首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
At the initiation of most controlled internal drug-releasing (CIDR) device protocols, GnRH has been used to induce ovulation and reset follicular waves; however, its ability to initiate a new follicular wave is variable and dependent on stage of the estrous cycle. The objectives of the current studies were to determine 1) if inducing luteal regression before the injection of GnRH at time of insertion of a CIDR resulted in increased control of follicular development, and 2) if removing endogenous progesterone by inducing luteal regression before insertion of the CIDR decreased variation in LH pulse frequency. In Exp. 1 and 2, Angus-cross cycling beef heifers (n = 22 and 38, respectively) were allotted to 1 of 2 treatments: 1) heifers received an injection of PGF(2α) on d -3, an injection of GnRH and insertion of a CIDR on d 0, and a PGF(2α) injection and CIDR removal on d 6 (PG-CIDR) or 2) an injection of GnRH and insertion of a CIDR on d 0 and on d 7 an injection of PGF(2α) and removal of CIDR (Select Synch + CIDR). In Exp. 3, Angus-cross beef heifers (n = 15) were assigned to 1 of 3 treatments: 1) PG-CIDR; 2) PGF(2α) on d -3, GnRH on d 0, and PGF(2α) on d 6 (PG-No CIDR); or 3) Select Synch + CIDR. Follicular development and ovulatory response were determined by transrectal ultrasonography. Across all experiments, more (P = 0.02) heifers treated with PG before GnRH initiated a new follicular wave after the injection of GnRH compared with Select Synch + CIDR-treated heifers. In Exp. 1, after CIDR removal, interval to estrus did not differ (P = 0.18) between treatments; however, the variance for the interval to estrus was reduced (P < 0.01) in PG-CIDR heifers compared with Select Synch + CIDR heifers. In Exp. 3, there was a tendency (P = 0.09) for LH pulse frequency to be greater among PG-CIDR and PG-No CIDR compared with the Select Synch + CIDR, but area under the curve, mean LH concentrations, and mean amplitude did not differ (P > 0.76). In summary, induction of luteal regression before an injection of GnRH increased the percentage of heifers initiating a new follicular wave. Removal of endogenous progesterone tended to increase LH pulse frequency, and the modified treatment increased the synchrony of estrus after CIDR removal.  相似文献   

2.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

3.
The objective of the experiment was to compare pregnancy rates resulting from fixed-time AI after administration of either 1 of 2 controlled internal drug release (CIDR)-based protocols. Heifers at 3 locations (location 1, n = 78; location 2, n = 61; and location 3, n = 78) were assigned to 1 of 2 treatments within reproductive tract scores (1 = immature to 5 = cycling) by age and BW. Heifers assigned to CIDR Select received a CIDR insert (1.38 g of progesterone) from d 0 to 14 followed by GnRH (100 mug, i.m.) 9 d after CIDR removal (d 23) and PGF2alpha (PG, 25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to CO-Synch + CIDR were administered GnRH and received a CIDR insert on d 23 and PG and CIDR removal on d 30. Heifers at location 1 were fitted with a HeatWatch estrus detection system transmitter from the time of PG until 24 d after fixed-time AI to allow for continuous estrus detection. Artificial insemination was performed at predetermined fixed times for heifers in both treatments at 72 or 54 h after PG for the CIDR Select and CO-Synch + CIDR groups, respectively. All heifers were administered GnRH at the time of AI. Blood samples were collected 10 d before and immediately before treatment initiation (d 0) to determine pretreatment estrous cyclicity (progesterone > or = 0.5 ng/mL). At location 1, the estrous response during the synchronized period was greater (P = 0.06; 87 vs. 69%, respectively), and the variance for interval to estrus after PG was reduced among CIDR Select- (P < 0.01) compared with CO-Synch + CIDR-treated heifers. Fixed-time AI pregnancy rates were significantly greater (P = 0.02) after the CIDR Select protocol (62%) compared with the CO-Synch + CIDR protocol (47%). In summary, the CIDR Select protocol resulted in a greater and more synchronous estrous response and significantly greater fixed-time AI pregnancy rates compared with the CO-Synch + CIDR protocol.  相似文献   

4.
An estrus synchronization protocol (7-11 Synch) was developed to synchronize the first follicular wave and timing of ovulation in postpartum beef cows. In Exp. 1, follicular development and timing of ovulation in response to the following protocol were evaluated. Beef heifers (n = 12) and cows (n = 6), at random stages of the estrous cycle, were fed melengestrol acetate (MGA; .5 mg x animal(-1) x d(-1)) for 7 d and injected with PGF2alpha (PG; 25 mg) on the last day of MGA. A second injection of PG was administered 11 d after cessation of MGA. After the second injection of PG, estrus was synchronized in 6/12 heifers and 3/6 cows. The interval to estrus in heifers and cows was 54 and 64 h, respectively (P > .10). All animals exhibiting estrus ovulated first-wave follicles. Animals that failed to respond to the second injection of PG were in estrus later than 6 d after cessation of MGA and had corpora lutea that were unresponsive to the injection of PG. Based on the variation in interval to estrus following the first PG injection on the last day of MGA feeding in Exp. 1, an injection of GnRH (100 microg) was added to the protocol 4 d after the cessation of MGA to ensure ovulation or luteinization of dominant follicles and synchronization of first-wave follicular development. This revised protocol was termed "7-11 Synch." In Exp. 2, two estrus synchronization protocols were compared. Multiparous beef cows were stratified by breed and postpartum interval and randomly assigned to the 7-11 Synch (n = 44) or Select Synch protocols (GnRH injection followed by PG injection 7 d later; n = 45). Timing of estrus after the last PG injection (0 h) ranged from 42 to 102 h in the 7-11 Synch group and -30 to 114 h in the Select Synch group. Eight cows (18%) in the Select Synch group exhibited estrus 30 h before to 18 h after PG. Synchronized estrus peaked between 42 and 66 h after the last PG injection, and a maximum number of cows were in estrus at 54 h for both treatment groups. Synchrony of estrus from 42 to 66 h was greater (P < .05) in 7-11 Synch (91%: 41/44) than in Select Synch cows (69%: 31/45). Artificial insemination pregnancy rate from 42 to 66 h was greater (P < .05) in the 7-11 Synch group (66%: 29/44) than in the Select Synch group (40%: 18/45). In summary, the 7-11 Synch protocol improved synchrony of estrus without reducing fertility. This protocol has potential future application for fixed-time AI in beef cattle production systems.  相似文献   

5.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with 1 of 2 protocols to synchronize estrus and ovulation. Cross-bred, suckled beef cows (n = 650) at 4 locations (n = 210; n = 158; n = 88; and n = 194) were assigned within a location to 1 of 2 protocols within age group by days postpartum and BCS. Cows assigned to the melengestrol acetate (MGA) Select treatment (MGA Select; n = 327) were fed MGA (0.5 mg x head(-1) x d(-1)) for 14 d, GnRH (100 microg of Cystorelin i.m.) was injected on d 26, and prostaglandin F2alpha (PG; 25 mg of Lutalyse i.m.) was injected on d 33. Cows assigned to the CO-Synch + controlled internal drug release (CIDR) protocol (CO-Synch + CIDR; n = 323) were fed a carrier for 14 d, were injected with GnRH and equipped with an EAZI-BREED CIDR insert (1.38 g of progesterone, Pfizer Animal Health, New York, NY) 12 d after carrier removal, and PG (25 mg of Lutalyse i.m.) was injected and the CIDR were removed on d 33. Fixed-time AI was performed at 72 or 66 h after PG for the MGA Select or CO-Synch + CIDR groups, respectively. All cows were injected with GnRH (100 microg of Cystorelin i.m.) at the time of insemination. Blood samples were collected 8 and 1 d before the beginning of MGA or carrier to determine estrous cyclicity status of the cows (estrous cycling vs. anestrus) before treatment [progesterone > or = 0.5 ng/mL (MGA Select, 185/327, 57%; CO-Synch + CIDR, 177/323, 55%); P = 0.65]. There was no difference (P = 0.20) in pregnancy rate to FTAI between treatments (MGA Select, 201/327, 61%; CO-Synch + CIDR, 214/323, 66%). There was also no difference (P = 0.25) between treatments in final pregnancy rate at the end of the breeding period (MGA Select, 305/327, 93%; CO-Synch + CIDR, 308/323, 95%). These data indicate that pregnancy rates to FTAI were comparable after administration of the MGA Select or CO-Synch + CIDR protocols. Both protocols provide opportunities for beef producers to utilize AI and potentially eliminate the need to detect estrus.  相似文献   

6.
Two progestin-based protocols for estrus synchronization in postpartum beef cows were compared following treatment administration on the basis of estrous response, interval to and synchrony of estrus, and pregnancy. Cows were assigned to one of the two treatment protocols by age, body condition score (BCS), and days postpartum (DPP). The MGA Select-treated cows (MGA Select; n = 109) were fed melengestrol acetate (MGA; 0.5mg x cow-1 x d(-1)) for 14 d, fed carrier for 8 d, GnRH (100 microg of Cystorelin) was injected i.m. 12 d after MGA withdrawal, and PG (25 mg of Lutalyse) was administered i.m. 7 d after GnRH. Cows assigned to the 7-11 Synch protocol (7-11 Synch; n = 111) were fed carrier for 15 d, fed MGA for 7 d, injected with PG on d 22 (d 7 of MGA), injected with GnRH on d 26, and injected with PG on d 33. Mean BCS (4.8 +/- 0.1, MGA Select; 4.7 +/- 0.1, 7-11 Synch) and DPP (40 +/- 1, MGA Select; 40 +/- 1, 7-11 Synch) did not differ between treatments. Blood samples were collected 8 d and 1 d before feeding of MGA or carrier to determine the pretreatment estrous cyclicity (progesterone > or = 1 ng/mL; 10/109 [9%], MGA Select; 12/111 [11%], 7-11 Synch), and again at PG on d 33 to evaluate treatment response (81/109 [74%], MGA Select; 84/111 (76%), 7-11 Synch). Serum concentrations of progesterone at PG on d 33 differed (P < 0.01) between treatments (3.3 +/- 0.3 ng/mL [MGA Select] vs. 1.7 +/- 0.1 ng/mL [7-11 Synch]). HeatWatch was used for 6 d after PG on d 33 to detect estrus, and AI was performed 12 h after the onset of estrus. Estrous response did not differ between treatments (100/109 [92%], MGA Select; 101/111 [91%], 7-11 Synch). Mean interval to estrus (65 +/- 2.7 h, MGA Select; 52 +/- 1.8 h, 7-11 Synch) and synchrony of estrus differed (P < 0.01) between treatments. Synchronized conception and pregnancy rates (61/100 [61%], 61/109 [56%], MGA Select; 71/101 [70%], 71/111 [64%], 7-11 Synch), and final pregnancy rates (94/109 [86%], MGA Select; 99/110 [90%], 7-11 Synch) did not differ between treatments. In summary, estrous response and fertility did not differ among cows assigned to the MGA Select or 7-11 Synch protocols. Synchrony of estrus, defined as the variance in the interval to estrus from PG, however, was improved following treatment with the 7-11 Synch protocol.  相似文献   

7.
Three experiments were conducted to induce estrus and(or) ovulation in 1,590 suckled beef cows at the beginning of a spring breeding season. In Exp. 1, 890 cows at three locations were allotted to three treatments: 1) GnRH on d -7 + prostaglandin F2alpha (PGF2alpha) on d 0 (Select Synch); 2) GnRH on d -7 + PGF2alpha on d 0 (first day of the breeding season) plus a norgestomet implant (NORG) between d -7 and 0 (Select Synch + NORG); or 3) two injections of PGF2alpha given 14 d apart (2xPGF2alpha). More (P < 0.05) cycling cows were detected to have been in estrus after both treatments that included GnRH, whereas, among noncycling cows, the addition of norgestomet further increased (P < 0.05) the proportion in estrus. Pregnancy rates were greater (P < 0.01) among noncycling cows after treatments that included GnRH. For cows that calved >60 d before the onset of the breeding season, conception rates were greater (P < 0.01) than those that calved < or =60 d regardless of treatment, whereas days postpartum had no effect on rates of detected estrus. When body condition scores were < or =4 compared with >4, rates of detected estrus (P < 0.05) and conception (P = 0.07) were increased. In Exp. 2, 164 cows were treated with the Select Synch + NORG treatment and were inseminated either after estrus or at 16 h after a second GnRH injection (given 48 h after PGF2alpha). Conception and pregnancy rates tended (P = 0.08) to be or were less (P < 0.05), respectively, for noncycling cows inseminated by appointment, but pregnancy rates exceeded 53% in both protocols. In Exp. 3, 536 cows at three locations were treated with the Select Synch protocol as in Exp. 1 and inseminated either: 1) after detected estrus (Select Synch); 2) at 54 h after PGF2alpha when a second GnRH injection also was administered (Cosynch); or 3) after detected estrus until 54 h, or in the absence of estrus, at 54 h plus a second GnRH injection (Select Synch + Cosynch). Conception rates were reduced (P < 0.01) in cows that were inseminated by appointment. An interaction of AI protocol and cycling status occurred (P = 0.05) for pregnancy rates with differing results for cycling and noncycling cows. Across experiments, variable proportions of cows at various locations (21 to 78%) were cycling before the breeding season. With the GnRH or GnRH + NORG treatments, ovulation was induced in some noncycling cows. Conception rates were normal and pregnancy rates were greater than those after a PGF2alpha program, particularly when inseminations occurred after detected estrus.  相似文献   

8.
Two progestin-based protocols for the synchronization of estrus in beef cows were compared. Cyclic, nonlactating, crossbred, beef cows were assigned by age and body condition score to one of two treatments. Cows assigned to the MGA Select protocol were fed melengestrol acetate (MGA; 0.5 mg x cow(-1) x (-1)) for 14 d, GnRH was administered (100 microg i.m. of Cystorelin) 12 d after MGA withdrawal, and PGF2alpha (25 mg of i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol were fed MGA for 7 d and were injected with PG on d 7 of MGA, GnRH on d 11, and PG on d 18. Transrectal ultrasonography was performed daily to monitor follicular dynamics from the beginning of MGA feeding through ovulation after the synchronized estrus. All cows exhibited estrus in response to PG. Mean interval to estrus was shorter (P < 0.01) for 7-11 Synch-treated cows (56 +/- 1.5 h) than for cows assigned to the MGA Select protocol (73 +/- 4.7 h). Mean interval from estrus to ovulation did not differ between treatments (P > 0.10). Variances for interval to estrus differed (P < 0.01) between treatments. Mean follicular diameter at GnRH injection, PG injection, and estrus did not differ (P > 0.10) between treatments. Relative to MGA Select, serum estradiol-17beta concentrations were higher (P < 0.01) for 7-11 Synch 2 d and 1 d before, on the day of GnRH injection, in addition to 4 d after GnRH, and 24 h after PG. Mean progesterone concentrations were greater (P < 0.01) for MGA Select cows from 4 d before to 7 d after GnRH. Forty-four percent of the variation in interval to estrus between treatments was explained by differences in estradiol-17beta concentrations 24 h after PG. This study suggests that follicular competence is likely related to steroidogenic capacity of the follicle and the endocrine environment under which growth and subsequent ovulation of the dominant follicle occurs.  相似文献   

9.
The experimental objective was to compare pregnancy rates after fixed-time AI in postpartum suckled beef cows following administration of two progestin-based protocols to synchronize ovulation. Cows (n = 424) at three locations (n = 208, 122, and 92 per location) were stratified by age, BCS, and days postpartum (DPP) and assigned randomly to one of the two treatment protocols. The MGA Select-treated cows (MGA Select; n = 213) were fed melengestrol acetate (MGA, 0.5 mg x cow(-1) x d(-1)) for 14 d and carrier for 8 d, and then GnRH (100 microg i.m. Cystorelin; d 26) was injected 12 d after MGA withdrawal, and PG (25 mg i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol (7-11 Synch; n = 209) were fed carrier for 15 d and MGA for 7 d, and then injected with PG on d 22 (d 7 of MGA), GnRH on d 26, and PG again on d 33. Artificial insemination was performed at fixed times for cows in both treatments at 60 or 72 h after d 33 PG for 7-11 Synch and MGA Select groups, respectively. All cows were injected with GnRH (100 microg of i.m. Cystorelin) at AI. There was no treatment x location interaction for age (P = 0.90), BCS (P = 0.64), or DPP (P = 0.93), and the results were therefore pooled for the respective treatments (age [7-11 Synch, 5.5 +/- 0.2; MGA Select, 5.5 +/- 0.2], BCS [7-11 Synch, 5.7 +/- 0.1; MGA Select, 5.6 +/- 0.1], and DPP [7-11 Synch, 41.1 +/- 1.1; MGA Select, 42.1 +/- 1.1]). Blood samples were collected 8 and 1 d before MGA or carrier to determine pretreatment estrous cyclicity (progesterone >or=1 ng/mL; 7-11 Synch, 59/209 [28%]; MGA Select, 54/213 [25%]; P = 0.50) and again on d 33 PG to evaluate treatment response as a percentage of cows with progesterone concentrations in serum >or=1ng/mL (7-11 Synch, 184/209 [88%]; MGA Select, 177/213 [83%]; P = 0.15). Pregnancy rates resulting from fixed-time AI did not differ (P = 0.25) between treatments (7-11 Synch, 128/209 [61%]; MGA Select, 142/213 [67%]), nor did pregnancy rates (P = 0.77) at the end of the breeding season (7-11 Synch, 198/208 [95%]; MGA Select, 204/213 [96%]). These data indicate that pregnancy rates were comparable after fixed-time AI, following administration of the 7-11 Synch and MGA Select protocols. Both protocols provide opportunities for beef producers to use AI and eliminate the need to detect estrus.  相似文献   

10.
Objectives of this study were to evaluate synchronization, conception, and pregnancy rates of heifers synchronized with melengestrol acetate (MGA)-prostaglandin F (PGF,), Select Synch, or Select Synch preceded by MGA (MGA-Select Synch). Heifers in the MGA-PGF group (n = 209; BW = 378 kg) received MGA (0.5 mg/ d per heifer) for 14 d and PGF (25 mg) 19 d later. Select Synch heifers (n = 213; BW = 374 kg) received gonadotropin-releasing hormone (GnRH; 100 μg) followed by PGF (25 mg) 7 d later. The MGA-Select Synch heifers (n = 210; BW = 373 kg) were fed MGA (0.5 mg/d per heifer) for 7 d, GnRH (100 μg) the day following the last MGA feeding, and PGF (25 mg) 7 d after GnRH. More (P<0.01) heifers were in estrus 1 to 4 d before PGF2a administration in both the Select Synch (20%) and MGA-Select Synch (24%) groups than in the MGA-PGF (4%) group. Pregnancy rates for heifers in estrus early (d 1 to 4 before PGF) were greater (P<0.05) for both Select Synch (55%) and MGA-Select Synch (63%) compared with MGA-PGF heifers (18%). Synchronization rate (detected after PGF) was greater (P<0.01) for MGA-PGF heifers (86%) compared with Select Synch (66%) and MGA-Select Synch (68%) heifers; however, conception rate did not differ (P=0.13) and averaged 72, 63, and 62% for MGA-PGF, Select Synch, and MGA-Select Synch heifers, respectively. Select Synch (52%), MGA-Select Synch (58%), and MGA-PGF protocols (61%) provided similar (P=0.18) overall AI pregnancy rates; however, more heifers were in estrus before PGF administration in protocols using GnRH.  相似文献   

11.
The objective of this experiment was to examine the effects of varying the interval from follicular wave emergence to progestin (controlled internal drug-releasing insert, CIDR) withdrawal on follicular dynamics and the synchrony of estrus. A secondary objective was to assess the effects of causing the dominant follicle (DF) to develop in the presence or absence of a corpus luteum (CL) on follicular dynamics and the synchrony of estrus and ovulation. The experiment was designed as a 2 x 2 x 2 factorial arrangement of treatments with injection of GnRH or estradiol-17 beta and progesterone (E2 + P4) at treatment initiation, duration of CIDR treatment, and injection of PG (prostaglandin F2 alpha) or saline at the time of CIDR insertion as main effects. Estrous cycles (n = 49) in Angus cows were synchronized, and treatments commenced on d 6 to 8 of the estrous cycle. Cows were randomly assigned to receive a CIDR containing 1.9 g of P4 for 7 or 9 d. Approximately half the cows from each CIDR group received either GnRH (100 micrograms) or E2 + P4 (1 mg of E2 + 100 mg of P4) at CIDR insertion. Cows in GnRH or E2 + P4 groups were divided into those that received PG (37.5 mg) or saline at CIDR insertion. All cows received PG (25 mg) 1 d before CIDR removal. Daily ovarian events were monitored via ultrasound. The intervals from GnRH or E2 + P4 treatment to follicular wave emergence were 1.4 and 3.3 d, respectively (P < 0.05). The interval from follicular wave emergence to CIDR removal was longer (P < 0.05) for cows treated with GnRH (6.6 d) than those treated with E2 + P4 (4.7 d) and longer (P < 0.05) for those fitted with a CIDR for 9 d (6.5 d) than those with a CIDR in place for 7 d (4.8 d). Cows treated with PG or GnRH at CIDR insertion had a larger (P < 0.05) DF at CIDR removal than those treated with saline or E2 + P4. Treatment with a CIDR for 9 d also resulted in a larger (P < 0.07) DF at CIDR removal compared with cows fitted with a CIDR for 7 d. The interval from CIDR removal to estrus was shorter (P < 0.05) in cows treated with PG than those treated with saline. The synchrony of estrus and ovulation was not affected by any of the treatments (P > 0.05). Altering the interval from follicular wave emergence to progestin removal or creating different luteal environments in which the DF developed caused differences in the size of the DF at CIDR removal and the timing of the onset of estrus, but it did not affect the synchrony of estrus or ovulation.  相似文献   

12.
Two experiments were conducted to compare pregnancy rates resulting from fixed-time AI (FTAI) after administration of 1 of 2 long-term controlled internal drug release (CIDR)-based protocols. Heifers were assigned to treatment by age, BW, and pubertal status. The CIDR Select-treated heifers (Exp. 1, n = 37; Exp. 2, n = 192) received a CIDR (1.38 g of progesterone) from d 0 to 14, followed by 100 μg of GnRH, intramuscularly (i.m.) 9 d after CIDR removal (d 23) and PGF(2α) (25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to the Show-Me-Synch protocol (Exp. 1, n = 40; Exp. 2, n = 200) received a CIDR from d 0 to 14, followed by PGF(2α) 16 d later (d 30). Artificial insemination was performed at 72 or 66 h after PGF(2α) treatment for the CIDR Select- and Show-Me-Synch-treated heifers, respectively, and each heifer was given GnRH (100 μg, i.m.) at the time of AI. In Exp. 1, ovaries of each heifer were examined by transrectal ultrasonography on d 23 and 30 to characterize follicular dynamics. Follicles ≥5 mm and the presence of corpora lutea were recorded. On d 25, ovaries of each heifer were examined to characterize the status of dominant follicles recorded on d 23. Heifers were fitted with HeatWatch (DDx Inc., Denver, CO) estrus-detection transmitters at PGF(2α) to characterize estrus distribution up to FTAI. The diameter of dominant follicles on d 23 at PGF(2α) and on d 30, and the estrous response after PGF(2α) treatment up to the point of FTAI did not differ between CIDR Select- and Show-Me-Synch-treated heifers. Concentrations of progesterone in serum at PGF(2α) were greater (P = 0.07) in Show-Me-Synch- than CIDR Select-treated heifers (6.0 vs. 4.8 ng/mL, respectively). Pregnancy rates of heifers resulting from FTAI did not differ (P = 0.33) between CIDR Select- and Show-Me-Synch-treated heifers (CIDR Select, 59%; Show-Me-Synch, 70%). In Exp. 2, FTAI pregnancy rates tended (P = 0.07) to be greater in Show-Me-Synch-treated (62%) than in CIDR Select-treated (51%) heifers. Pregnancy rates at the end of the breeding season did not differ (P = 0.72; CIDR Select, 85%; Show-Me-Synch, 83%) between treatments. In summary, pregnancy rates resulting from FTAI were comparable for heifers assigned to each of the 2 long-term progestin-based protocols. The reduced treatment cost and animal handling associated with administration of the Show-Me-Synch protocol offer distinct advantages over the CIDR Select protocol despite similarities in pregnancy rates resulting from FTAI.  相似文献   

13.
We evaluated whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or detection of estrus and AI plus a clean-up TAI for heifers not detected in estrus, and whether adding an injection of GnRH at controlled internal drug release (CIDR) insertion would enhance fertility in CIDR-based protocols. Estrus in 2,075 replacement beef heifers at 12 locations was synchronized, and AI was preceded by 1 of 4 treatments arranged as a 2 x 2 factorial design: 1) Estrus detection + TAI (ETAI) (n = 516): CIDR for 7 d plus 25 mg of prostaglandin F2alpha (PG) at CIDR insert removal, followed by detection of estrus for 72 h and AI for 84 h after PG (heifers not detected in estrus by 84 h received 100 microg of GnRH and TAI); 2) G+ETAI (n = 503): ETAI plus 100 microg GnRH at CIDR insertion; 3) Fixed-time AI (FTAI) (n = 525): CIDR for 7 d plus 25 mg of PG at CIDR removal, followed in 60 h by a second injection of GnRH and TAI; 4) G+FTAI (n = 531): FTAI plus 100 microg of GnRH at CIDR insertion. Blood samples were collected (d -17 and -7, relative to PG) to determine ovarian status. For heifers in ETAI and G+ETAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed according to the a.m.-p.m. rule. Pregnancy was diagnosed by transrectal ultrasonography. The percentage of heifers exhibiting ovarian cyclic activity at the initiation of treatments was 89%. Pregnancy rates among locations across treatments ranged from 38 to 74%. Pregnancy rates were 54.7, 57.5, 49.3, and 53.1% for ETAI, G+ETAI, FTAI, and G+FTAI treatments, respectively. Although pregnancy rates were similar among treatments, a tendency (P = 0.065) occurred for pregnancy rates in the G+ETAI treatment to be greater than in the FTAI treatment. We concluded that the G+FTAI protocol yielded pregnancy rates similar to protocols that combine estrus detection and TAI. Further, the G+FTAI protocol produced the most consistent pregnancy rates among locations and eliminated the necessity for detection of estrus when inseminating replacement beef heifers.  相似文献   

14.
The objective was to determine the effects of giving prostaglandin F2alpha (PGF) concurrent with, or 24 h before, removal of an intravaginal, progesterone-releasing (controlled internal drug release [CIDR]) device, on luteolysis, the synchrony of estrus and ovulation. Eighteen postpubertal Holstein heifers were given a CIDR and 100 microg gonadotropin releasing hormone (GnRH) and equally allocated to 3 groups. The PGF was given concurrently with CIDR removal after 7 or 8 d (groups D7/D7 and D8/D8, respectively) or given 1-d before removal of CIDR after 8 d (group D7/D8). There was no difference (P > 0.75) among groups in the intervals (h) from CIDR removal to onset of standing estrus and to ovulation (49.3 h+/-6.2 h and 77.5 h+/-9.0 h, respectively; least squares means+/-standard error of means). We also determined if stage of the estrus cycle influenced the synchrony of estrus or ovulation. In heifers in metestrus at CIDR insertion (versus those at estrus or diestrus), intervals from CIDR removal to estrus and to ovulation were longer by 33.4 h (P < 0.05) and 38.5 h (P = 0.01), respectively. However, the interval from standing estrus to ovulation was not affected. Giving PGF concurrent with CIDR removal did not affect luteal regression, the synchrony of estrus, and ovulation; but heifers in metestrus at the initiation of treatment had longer intervals from CIDR removal to estrus and ovulation.  相似文献   

15.
Our objectives were to determine fertility of heifers after synchronization of estrus using PGF2alpha, preceded by progesterone (P4), GnRH, or both, and to examine the variability of estrual characteristics in heifers before first and second AI. Dairy (n = 247) and beef (n = 193) heifers were assigned randomly to each of three treatments: 1) 50 microg of GnRH (injected i.m.) administered on d -7 followed by 25 mg of PGF2alpha (i.m.) on d -1 (GnRH + PGF; modified Select Synch protocol); 2) placement of an intravaginal progesterone (P4)-releasing insert on d -7, PGF2alpha on d -1, and insert removal on d 0 (P4+PGF); and 3) 50 microg of GnRH plus a P4 insert on d -7, followed by 25 mg of PGF2alpha on d -1, and insert removal on d 0 (P4+GnRH+PGF). Characteristics of estrus were examined before first AI and before the next eligible AI (18 to 26 d later), including duration of estrus, number of standing events, and total and individual duration of standing events. In addition, all heifers were checked visually at least twice daily for estrus. Blood samples were collected on d -7, -1, and 0 for determination of P4, and pregnancy status was diagnosed by ultrasonography 27 to 34 d after AI. Rates of detected estrus were less (P < 0.05) in dairy than in beef heifers, and greater (P < 0.05) in heifers treated with P4. Pattern of conception and pregnancy rates among treatments differed between beef and dairy heifers (treatment x group interaction; P < 0.05). In dairy heifers, conception and pregnancy rates were greatest with P4+PGF, followed by P4+GnRH+PGF and GnRH+PGF, respectively. The opposite was observed among treatments in beef heifers. Administration of P4 without the preceding injection of GnRH produced the lowest pregnancy rates in beefheifers. Ofthe quantified sexual behavioral characteristics during the synchronized estrus, the number of standing events and total duration of standing events were greater (P < 0.01) than those observed during the next eligible estrus before second AI, whereas duration of estrus was unaffected.  相似文献   

16.
The objective of this experiment was to compare two progestins and three treatments for synchronizing follicular wave emergence and ovulation in protocols for fixed-time AI in beef heifers. On d 0 (beginning of the experiment), Angus and Angus-Simmental cross beef heifers at random stages of the estrous cycle either received a CIDR-B device (n = 257) or were started on 0.5 mg x anima(-1) x d(-1) melengestrol acetate (MGA; n = 246) and were randomly assigned to receive i.m. injections of 100 microg GnRH, 12.5 mg porcine LH (pLH), or 2 mg estradiol benzoate (EB) and 50 mg progesterone (P4). The last feeding of MGA was given on d 6 and on d 7, CIDR-B devices were removed and all heifers received 500 microg cloprostenol (PG). Consistent with their treatment groups on d 0, heifers were given either 100 microg GnRH or 12.5 mg pLH 48 h after PG (and were concurrently inseminated) or 1 mg EB 24 h after PG and were inseminated 28 h later (52 h after PGF). Estrus rate (combined for both progestins) in heifers receiving EB (92.0%) was greater (P < 0.05) than that in heifers receiving GnRH and pLH (combined) and a CIDR-B device (62.9%) or MGA (34.3%). Although the mean interval from PG treatment to estrus did not differ among groups (overall, 47.8 h; P = 0.85), it was less variable (P < 0.01) in MGA-fed heifers (SD = 2.5 h) than in CIDR-B-treated heifers (SD = 8.1 h). Pregnancy rates (determined by ultrasonography approximately 30 d after AI) did not differ (P = 0.30) among the six treatment groups (average, 58.0%; range, 52.5 to 65.0%). Although fixed-time AI was done, pregnancy rates were greater in heifers detected in estrus than in those not detected in estrus (62.6 vs 51.9%; P < 0.05). In conclusion, GnRH, pLH, or EB treatment in combination with a CIDR-B device or MGA effectively synchronized ovulation-for fixed-time AI, resulting in acceptable pregnancy rates in beef heifers.  相似文献   

17.
The objectives of this study were to 1) compare cumulative pregnancy rates in a traditional management (TM) scheme with those using a synchronization of ovulation protocol (CO-Synch + CIDR) for timed AI (TAI) in Bos indicus-influenced cattle; 2) evaluate ovarian and hormonal events associated with CO-Synch + CIDR and CO-Synch without CIDR; and 3) determine estrual and ovulatory distributions in cattle synchronized with Select-Synch + CIDR. The CO-Synch + CIDR regimen included insertion of a controlled internal drug-releasing device (CIDR) and an injection of GnRH (GnRH-1) on d 0, removal of the CIDR and injection of PGF2alpha (PGF) on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later. For Exp. 1, predominantly Brahman x Hereford (F1) and Brangus females (n = 335) were stratified by BCS, parity, and day postpartum (parous females) before random assignment to CO-Synch + CIDR or TM. To maximize the number of observations related to TAI conception rate (n = 266), an additional 96 females in which TM controls were not available for comparison also received CO-Synch + CIDR. Conception rates to TAI averaged 39 +/- 3% and were not affected by location, year, parity, AI sire, or AI technician. Cumulative pregnancy rates were greater (P < 0.05) at 30 and 60 d of the breeding season in CO-Synch + CIDR (74.1 and 95.9%) compared with TM (61.8 and 89.7%). In Exp. 2, postpartum Brahman x Hereford (F1) cows (n = 100) were stratified as in Exp. 1 and divided into 4 replicates of 25. Within each replicate, approximately one-half (12 to 13) received CO-Synch + CIDR, and the other half received CO-Synch only (no CIDR). No differences were observed between treatments, and the data were pooled. Percentages of cows ovulating to GnRH-1, developing a synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to GnRH-2 were 40 +/- 5, 60 +/- 5, 93 +/- 2, and 72 +/- 4%, respectively. In Exp. 3, primiparous Brahman x Hereford, (F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR synchronization regimen (no GnRH-2 or TAI). Mean intervals from CIDR removal to estrus and ovulation, and from estrus to ovulation were 70 +/- 2.9, 99 +/- 2.8, and 29 +/- 2.2 h, respectively. These results indicate that the relatively low TAI conception rate observed with CO-Synch + CIDR in these studies was attributable primarily to failure of 40% of the cattle to develop a synchronized follicular wave after GnRH-1 and also to inappropriate timing of TAI/GnRH-2.  相似文献   

18.
The objective was to test the efficacy of an intravaginal progesterone insert and injection of PGF2alpha for synchronizing estrus and shortening the interval to pregnancy in cattle. Cattle were assigned to one of three treatments before a 31-d breeding period that employed artificial insemination. Control cattle were not treated, and treated cattle were administered PGF2alpha or an intravaginal progesterone-releasing insert (CIDR) for 7 d and treated with PGF2alpha on d 6. The treatments were applied in one of three experiments that involved postpartum beef cows (Exp. 1; n = 851; 56+/-0.6 d postpartum), beef heifers (Exp. 2; n = 724; 442.5+/-2.8 d of age), and dairy heifers (Exp. 3; n = 260; 443.2+/-4.5 d of age). Luteal activity before treatment was determined for individual cattle based on blood progesterone concentrations. In Exp. 1, there was a greater incidence of estrus during the first 3 d of the breeding period in CIDR+PGF2alpha-treated cows compared with PGF2alpha-treated or control cows (15, 33, and 59% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001). The improved estrous response led to an increase in pregnancy rate during the 3-d period (7, 22, and 36% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001) and tended to improve pregnancy rate for the 31-d breeding period for cows treated with CIDR+PGF2alpha, (50, 55, and 58% for control, PGF2alpha, and CIDR+PGF2alpha, respectively, P = 0.10). Improvements in rates of estrus and pregnancy after CIDR+PGF2alpha, were also observed in beef heifers. Presence of luteal activity before the treatment period affected synchronization and pregnancy rates because anestrous cows (Exp. 1) or prepubertal heifers (Exp. 2) had lesser synchronization rates and pregnancy rates during the first 3 d of the breeding period as well as during the entire 31-d breeding period. The PGF2alpha, and CIDR+PGF2alpha but not the control treatments were evaluated in dairy heifers (Exp. 3). The CIDR+PGF2alpha-treated heifers had a greater incidence of estrus (84%) during the first 3 d of the breeding period compared with the PGF2alpha-treated heifers (57%), but pregnancy rates during the first 3 d or during the 31-d breeding period were not improved for CIDR+PGF2alpha compared with PGF2alpha-treated heifers. In summary, the concurrent treatment of CIDR and PGF2alpha improved synchronization rates relative to PGF2alpha alone or control. Improved estrus synchrony led to greater pregnancy rates for beef cows and beef heifers but failed to improve pregnancy rates for dairy heifers.  相似文献   

19.
Crossbred Brahman heifers (n = 60) were studied to determine the effect of a 7-d intravaginal progesterone-releasing insert (INSERT) in combination with PG (Lutalyse; 25 mg i.m.) and estradiol benzoate (EB; .5 mg i.m.) on time of ovulation and estrous behavior. In Phase I, heifers at unknown stages of the estrous cycle were assigned by BW and body condition score to one of the three treatments on d 0: 1) INSERT for 7 d and PG on d 7 (CONTROL; n = 10); 2) INSERT for 7 d, PG on d 7, and EB 24 h after INSERT removal (EB24; n = 10); or 3) INSERT for 7 d, PG on d 7, and EB 48 h after INSERT removal (EB48; n = 10). Blood samples were collected every 8 h after INSERT removal. Also, blood sampling and ultrasonography began 8 h after the onset of estrus, determined with HeatWatch devices, and every 4 h thereafter to detect ovulation. In Phase II, Phase-I treatments (n = 10/treatments) were replicated, but only behavioral estrus data were collected to minimize handling of heifers. Frequent handling of heifers did not influence (P > .1) the interval from INSERT removal to the onset of HeatWatch and visual estrus and duration of estrus, so behavioral estrus data were combined for Phases I and II. Interval from INSERT removal to HeatWatch estrus was decreased (P < .05) in EB24 (45.5 h) vs EB48 (55.9 h) and CONTROL (59.2 h). Interval from INSERT removal to ovulation differed (P < .04) between CONTROL, EB24, and EB48 (93.5, 74.5, and 78.9 h, respectively). Ovulatory follicle size was similar (P > .1) between CONTROL, EB24, and EB48 (14.4, 12.5, and 14.1 mm, respectively). Duration of estrus was similar for CONTROL, EB24, and EB48 (14.0, 15.1, and 17.6 h, respectively). No difference (P > . 1) was observed in number of mounts received between CONTROL, EB24, and EB48 (28.0, 25.7, and 39.4, respectively), but number of mounts received increased in Phase II vs Phase I (40.0 and 22.2, respectively; P < .05). In conclusion, EB hastened the interval from INSERT removal to ovulation without altering duration of estrus or number of mounts received. Frequent handling of heifers did not affect interval to first mount received after INSERT removal or duration of estrus, but it decreased the total number of mounts received.  相似文献   

20.
Estrous synchronization using a Controlled Internal Drug Releasing device (CIDR) in combination with GnRH or estradiol benzoate (EB) treatment was investigated in Japanese black cows characterized with initial ovarian conditions. A total of 142 cows were allocated to one of four treatments: insertion of CIDR for eight days (Group A: n=34), CIDR with 100 microg of GnRH on d 0 (Group B: n=54, d 0=CIDR insertion), CIDR with GnRH on d 0 and 1 mg of EB on d 10 (Group C: n=20) or CIDR with 2 mg of EB on d 0 and 1 mg of EB on d 9 (Group D: n=34). All cows received 25 mg of PGF(2alpha) on d 7 and blood was collected for progesterone (P4) analysis on d 0, 8, and 21. AI was performed at estrus, but in Group D timed AI was set following a day of EB treatment. Estrus was induced in 141/142 cows, and the majority of which occurred on d 10 and 11 (98 cows, 34 cows). GnRH treatment induced more intermediate ovulation than EB treatment in cows with CL on d 0 (19.0% vs. 0%). Ovulation after CIDR removal was significantly higher in cows with CL on d 0 compared to those without CL (87.0% vs. 71.4%). Group B showed higher conception rates than those combined with Groups C and D where EB was injected after CIDR removal (51.1% vs. 38.9%). Conception had no correlation with either CL existence on d 0 or intermediate ovulation on d 8. P4 concentrations on d 8 were significantly lower compared to those on d 0 or d 21. On d 21 in cows without intermediate ovulation, Group A showed significantly lower P4 concentrations than the other 3 groups. The data suggests that CIDR insertion with PGF(2alpha) treatment is an effective method for estrous synchronization irrespective of initial ovarian conditions, and GnRH treatment at CIDR insertion induces intermediate ovulation and improves the conception rate in Japanese black cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号