首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 940 毫秒
1.
Application of plant growth-promoting rhizobacteria (PGPR) has been shown to increase legume growth and development under field and controlled environmental conditions. The present study was conducted to isolate plant growth-promoting rhizobacteria (PGPR) from the root nodules of lentil (Lens culinaris Medik.) grown in arid/semi-arid region of Punjab, Pakistan and examined their plant growth-promoting abilities. Five bacterial isolates were isolated, screened in vitro for plant growth-promoting (PGP) characteristics and their effects on the growth of lentil were assessed under in vitro, hydroponic and greenhouse (pot experiment) conditions. All the isolates were Gram negative, rod-shaped and circular in form and exhibited the plant growth-promoting attributes of phosphate solubilization and auxin (indole acetic acid, IAA) production. The IAA production capacity ranged in 0.5-11.0 μg mL-1 and P solubilization ranged in 3-16 mg L-1 . When tested for their effects on plant growth, the isolated strains had a stimulatory effect on growth, nodulation and nitrogen (N) and phosphorus (P) uptake in plants on nutrient-deficient soil. In the greenhouse pot experiment, application of PGPR significantly increased shoot length, fresh weight and dry weight by 65%, 43% and 63% and the increases in root length, fresh weight and dry weight were 74%, 54% and 92%, respectively, as compared with the uninoculated control. The relative increases in growth characteristics under in vitro and hydroponic conditions were even higher. PGPR also increased the number of pods per plant, 1 000-grain weight, dry matter yield and grain yield by 50%, 13%, 28% and 29%, respectively, over the control. The number of nodules and nodule dry mass increased by 170% and 136%, respectively. After inoculation with effective bacterial strains, the shoot, root and seed N and P contents increased, thereby increasing both N and P uptake in plants. The root elongation showed a positive correlation (R2 = 0.67) with the IAA production and seed yield exhibited a positive correlation (R2 = 0.82) with root nodulation. These indicated that the isolated PGPR rhizobial strains can be best utilized as potential agents or biofertilizers for stimulating the growth and nutrient accumulation of lentil.  相似文献   

2.
VA菌根对土壤酸度的耐性   总被引:5,自引:0,他引:5  
A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular(VA)my-corrhizal fungi on colonization rate,plant height,plant growth,hyphae lenth,total Al in the plants,ex-changeable Al in the soil and soil pH by comparison at soil pH 3.5,4.5 and 6.0 Plant mung bean(Phaseolus radiatus L.)and crotalaria(Crotalaria muronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil,Ten VA mycorrhizal fungi strains were tested,including Glomus epigaeum(No.90001),Glomus caledonium(No.90036),Glomus mosseae(No.90107),Acaulospora soo.(No.34),Scutellopora het-erogama(No.36),Scutellospora calopsora(No.37),Glomus manihotis(No.38).Gigaspora spp.(No.47),Glomus manihotis(No.49),and Acaulospora spp.(No.53).Being the most tolerant to acidity,strain 34 and strain 38 showed quicker and higher-rated colnization without lagging,three to four times more in number of nodules,two to four times more in plant dry weighy,30% to 60% more in hyphae length,lower soil exchaneable Al,and higher soil pH than without VA mycorrhizal fungi(CK).Other strains also could improve plant growth and enhance plant tolerance to acidity,but their effects were not marked.This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects.In the experiment,acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity.  相似文献   

3.
Vigna unguiculata(L.)Walp (cowpea)is a tropical legume of very high nutrive and economic values.A laboratory experiment.was conducted to evaluate the BNF (biological nitrogen fixation) effciency of 4 strains of Bradyrhizobium sp.(VUXYI,VUIE1,VUMDS1 and VUID1).From the results obtained these strains were classified into efficiency groups,with VUID1 being the most efficient and VUXY1 the least efficient.the effect of inoculation was tested on 2 cowpea varieties in a field experiment.Remarkable increases in nodulation biomass and crop yield were observed.An increase from 58% ti 81% in dry seed was obtained for the two varieties.A significance test revealed a signifecantly positive correlation between nodulation and biomass.  相似文献   

4.
Root box experiments were conducted to evaluate the effects of N and NK levels in the root zone on shoot photosynthesis and root growth of hybrid an cultivar of rice (Oryza sativa L.) on two paddy soils (clayey and silty).The results showed that dry matter yields in the hybrid and the cultivar were considerably increased by NK supply,bu the effect was greater for the hybrid.Supply of NK in the root zone significantly increased photosynthetic rate of the lower position leaf and the active green leaf area per plant,in which the effects were much more obvious in the hybrid rice than in the cultivar.High NK supply in the root zone stimulated the root growth,and decreased pH and increased the oxidation zone in the rhizosphere in both entries,but to a greater extent in the hybrid .The results indicated that higher NK levels were needed to maintain higher root activity and shoot photosynthetic capacity in rice,particularly in hybrid rice.  相似文献   

5.
To explore genetic variability for two Jerusalem artichoke (Helianthus tuberosus) cultivars, N1 (the sixth-generation cultivated with 75% seawater irrigation for six years) and N7 (a general variety), a experiment was conducted to study the changes in physiological attributes under different concentrations (0%, 10% and 25% of seawater concentration in greenhouse and 0%, 30% and 50% of seawater concentration in the field) of seawater salinity stress. In the greenhouse experiment, decreases of dry growth rate, but increases of dry matter percentage and membrane injury occurred in both the genotypes at 10% and 25% seawater treatments, although lesser cell membrane damage was observed in N1 than N7. N1 accumulated greater contents of Na+, Cl-, soluble sugar and proline in leaves compared with N7. In the field experiment, the yields of shoot, root and tuber, and the contents of total-sugar and inulin in tubers of N1 were higher than those of N7. Lesser degree of salt injury in N1 indicated that the relatively salt-tolerant cultivar had higher K+/Na+ ratio, lower Na+/Ca2+ ratio, and the salt-induced enhancement of osmotic adjustment.  相似文献   

6.
A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulated rock phosphates(PARP) in three representative solis sampled from subtripical China.The PARPs were manufactured by attacking a moderately reactive phosphate rock either with sulfuric acid alone or with combination of sulfuric and phosphoric acids at 30 or 60 percent of acidulation.Shoot dry weight and P accumulation of six successive cuttings of ryegrass were used to compare the agronomic potential of these fertilizers with that of the raw rock phosphate(RP) and monocalcium phosphate (MCP).Results indicated that the effectiveness of various phosphates was determined both by the solubility of the phosphates and by the acidity and P-fixing capacity of the soils.The higher the watersoluble P contained,the better the effectiveness of the fertilizer was.Although plant P accumulation of PARP treatments was constantly lower than that of MCP treatment,some PARPs could still get a dry matter production similar to that of MCP treatment.PARP SP60,which was acidulated with a mixture of sulfuric acid and phosphoric acid at 60 percent of acidulation and contained the highest soluble,P,was as effective as MCP in terms of dry matter production on all the soils.S60 and C1 which were both acidulated with sulfuric acid with the former at 60 percent of acidulation and the latter at 30 percent but with a further addition of monoammonium phosphate,were more than 80 percent as efective as MCP,Raw RP also showed a reasonable effectiveness which increased with soil acidity.It was suggested from the study that some of these APRPs could be expected to have a comparable field performance as soluble P fertilizers in the acid soil regions.  相似文献   

7.
Effects of inoculation of Rhizobium suspension on nodulation and plant growth were examined with Albizzia procera,Albizzia lebbeck and Leucaena leucocephala seedlings grown on sterilized and non-sterilized soil media.Inoculation resulted in nodule number increases of 28.6,29.02and 23.9 times in sterilized soil and 3.4,3.6and 3.27 times in non-sterilized soil for A.procera,A.lebbeck and L.leucocephala seedlings respectively.Total dry mass increased by 127.6%,66.7%and 60.7% in sterilized soil and 100%,95.5%and 52.65% in non-sterilized soil for these three legume trees,respectively,after a period of two months.Significantly high inoculation responses of oot length,root diameter,collar diameter,shoot length,and dry mass of root,shoot,leaves and nodules were also observed in both steilized and non-sterilized soil media as compared to respective control treatments,The response to inoculation was strong in sterilized and modest in non-sterilized soils.The significantly higher response to Rhizobium inoculation over control in all the species tested suggested that application of Rhizobium greatly enhanced plant growth ,nodulation,biomass production and nitrogen-fixing activity of the nodules.  相似文献   

8.
HE NIAN-ZU  SUNQI-WEI 《土壤圈》1994,4(2):137-144
Laboratorial incubation and field experiments were conducted on soils ranging in texture from sandy loam to clay and in pH from 3.6 to 9.0 to determine the agronomic effectiveness of single superphosphate (SSP).fused magnesium phosphate(FMP) and partially acidulated phosphate rock(PAPR) on 8 field crops.The results showed that the pattern of available P released from SSP was fixing-releasing-fixing-steady state,while that of PAPR was shortly fixing-slowly releasing-fixing steady state.And the PAPR,SSP and FMP were equally effective as judged by yield Puptake by phants and extractable P in soils after crop harvesting,The PAPR used as basal fertilizer was more effective than that as top dressing,and its residual effect was also obvious.  相似文献   

9.
Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking.The objective of the study was to investigate the potential of adapted microorganisms in soil inocula,with different contamination levels and pollution histories,to degrade 1,2,4-trichlorobenzene (1,2,4-TCB).Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB.The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil,whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation.The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils,suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation.It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period.Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation.However,even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB.Therefore,applying adapted microorganisms in the form of soil inocula,especially with lower contamination levels,could be an effective and environment-friendly strategy for soil remediation.  相似文献   

10.
R. XU  M. YAMADA  H. FUJIYAMA 《土壤圈》2013,23(2):213-222
Salinity stress is a major factor limiting the growth of turfgrass irrigated with recycled wastewater. The change in lipid peroxidation in terms of malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxide (APX) and glutathione reductase (GR) in the shoots and roots of Kentucky bluegrass and tall fescue were investigated under salinity stress. Plants were subjected to 0, 50, 100, 150 and 200 mmol L 1 NaCl for 40 d. The MDA content under salinity stress was lower in tall fescue than in Kentucky bluegrass in both shoots and roots. Activities of SOD in the shoots of both species increased with salinity stress. The activities of CAT and APX decreased in Kentucky bluegrass, but no significant difference in the activities of CAT and APX was observed in tall fescue. The activities of SOD, CAT and APX in the shoots of tall fescue were higher than those in Kentucky bluegrass. In the roots of Kentucky bluegrass, SOD and GR activities increased and CAT and APX activities decreased in comparison with the control. In the roots of tall fescue, salinity increased the activities of SOD, CAT, and APX. These results suggested that tall fescue exhibited a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher SOD, CAT and APX activities than Kentucky bluegrass.  相似文献   

11.
The shoot dry weight of alfalfa inoculated with an effective strain of Rhizobium meliloti mixed with an ineffective strain in different ratios was found to be directly proportional to the log of the number of effective nodules. Consequently the comparison of the shoot dry weight of plants inoculated with a mixture of effective and ineffective strains with the shoot dry weight of plants inoculated with the effective strain should allow the estimation of the relative competitiveness of the effective strains. To check this. the competitiveness of 14 antibiotic-resistant strains of R. leguminosarum was evaluated in this way and compared with the ability of the strains to form nodules when inoculated to seeds of Vicia faba planted in a soil containing indigenous R. leguminosarum. The percentage of recovery of the inoculum strains in the nodules of field-grown fababeans was positively correlated with the competitiveness of the strains as estimated by the greenhouse test. This simple way of evaluating the nodulating competitiveness of strains of rhizobia being indicative of their competitive behaviour with indigenous rhizobia in the field could therefore be useful for screening a large number of strains for competitiveness.  相似文献   

12.
We have evaluated the genetic diversity and phylogeny of alfalfa rhizobia, originating from different types of soils in Serbia and their ability to establish an effective symbiosis with alfalfa (Medicago sativa L.). A collection of 65 strains isolated from root nodules of alfalfa were characterized by rep-PCR analysis, partial and complete 16S rDNA gene and recA gene sequencing, as well as atpD gene sequencing and DNA–DNA hybridizations. The results of the sequence analyses revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules. Only one strain was identified as Sinorhizobium medicae, two strains as Rhizobium tibeticum and one strain as Rhizobium sp. Despite the fact that the majority of strains were identified as S. meliloti, a high genetic diversity at strain level was detected. Almost all isolates shared the ability to nodulate and fix nitrogen with M. sativa, except 11 of them, which were incapable of fixing nitrogen with this species. About 50% of the isolates showed values of symbiotic effectiveness (SE) above 50%, while 10% of the strains were highly effective with SE values above 70%. Some of the strains which were highly effective in nitrogen fixation at the same time could intensively solubilize phosphates, offering a possibility for multipurpose inoculum development. This was the first genetic study of rhizobia isolated from this region and also the first report of natural presence of R. tibeticum in root nodules of M. sativa.  相似文献   

13.
In this paper the interactive effects of different Sinorhizobium meliloti strains and alfalfa cultivars on the host plant growth and nodulation were evaluated. In the experiments, six alfalfa cultivars (Giza-1, Ismailia-94, Kometa, Radius, Luzella and Legend) as well as five S. meliloti strains (ARC-1, ARC-2, A2, TAL and L5-30) were included. The alfalfa cultivars, Giza-1 and Ismailia-94, exhibited the highest average dry forage weight with all studied strains. Generally, plants inoculated with the S. meliliti ARC-2 strain produced significantly higher shoot and root dry weights over all evaluated cultivars. The strain L5-30 of S. meliloti produced the highest nodule number with all the studied alfalfa cultivars whereas, among tested cultivars, N2-fixing Luzella showed the highest nodulation with the majority of rhizobial strains. Analysis of correlation coefficients for the studied alfalfa-rhizobium associations revealed positive and significant relationships of shoot dry weight with root dry weight. In contrast, nodule number per plant correlated negatively with forage dry weight of plants. It was also found that nodule number per plant is not a promising trait with which to select the most effective N2-fixing rhizobium-legume systems; selection of such symbiotic associations should be done on the basis of shoot and root dry weights.  相似文献   

14.
The symbiotic nitrogen-fixing soil bacterium, Sinorhizobium meliloti, is well known for its ability to interact with the leguminous plant Medicago sativa L. It has, however, not been reported that this species possesses the capability to degrade toxic nitroaromatic compounds, such as 2,4-dinitrotoluene (DNT) which is commonly associated with the degradation of the explosive trinitrotoluene (TNT). In this study, the pJS1 DNT-biodegradative plasmid was genetically transferred to S. meliloti strain USDA 1936, which was confirmed by plasmid profile analysis. Several standard analytical and chemical tests including high performance liquid chromatography (HPLC), nitrite (NO2) release assays, rhizosphere population and plant greenhouse studies were conducted to test the ability of S. meliloti to degrade 2,4-DNT. The possible presence of 2,4-DNT remaining in the treated soil was tested, and no 2,4-DNT had been absorbed by the soil. The pJS1-carrying recombinant strain DHK1 produced ‘ARC’ alfalfa plants that were almost 2-fold higher in shoot dry weight than that produced by the parent strain on soil containing 0.14 mM 2,4-DNT. The transconjugant strain DHK1 reduced significantly one-third more 2,4-DNT in both 0.14 and 0.28 mM contaminated soil, and in 0.55 mM contaminated soil it degraded 94% of the 2,4-DNT present. In liquid cultures, however, only about 4% reduction in 2,4-DNT concentrations was obtained in 10 days. We interpret the results as clearly establishing that genetic modification was successfully used, for the first time, to improve the capability of the symbiotic nitrogen-fixing soil bacterium S. meliloti DHK1 to bioremediate in situ 2,4-DNT-contaminated soil in the presence of alfalfa plants.  相似文献   

15.
Salinity is the major environmental factor limiting crop production. Alfalfa is a legume with high nutritional value that establishes a symbiosis relation with Ensifer meliloti. Under saline conditions the alfalfa yield decreases and this symbiosis is affected. The aim of this work is to study the effect of the co-inoculation of alfalfa plants with Halomonas maura (a moderately halophile bacterium) and E. meliloti in saline soils to improve their productivity and growth under greenhouse and field conditions. Alfalfa plants were grown in Leonard jar under greenhouse conditions, using a N-free mineral solution to mimic the conditions of an Orthic Solonchak. Then alfalfa plants were grown in the field in the same soil type. Seeds were inoculated with E. meliloti, H. maura, co-inoculated with E. meliloti and H. Maura, or non-inoculated as a control in both experiments. In greenhouse experiments the co-inoculation of alfalfa plants increased significantly the shoot dry weight (0.64 ± 0.02 vs. 0.79 ± 0.02), the leghaemoglobin content (10.17 ± 0.03 vs. 11.25 ± 0.06) and water potential (−3.12 ± 0.02 vs. −2.79 ± 0.02) compared with the single inoculation with E. meliloti. In the field experiments, biomass of co-inoculated plants clearly outyielded those of plants inoculated with any inoculant. The co-inoculation of H. maura and E. meliloti enhances alfalfa productivity in saline soils, thus contributing to the agricultural exploitation of low productive areas. H. maura and E. meliloti could be considered in formulation of bioinoculants to contribute in the reduction of the overuse of chemical fertilizers and their environmental impacts.  相似文献   

16.
Field pea (Pisum sativum L.) is widely grown in South Australia (SA), often without inoculation with commercial rhizobia. To establish if symbiotic factors are limiting the growth of field pea we examined the size, symbiotic effectiveness and diversity of populations of field pea rhizobia (Rhizobium leguminosarum bv. viciae) that have become naturalised in South Australian soils and nodulate many pea crops. Most probable number plant infection tests on 33 soils showed that R. l. bv. viciae populations ranged from undetectable (six soils) to 32×103 rhizobia g−1 of dry soil. Twenty-four of the 33 soils contained more than 100 rhizobia g−1 soil. Three of the six soils in which no R. l. bv. viciae were detected had not grown a host legume (field pea, faba bean, vetch or lentil). For soils that had grown a host legume, there was no correlation between the size of R. l. bv. viciae populations and either the time since a host legume had been grown or any measured soil factor (pH, inorganic N and organic C). In glasshouse experiments, inoculation of the field pea cultivar Parafield with the commercial Rhizobium strain SU303 resulted in a highly effective symbiosis. The SU303 treatment produced as much shoot dry weight as the mineral N treatment and more than 2.9 times the shoot dry weight of the uninoculated treatment. Twenty-two of the 33 naturalised populations of rhizobia (applied to pea plants as soil suspensions) produced prompt and abundant nodulation. These symbioses were generally effective at N2 fixation, with shoot dry weight ranging from 98% (soil 21) down to 61% (soil 30) of the SU303 treatment, the least effective population of rhizobia still producing nearly double the growth of the uninoculated treatment. Low shoot dry weights resulting from most of the remaining soil treatments were associated with delayed or erratic nodulation caused by low numbers of rhizobia. Random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) fingerprinting of 70 rhizobial isolates recovered from five of the 33 soils (14 isolates from each soil) showed that naturalised populations were composed of multiple (5-9) strain types. There was little evidence of strain dominance, with a single strain type occupying more than 30% of trap host nodules in only two of the five populations. Cluster analysis of RAPD PCR banding patterns showed that strain types in naturalised populations were not closely related to the current commercial inoculant strain for field pea (SU303, ≥75% dissimilarity), six previous field pea inoculant strains (≥55% dissimilarity) or a former commercial inoculant strain for faba bean (WSM1274, ≥66% dissimilarity). Two of the most closely related strain types (≤15% dissimilarity) were found at widely separate locations in SA and may have potential as commercial inoculant strains. Given the size and diversity of the naturalised pea rhizobia populations in SA soils and their relative effectiveness, it is unlikely that inoculation with a commercial strain of rhizobia will improve N2 fixation in field pea crops, unless the number of rhizobia in the soil is very low or absent (e.g. where a legume host has not been previously grown and for three soils from western Eyre Peninsula). The general effectiveness of the pea rhizobia populations also indicates that reduced N2 fixation is unlikely to be the major cause of the declining field pea yields observed in recent times.  相似文献   

17.
《Applied soil ecology》2003,22(1):55-66
The ability of antibiotic-producing streptomycetes to colonize alfalfa (Medicago sativa L.) plants and influence the activities of a fungal plant pathogen (Phoma medicaginis var. medicaginis) and a mutualistic symbiont (Sinorhizobium meliloti) was investigated. Streptomyces strains were introduced around seeds at the time of planting. Hyphal filaments and spore chains were observed by scanning electron microscopy on roots of alfalfa seedlings receiving the streptomycete amendment. Streptomyces strain densities on leaves decreased 10–100-fold over an 8-week period, while densities on roots remained constant over time. The Streptomyces strains also colonized alfalfa root nodules. We then tested the ability of 15 antibiotic-producing strains of Streptomyces to inhibit in vitro growth of Phoma medicaginis var. medicaginis Malbr. & Roum., the causal agent of spring blackstem and leaf spot of alfalfa. The majority of the Streptomyces strains inhibited growth of three diverse strains of P. medicaginis. In a detached leaf assay, one Streptomyces strain decreased leaf spot symptoms caused by P. medicaginis when inoculated onto leaves 24 h before the pathogen. Two Streptomyces strains decreased defoliation caused by P. medicaginis when the streptomycetes were introduced around seeds at the time of planting. We also examined inhibitory activity of Streptomyces strains against 11 strains of S. meliloti. Eight of the 15 Streptomyces strains inhibited in vitro growth of five or more of the S. meliloti strains, while four Streptomyces strains had no effect on growth of any test strains. In a growth chamber assay, two of six Streptomyces strains, when inoculated into the planting mix, significantly reduced plant dry weight compared to the treatment with S. meliloti alone, but did not significantly reduce the number of nodules. These results suggest that careful selection of Streptomyces isolates for use in biological control of plant diseases will limit the potential negative impacts on rhizobia.  相似文献   

18.
Ineffective mutants of four effective strains of Rhizobium meliloti were isolated and tested for their ability to compete with effective parents or antibiotic resistant mutants in the formation of nodules on Medicago sativa. In 5 out of the 6 cases studied, ineffective mutants were no different to effective strains of the same origin in their competitive ability. A difference in selection for infection by the host plant was observed between equally effective strains as well as between ineffective strains. Except for one pair of strains, the more-competitive effective strains (resistant or not to antibiotics) had the same origin as the more-competitive ineffective strains. For such strains the ability to compete with other strains to form nodules was a characteristic of each parent strain. Competitiveness was independent of effectiveness and had been retained during mutation.  相似文献   

19.
Non-protein nitrogen accumulated in nodules formed on Trifolium subterraneum cv. Tallarook by Rhizobium trifolii strain NA30, but not in nodules formed by strain TA1. Studies with six R. trifolii strains and four T. subterraneum cultivars indicated that the accumulation of non-protein nitrogen was a characteristic of certain strains and that it was accompanied by a greater development of nodule tissue. With normal symbiotic associations, approximately 6 per cent of the total plant nitrogen was located in the nodule system whereas nodules accumulating non-protein nitrogen contained, on average, 12 per cent of the total nitrogen in the plant.The principal component of the accumulating non-protein nitrogen was identified as “bound” γ-aminobutyric acid. Moderate to high concentrations of γ-aminobutyric acid (0.3–1.7 mmoles/g nodule dry weight) were found in nodules formed by 10 strains (of 36 examined) on Tallarook. With two “accumulating” strains, higher concentrations of γ-aminobutyric acid were found in nodules formed on the cultivar Clare (2.0 mmoles/g nodule dry weight) than in nodules formed on Tallarook or Yarloop (1 1.4 mmoles). No γ-aminobutyric acid was found in cultured cells of either an accumulating strain (NA30) or a nonaccumulating strain (TA1) of R. trifolii.The accumulation of non-protein nitrogen as γ-aminobutyric acid, and the accompanying increase in nodule tissue, each resulting in the export of a lower proportion of the nitrogen fixed to the host, is considered to be a factor causing a lower degree of symbiotic effectiveness.  相似文献   

20.
Survival of inoculated rhizosphere bacteria and their influence on native bacterial populations in the rhizosphere of alfalfa The survival of inoculated bacteria and their influence on native bacterial populations in the rhizosphere of alfalfa were investigated in a greenhouse experiment. The plant growth promoting strains Rhizobium meliloti me18 and Pseudomonas fluorescens PsIA12 were reisolated from the rhizosphere about 7 weeks after single and mixed strain inoculation. They did not induce lasting changes in the diversity of the native bacterial communities of the rhizosphere. Only within the first week after inoculation was an increase in total bacterial abundance observed. In general, the diversity of bacterial communities increased with plant age and with proximity to the root tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号