-region (among accessions) variations accounted for 96.43% of the total molecular variance. Observed variations in allelic frequency was not related to agroecological differences. The degree of band sharing was used to evaluate genetic distance between accessions and to construct a phylogenetic tree. Further analysis revealed that the sorghum accessions analyzed were genetically close despite considerable phenotypic diversity within and among them. It is suggested that all the sorghum landraces currently available in Malawi should be conserved both ex situ and in situ to maintain the current level of genetic diversity.  相似文献   

2.
The present study demonstrates utilization of 11 microsatellite markers to explore genetic diversity held in Perilla frutescens (L.) Britt. landrace accessions growing on farms in different parts of Korea and Japan and to assess their genetic relationships. All microsatellite loci were polymorphic and produced a total of 96 alleles ranging from 4 to 20, with an average of 8.7 alleles per locus. Of the 96 alleles found, a total of 15 unique landrace-specific alleles were observed at 9 different loci. The locus GBPFM203 provided the highest number of alleles (20), of which five were unique and each specific to a particular landrace accession. The occurrence of unique, accession-specific alleles presented molecular evidence for the generation of new alleles within on-farm collection of Perilla. The mean values of observed (H O) and expected heterozygosity (H E) were 0.39 and 0.68, respectively, indicating a considerable amount of polymorphism within this collection. A genetic distance-based phylogeny grouped the two Perilla varieties, var. frutescens and var. crispa (Thunb.) Decne into two distinct groups. Accessions belonging to var. frutescens could also be divided into two subgroups at a close genetic distance (GD = 0.432). The overall clustering pattern did not strictly follow the grouping of accessions according to their geographic origins. These observations are indicative of extensive germplasm exchange among farms from different geographical regions. The genetic similarity observed among the Perilla landraces may be useful for future Perilla crop variety identification, conservation, and improvement programs.  相似文献   

3.

Tef is the most important and well adapted cereal crop in Ethiopia and grows better than other cereals both in biotic and abiotic stress conditions. In this study 93 tef accessions representative of various agro-ecologies of Ethiopia along with four improved varieties, one local check and six wild relatives were studied. The materials were genotyped with 12 simple sequence repeat markers (SSRs) to investigate the extent and structure of the genetic diversity of tef. A total of 152 alleles were detected indicating high polymorphism in the studied accessions. The number of alleles per polymorphic loci ranged from seven for CNLT 538 to 29 for CNLT150 with an average of 12.67. High average polymorphic information content (0.82) and average expected heterozygosity (0.86) also signifies the suitability and efficiency of SSR markers to discriminate among tef genotypes. Cluster, principal coordinate and structure analyses grouped the 98 tef genotypes and six wild relatives into four distinct classes. The groupings showed no special pattern despite the different regions of origins for the accessions; however, the five wild relatives were grouped together. The analysis of molecular variance and fixation index showed low genetic differentiation and high gene flow between regions revealing that much of the variability was attributed to within populations variation. Generally, the present study showed that there is high genetic variability with unstructured genetic pattern among the studied tef genotypes which implies the vitality of conserved tef germplasms at Ethiopian Biodiversity Institute and the impact of the seed exchange system on tef breeding activities in Ethiopia.

  相似文献   

4.
As an oilseed crop, the cultivation of Ethiopian mustard (Brassica carinata) is restricted only to Ethiopia. Even though geographic diversity is a potent source of allelic diversity, the extent of genetic diversity among germplasm material of Ethiopian mustard from different countries has not been assessed. Forty-three accessions, comprising 29 accessions from eight different geographic regions of Ethiopia and 14 exotic accessions from Australia, Pakistan, Spain, and Zambia were analysed for their genetic diversity using random amplified polymorphic DNA (RAPD) technique. A set of 50 primers yielded a total of 275 polymorphic bands allowing an unequivocal separation of every Ethiopian mustard accession. The usefulness of the 50 RAPD primers in measuring heterozygousity and distinguishing accessions was variable such that polymorphic information content (PIC) varied from 0.05 to 0.40, band informativeness (BI) from 0.05 to 0.65 and primer resolving power (RP) from 0.15 to 6.83. Jaccard's similarity coefficients ranged from 0.44 to 0.87 indicating the presence of a high level of genetic diversity. On the average, Australian and Ethiopian accessions were the most similar while, Spanish and Zambian accessions were the most distant ones. Cluster analysis grouped the 43 accessions into four groups, which has quite a high fit (r = 0.80) to the original similarity matrix. With no prior molecular information, the RAPD technique detected large genetic diversity among the 43 accessions from five different countries and their grouping by dendrogram and principal coordinate analysis (PCoA) was inclined towards geographic differentiation of RAPD markers. Conversely, RAPD differentiation along geographic origin was not apparent within the Ethiopian accessions.  相似文献   

5.
Anchote (Coccinia abyssinica) is plant endemic in Ethiopia with a high calcium content grown for its edible tuberous roots. In spite of its importance as food security crop, there is no information available on molecular genetic diversity of this crop. Therefore, the aim of this study was to assess genetic diversity within and among 12 populations of anchote using ISSR markers. Using nine ISSR primers, a total of 87 scorable bands was generated of which 74 were polymorphic. Within population diversity based on polymorphic bands ranged from 13.8 to 43.53 % with a mean of 33.05 %, Nei’s genetic diversity of 0.04–0.156 with a mean of 0.12, Shannon information index of 0.07–0.23 with a mean of 0.175 and analysis of molecular variation (AMOVA) of 51.4 % were detected. With all diversity parameters, the highest diversity was obtained from Gimbi, Bedele and Ale populations, whilst the lowest was from Manna. AMOVA showed a 48.56 % between populations variability and significantly lower than that of within population variation. Population differentiation with FST was 48.56 %. From Jaccard’s pairwise similarity coefficient, Decha and Nedjo were most related populations exhibiting 0.76 similarity and Manna and Nedjo were the most distantly related populations with similarity of 0.52. The only pentanucliotide primer used in the study, Primer 880 (GGAGA)3, showed a unique band in some individuals that appeared to be associated with morphological quantitative traits (lowest seed number, high protein content, largest fruit size and smallest vine length). Illubabor and Gimbi populations exhibited highest genetic diversity so that the populations should be considered as the primary sites in designing conservation areas for this crop.  相似文献   

6.
Guar [Cyamopsis tetragonoloba (L.) Taub.] is an important commercial crop of India, mainly cultivated in the northwestern part and neighboring areas of Pakistan. High morphological diversity is reported in guar. The present study attempts to analyze the genetic diversity in cultivated guar using allozyme polymorphism and compare it with reported morphological diversity. Accessions for the study were selected from a set of guar germplasm conserved at the National Bureau of Plant Genetic Resources, New Delhi. The morphological data of 108 selected accessions was subjected to UPGMA clustering. Fifty-five accessions were then picked randomly from the clusters generated. Tris-borate system (pH 8.3) was found to be most effective for detection of allozyme polymorphism in guar. Ten enzymes were selected for the study out of 18 systems tried, namely, malate dehydrogenase, malic enzyme, phosphogluco isomerase, glutamate oxaloacetate transaminase, esterase, peroxidase, alcohol dehydrogenase, glutamate dehydrogenase, glucose 6-phosphate dehydrogenase and shikimate dehydrogenase. A total of 20 loci were detected with 34 alleles. The number of polymorphic loci in different accessions was observed to be highly variable (0–9). An average of 1.27 allozyme per polymorphic locus was observed. The allele frequency data of the 55 accessions was used to determine genetic diversity parameters. The dendrogram generated on genetic distance showed three clusters in the distance range of 0–0.28. Most of the accessions were in the first clusters in a narrow distance range of 0–0.08. The second cluster consisted of improved varieties and accession from Pakistan. The third cluster of accessions was genetically more distant but there was no definite segregation of accessions according to the place of collection. The accessions from south west Rajasthan were scattered in all the three clusters showing higher variability in this region, also supported by higher morphological variation. The genetic distance was low among accessions of guar, indicating low diversity in India.  相似文献   

7.
Genetic diversity among 26 cucumber (Cucumis sativus L. var. sativus) accessions from five African countries [Algeria (1), Egypt (21), Ethiopia (2), Kenya (1), and Libya (1)] present in the U.S. National Plant Germplasm System (NPGS) were examined by assessing variation at 71 polymorphic random amplified polymorphic DNA (RAPD) loci. Genetic distances (GD; simple matching coefficient) were estimated among these African accessions and a reference array (RA) of 21 accessions representative of the genetic variation in cucumber. GD among African accessions ranged between 0.41 and 0.97. GD among accessions in the reference array ranged between 0.36 and 0.88. Multivariate analysis identified three distinct groupings (1–3) of African accessions; Group 1 contained 21 accessions (Egypt, Ethiopia and Libya), Group 2 consisted of two accessions (Kenya, Algeria), and Group 3 possessed three accessions (Egypt). These groupings were distinct from each other (P > 0.001). Accessions in Group 1 differed genetically from all other accessions examined (P > 0.01), and accessions in Groups 2 and 3 were uniquely associated with several RA accessions. While GD among accessions in Group 1 ranged between 0.52 and 0.90, distances among Group 2 accessions varied between 0.93 and 0.97. The GD between the two accessions in Group 3 was 0.65. An accession from Syria (PI 181874) and from one Turkey (PI 199383) were genetically more similar to accessions in Group 1 than to other accessions in the RA. Likewise, accessions in Group 2 were genetically similar to two RA accessions from China and a European glasshouse cucumber line, and Group 3 accessions showed genetic affinities with the U.S. market class cultivar Dasher II. Data suggest that some Egyptian accessions (Group 1) possess unique genetic variation, that this germplasm has potential for broadening the genetic base of commerical cucumber, and that further collection of African germplasm is likely to enhance genetic diversity of cucumber in NPGS.  相似文献   

8.
We established protocols for the analysis of genetic diversity in chayote (Sechium edule) by using isozyme markers, thereby determining the level of genetic diversity present in 42 accessions of chayote from Costa Rica. We obtained clear and reproducible zymograms for eight enzyme staining systems: PGM, 6-PGD, PGI, IDH, MDH, SOD, SKD, and EST, and were able to score 14 putative loci. Eight of the 14 loci examined were polymorphic. We found 35 distinct multilocus genotypes among these accessions. Five of these multilocus genotypes were homozygous for all loci. In addition, our data also revealed that most of the multilocus genotypes (24) were heterozygous for only one of the eight loci, and the rest were heterozygous for two or three loci (9 and 4 accessions, respectively). Seven multilocus genotypes were found in two different accessions. Dice similarity coefficient was used to study the relationship between accessions. This analysis, based on the presence and absence of alleles, revealed that accessions collected in the same location seldom shared the same multilocus genotype. The value of isozyme polymorphisms as tools to continue studies on the characterization of chayote is discussed.  相似文献   

9.
Twenty maize landrace accessions regenerated and conserved in five maize genebanks were investigated for genetic integrity using 1,150 Single Nucleotide Polymorphisms (SNPs) and 235 SNP haplotypes. The genetic diversity of three accessions changed significantly in terms of the average number of alleles per locus. Ten out of twenty accessions had significantly different SNP allelic frequencies, either after regeneration or in the same accession held in different genebanks. The proportion of loci with significant changes in SNP allelic frequency was very low (37/1,150). Changes in the major allelic frequency (MAF) for the majority of SNP loci (60.2–75.2%) were less than 0.05. For SNP haplotypes, the genetic diversity of four accessions changed significantly in terms of average number of haplotype alleles and polymorphic information content (PIC) per locus. The proportion of SNP haplotype alleles lost in the later generations ranged between 0 and 22.6%, and at the same time 0–19.9% of the SNP haplotype alleles appeared in later generations, however, these were absent in the earlier generations. Dynamic changes in genetic integrity, in terms of presence and absence of genes (alleles), by both SNP and SNP haplotype analysis were detected during regeneration. A suboptimum number of ears harvested in one generation can be combined with those from another, repeated regeneration to capture the diversity of the previous generation. Use of molecular markers during regeneration of accessions can help in understanding the extent of genetic integrity of the maize accessions in ex situ genebanks and in recommending the best practice for maintaining the original genetic diversity of the genebank accessions.  相似文献   

10.
Sweet potato (Ipomoea batatas L.) is the fifth most important crop in the developing countries after rice, wheat, maize and cassava. The amplified fragment length polymorphism (AFLP) method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection of Sokoine University of Agriculture, Morogoro and Sugarcane Research Institute, Kibaha, Tanzania. AFLP analysis of 97 sweet potato accessions using ten primer combinations gave a total of 202 clear polymorphic bands. Each one of the 97 sweet potato accessions could be distinguished based on these primer combinations. Estimates of genetic similarities were obtained by the Dice coefficient, and a final dendrogram was constructed with the un-weight pair-group method using arithmetic average. AFLP-based genetic similarity varied from 0.388 to 0.941, with a mean of 0.709. Cluster analysis using genetic similarity divided the accessions into two main groups suggesting that there are genetic relationships among the accessions. Principal Coordinate analysis confirmed the pattern of the cluster analysis. Analysis of molecular variance revealed greater variation within regions (96.19%) than among regions (3.81%). The results from the AFLP analysis revealed a relatively low genetic diversity among the germplasm accessions and the genetic distances between regions were low. A maximally diverse subset of 13 accessions capturing 97% of the molecular markers diversity was identified. We were able to detect duplicates accessions in the germplasm collection using the highly polymorphic markers obtained by AFLP, which were found to be an efficient tool to characterize the genetic diversity and relationships of sweet potato accessions in the germplasm collection in Tanzania.  相似文献   

11.
Cultivated sorghum [Sorghum bicolor (L.) Moench] is an important food security crop in the semi-arid regions of the world including Asia and Africa. Its genetic diversity is contained mostly in traditional varieties and modern cultivars used by farmers. In this study, agro-morphological traits and molecular markers were used to assess genetic diversity in 22 accessions of cultivated sorghum from five countries (Botswana, Namibia, Swaziland, Zambia and Zimbabwe) in the Southern African Development Community (SADC) region. The study revealed a significant variation among 22 accessions in both qualitative and quantitative morphological traits, indicating the accessions’ promising potential as breeding material. For molecular analysis, 11 microsatellite primer-pairs were used, and generated a total of 70 alleles across 20 accessions. Analysis of molecular variance revealed a high level of genetic variation; 67 % among the accessions and 10 % among the five countries. The patterns of genetic diversity and the relationships observed in this study should provide insights for genetic resource conservation and utilization of sorghum germplasm in the SADC region.  相似文献   

12.
The effective utilization of crop diversity held in genebanks depends on our knowledge of useful traits and available markers associated with the target traits. Target region amplification polymorphism (TRAP) was used to evaluate the genetic diversity and underlying relationships among 263 accessions of chickpea landraces maintained by the USDA-ARS Western Regional Plant Introduction Station in Pullman, WA, USA. Two-hundred sixty-two TRAP markers were amplified by eight primer combinations. Altogether, 110 (42 %) markers were polymorphic, the other 152 (58 %) displayed no variation. These polymorphic markers revealed important differences among the accessions, with an estimated, mean pair-wise genetic distance of 25.82 %, ranging from 2.8 to 50.0 %. Genetic distance analysis divided the accessions into two major groups, with 113 and 150 accessions each, and substantial association between molecular diversity and geographic origin was evident. Bayesian analysis of population structure revealed two groups (K = 2) with evidence for six sub-groups. Additionally, the population structure of a subset of 110 lines was determined (K = 3) for testing marker-trait associations (MTAs). Phenotypic traits included the concentrations of protein and nine mineral elements in the seeds. Two MTAs were significant (p < 0.01) for concentrations of Ca and K, and three MTAs were significant for Cu and Ni concentrations. The results indicate that this population is useful for genome-wide association studies on other economic traits given the level of genetic diversity uncovered and the marker-trait associations in seed minerals discovered.  相似文献   

13.
Genetic variation within the U.S. cucumber collection (Cucumis sativus var. sativus L. and var. hardwickii (Royle) Alef.) was assessed by examing the variation at 21 polymorphic isozyme loci and comparing the results of this investigation with a similar previous analysis of 14 loci. About 29% (15 of 51) of the enzyme systems examined in an initial survey were polymorphic. Seven loci (Ak-2, Ak-3, Fdp-1, Fdp-2, Mpi-1, Pep-gl and Skdh) which were not previously used to estimate genetic diversity, were assessed. On average, 1.4 loci were polymorphic per enzyme system and 2.2 alleles were present per polymorphic locus. The frequency of polymorphisms was relatively low for Fdp-1(2) (0.01), Mpi-1(1) (0.03), and Skdh(1) (0.02). Principal component and cluster analyses of allelic variation at polymorphic loci separated a diverse array of 757 cucumber accessions from the U.S. National Plant Germplasm Systesm's (NPGS) collection into distinct groups by country (45 nations examined). All accessions of C. s. var. sativus were isozymically distinct from C. s. var. hardwickii, which were themselves dissimilar from each other. Data suggest that C. s. var. hardwickii is not a feral derivative of extant C. s. var. sativus populations. The allelic profile of C. s. var. sativus accessions originating from Burma, Thailand, Indonesia, Hong Kong, Zimbabwe and Ethiopia were distinct from the other accessions examined. Allelic fixation has occurred at Pgd-2 in accessions from Burma, and at Ak-2 in accessions from Zimbabwe and Ethiopia. Some of the countries examined that were in close geographic proximity (e.g., Thailand, Indonesia and Hong Kong) contained accessions with similar isozyme profiles. Accessions are fixed for certain alleles [e.g., Gr(1) (100%), Fdp-1(1) (100%) and Mpi-2(2) (50%) for accessions from Thailand, Indonesia and Hong Kong]. Grouping countries by continent or sub-continent (i.e., North and South American, China, Eastern Europe, Western Europe) and by numbers of accessions examined (i.e., India/Burma, Iran, Japan, Turkey, and remaining accessions) was used to identify accessions with unique allozymic profiles [PIs 209064 (USA), 257486 (China), 188749 (Egypt), 285607 (Poland), 369717 (Yugoslavia), 357844 (Poland), 255936 (Netherlands), 183127 (India), 200818 (Burma), 200815 (Burma), 137836 (Iran), 227013 (Iran), 227235 (Iran), 451976 (Japan), 181752 (Syria), 181874 (Syria), 169383 (Turkey), 171613 (Turkey)].  相似文献   

14.
Over the past three centuries, maize has become adapted to complex environmental conditions in the highlands of Ethiopia. We analyzed 62 traditional Ethiopian highland maize accessions, using 20 simple sequence repeat (SSR) markers and 15 morphological traits, to assess genetic diversity and relationships among these accessions and to assess the level of correlation between phenotypic and genetic distances. The accessions varied significantly for all of the measured morphological traits. The average number of alleles per locus was 4.9. Pair-wise genetic dissimilarity coefficients ranged from 0.27 to 0.63 with a mean of 0.49. Ward minimum variance cluster analysis showed that accessions collected from the Northern agroecology were distinct from the Western and Southern agroecologies. However, there was no differentiation between the Western and Southern accessions. This suggested gene flow between these regions. The relationship between morphological and SSR-based distances was significant and positive (r = 0.43, p = 0.001). The high genetic diversity observed among these set of accessions, suggests ample opportunity for the development of improved varieties for different agroecologies of Ethiopia. From conservation perspective, sampling many accessions from all agroecologies would be an effective way of capturing genetic variation for future collections and conservation.  相似文献   

15.
Xanthosoma sagittifolium (L.) Schott originated from the American tropics. Domestication may have occurred in various places as this Araceae species is an important food source. It has been cultivated for many decades. In this study, Amplified Fragments Length Polymorphism (AFLP) markers were used to analyze the genetic relationships among 78 Ethiopian X. sagittifolium accessions, for conservation purpose. Cormels were collected from Bench-Maji, Kefa, Dawuro and Wolaita zones, representing four populations. The accessions belonged to either green (G) or purple (P) colored leaf and petiole accessions. Three different AFLP primer combinations resulted in 478 scorable bands, of which 99.2% were polymorphic. The mean Nei’s gene diversity (He) within populations was 0.35 while the G accessions featured higher He (0.38) than the P ones (0.35). The Nei’s gene diversity (He) at entire collection level was 0.38. The detected high genetic diversity may indicate the X. sagittifolium plants growing in the country may derive from diverse parental genotype stock elsewhere and/or there may be multiple introductions to the country. Low levels of genetic differentiation were detected among populations (Gst?=?0.07) and between the G and P accessions (Gst?=?0.02). Insignificant genetic and geographic correlation was revealed by Mantel test. Clustering analysis grouped 91% of the accessions together. Conservation and management of X. sagittifolium in the country should concentrate on maintaining high level genetic diversity within each population as well as at entire collection level through both ex situ and in situ conservation actions.  相似文献   

16.
17.
Diversity analysis was performed among 39 cultivated lentil (Lens culinaris Medik.) accessions of Central Asia and Caucasian origin using five highly polymorphic microsatellite markers. A total of 33 alleles determined ranging from 3 to 8 per locus. Estimated gene diversity value for 33 loci was 0.66. Genetic similarity indices among 39 accessions ranged from 0.24 to 1.0. Cluster analysis using the unweighted pair group method with arithmetic mean method classified accessions into six major groups at 0.5 similarity coefficient. More than half accessions from Tajikistan formed large cluster. On the other hand, a few accessions from each country showed unique genotypes. Overall, most of the accessions, except ones with closely related origin, were distinguished by the present high quality DNA fingerprinting. This molecular diversity information gives important basis for conservation strategy in gene bank and exotic germplasm introduction in breeding programs in Central Asia and Caucasian countries.  相似文献   

18.
The genetic diversity among 126 exotic (108) andreference array (RA) melon (Cucumismelo L.) accessions (18) was assessed byvariation at 49 random amplified polymorphic DNA marker bands(putative loci) using 29 10-mer primers. Africanaccessions of unknown melon market classes were compared to the RAaccessions from a broad range of C.melo subsp. melo groups(Cantalupensis, Conomon, Inodorus and Flexuosus). Althoughdifferences in groupings occurred after multidimensional scaling andcluster analysis, both analyses placed African accessions into twogroups, which were separate from RA groupings. One African group of33 accessions containing accessions from Zimbabwe (5),Zambia (24), Mali (1), one of two Senegalaccessions and two of three South African accessions examined. Thesecond group, which consisted of 67 accessions containing collectionsfrom Egypt (40), Tunisia (6), Libya(13), Morocco (1), Algeria (2),Ethiopia (1), Niger (1), Sierra Leone(1), S. Africa (1), Zambia (1) andZimbabwe (1). Depending on the multivariate analysistechnique employed, accessions from Kenya, Senegal and Ghana formedeither unique groupings or were grouped with accessions(Cantalupensis) from the RA. Both analyses indicate thatthe genetic differences inherent between the African gene pools isassociated with the geographic proximity of African countries(northern vs. central-southern Africa) in thegermplasm array examined. Moreover, these data indicate that thegenetic diversity of U.S. and European commercial RA germplasm(Cantalupensis and Inodorus) could be enhanced by theintroduction of genetic variation from African accessions, and thatit would be advantageous to acquire more accessions from thisgeographically and ecologically varied region to ensure the retentionof existing genetic diversity.  相似文献   

19.
Citrullus lanatus ssp. vulgaris oleaginous type (West-African watermelon) is a crop cultivated in sub-Saharan Africa for its dried seeds reported to be rich in nutrients. In previous studies, little polymorphism was found in watermelon—cultivated for its flesh with the use of microsatellite (SSR) markers. Such study has never been applied to the oleaginous type until now. The objectives of the present study were firstly to apply the SSR markers set up for watermelon to the West-African watermelon and secondly to study the genetic structure of this type in Ivory Coast. For the first objective, 37 markers were studied on eight plants pertaining to four accessions. For the second objective, the polymorphic markers were applied on three morphologically and geographically separated accessions with twenty plants per accession. Multiple correspondence analysis (MCA), unweighted pair-group method with arithmetic averaging (UPGMA), molecular analysis of variance (AMOVA) and assignments test structure were applied. The optimal annealing temperature varied from 49 to 59°C according to the markers. Thirty-two markers that proved to amplify their respective loci were selected, but only nine of them appeared to show polymorphism on the set of 8 plants studied. The application of these markers on the three accessions revealed several features. No stucturation into sub-populations was observed inside a given accession. The genetic variance proved to be substantially higher between the different accessions than inside a given accession. Moreover this analysis is a first hint that the morphology classification does not match the genetic structure of C. lanatus. The results of this work provide the first quantitative information regarding the genetic variability of Citrullus lanatus oleaginous type. In order to sharpen our understanding of the mechanisms responsible for the genetic variance inter/intra accessions, further studies based on a larger sample of plants and accessions are required.  相似文献   

20.
Asian cotton (Gossypium arboreum L.) was once widely cultivated in China. It has also been a valuable source of genetic variation in modern cotton improvement. In this study, the genetic diversity of selected G. arboreum accessions collected from different regions of China was evaluated by microsatellite (simple sequence repeats, SSRs) analysis. Of the 358 microsatellite markers analyzed, 74 primer pairs detected 165 polymorphic DNA fragments among 39 G. arboreum accessions examined. Twelve accessions could be fingerprinted with one or more SSR markers. With the exception of two accessions, DaZiJie and DaZiMian, genetic similarity coefficients among all accessions ranged from 0.58 to 0.87 suggesting high level of genetic variation in the G. arboreum collections. The UPGMA dendrogram constructed from genetic similarity coefficients revealed positive correlation between cluster groupings and geographic distances. In addition, comparison of the microsatellite amplification profiles of the diploid G. arboreum and tetraploid Gossypium hirsutum L. found that size distribution of amplified products in G. arboreum was dispersive and that of G. hirsutum was relatively concentrated. The information on the genetic diversity and SSR fingerprinting from this study is useful for developing mapping populations for constructing diploid cotton genetic linkage map and tagging economically important traits.Diqiu Liu, Xiaoping Guo: These two authors contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号