首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The objectives of this study were to quantify the phenotypic variation in residual feed intake (RFI) in pregnant beef heifers offered a grass silage diet and to characterize their productivity. Seventy-three pregnant (mean gestation d 198, SD = 27 d) Simmental and Simmental × Holstein-Friesian heifers (mean initial BW 548, SD = 47.5 kg) were offered grass silage ad libitum. Heifer DMI, BW, BCS, skeletal measurements, ultrasonic fat and muscle depth, visual muscularity score, rumen fermentation, total tract digestibility, blood metabolite and hematology variables, feeding, and activity behavior were measured during an 84-d feed intake study. After parturition calf birth weight, calving difficulty, cow serum IgG, hematology variables, and calf humoral immune status were measured. In a subset of cows (n = 28), DMI, milk yield and various body composition variables were also measured approximately 3 wk postpartum. Phenotypic RFI was calculated for each animal as the difference between actual DMI and expected DMI. Expected DMI was computed for each animal by regressing average daily DMI on conceptus-adjusted mean BW(0.75) and conceptus-adjusted ADG over an 84-d period. Within breed, heifers were ranked by RFI into low (efficient), medium, and high (inefficient) groups by dividing them into thirds. Heifers with high RFI had 8.8 and 17.1% greater (P < 0.001) DMI than medium and low RFI groups, respectively. The RFI groups did not differ in ADG or BW (P > 0.05). Residual feed intake was positively correlated with DMI (r = 0.85) but not with feed conversion ratio, ADG, or BW. The RFI groups did not differ (P > 0.05) in skeletal size, BCS, ultrasonic fat depth, total tract digestibility, calf birth weight, calving difficulty, serum IgG concentrations, or milk yield. Visual muscularity scores, initial test and postpartum ultrasonic muscle depth were negatively correlated with RFI (P < 0.05). Including mean ultrasonic muscle depth into the base RFI regression model increased its R(2) (0.29 to 0.38). Pearson rank correlation between RFI and muscle-adjusted RFI was 0.93. The results show that efficient RFI heifers consumed less feed without any compromise in growth, body composition, or maternal traits measured.  相似文献   

2.
We examined the effect of endophyte infection level of tall fescue (Festuca arundinacea Schreb.) used for stockpiled forage on the performance of lactating, fallscalving beef cows and their calves. Treatments were endophyte infection levels of 20% (low; SEM = 3.5), 51%, (medium; SEM = 1.25), and 89% (high; SEM = 2.4; 4 replications/treatment). Five cow-calf pairs grazed in each replicate (n = 60 cow-calf pairs/yr) for 84 d (phase 1) starting on December 2, 2004 (yr 1), and December 1, 2005 (yr 2). After 84 d of grazing each treatment, the cattle were commingled and fed as a single group (phase 2) until weaning in April of each year. Phase 2 allowed measurement of residual effects from grazing stockpiled tall fescue with varying levels of endophyte infection. Pregrazing and postgrazing forage DM yield, forage nutritive value, and total ergot alkaloid concentrations of forage were collected every 21 d during phase 1. Animal performance data included cow BW, ADG, and BCS, as well as calf BW and ADG. Animal performance was monitored during both phases. Endophyte infection did not affect (P = 0.52) apparent intake (pregrazing minus postgrazing forage DM yield) of stockpiled tall fescue, because each cow-calf pair consumed 16 +/- 1.7 kg/d regardless of treatment. Cow ADG during phase 1 was -0.47 +/-0.43 kg for the low treatment, which was greater (P < 0.01) than either the medium (-0.64 +/-0.43 kg) or high (-0.74 +/- 0.43 kg) treatments. However, cows that had grazed the high or medium treatments in phase 1 lost -0.43 and -0.57 (+/-0.24) kg/d, respectively, which was less (P < 0.01) BW loss than the cows in the low (-0.78 +/- 0.24 kg/d) treatment during phase 2. By the end of phase 2, cow BW did not differ (528 +/-27 kg; P = 0.15). Body condition score for cows in the low treatment was greater (P = 0.02) than that of the medium and high treatments at the end of phase 1. Body condition scores did not change appreciably by the end of phase 2, and differences among treatments remained the same as at the end of phase 1 (P = 0.02). In contrast to cow performance, calf ADG was unaffected (P = 0.10) by endophyte level and averaged 0.73 +/- 0.07 kg during phase 1 and 0.44 +/- 0.04 kg during phase 2. Our data suggest that fall-calving herds can utilize highly-infected tall fescue when stockpiled for winter grazing, with little impact on cow performance and no impact on calf gain.  相似文献   

3.
Two feeding trials (early and late lactation) were conducted to measure ad libitum forage intake by beef cows from three breed groups of similar mature weight, but with different milk production potential. Twenty-four cow-calf units, eight from each milk production level (low, medium and high) were grouped (two/pen) based on similarity of cow weight and previous weigh-suckle-weigh and calf weaning weight data. Each pair of cow-calf units was confined to separate pens and allowed ad libitum access to chopped native Sandhills meadow hay. Dry matter intake, cow and calf BW and calf milk consumption were determined. Daily DMI (kg/hd) and milk consumption showed a positive linear response (P less than .05) among low, medium and high milk-producing cows. When cow DMI was expressed as g/unit mean cow BW during the trial, both a positive linear (P less than .05) and a quadratic response (P less than .01) expressed the relationship among production levels during early and late lactation. Calf forage intake, birth weight and adjusted 181- and 205-d weaning weight had no linear or quadratic relationship (P greater than .10) to milk production levels. However, June 1 calf weight, actual calf weaning weight and calf rate of gain (birth to weaning) had a positive linear (P less than .07) relationship. Best fit regression models with DMI as the dependent variable were developed for each trial based on R2 and CV values of the potential models. The best fit model (R2 = .94, SE = .33) for early lactation included production level as a class variable with cow BW.75 and calf birth weight as independent variables. The best fit model (R2 = .92, SE = .53) for late lactation included actual weaning weight in addition to the variables used during early lactation.  相似文献   

4.
Relationships between residual feed intake (RFI) and other performance variables were determined using 54 purebred Angus steers. Individual feed intake and BW gain were recorded during a 70-d post-weaning period to calculate RFI. After the 70-d post-weaning test, steers were fed a finishing ration to a similar fat thickness (FT), transported to a commercial facility, and slaughtered. A subsample of carcasses (n = 32) was selected to examine the relationships among RFI, meat quality, and palatability. Steers were categorized into high (> 0.5 SD above the mean; n = 16), medium (mid; +/- 0.5 SD from the mean; n = 21), and low (< 0.5 SD below the mean; n = 17) RFI groups. No differences were detected in ADG, initial BW, and d 71 BW among the high, mid, and low RFI steers. Steers from the high RFI group had a greater DMI (P = 0.004) and feed conversion ratio (FCR; DMI:ADG; P = 0.002) compared with the low RFI steers. Residual feed intake was positively correlated with DMI (r = 0.54; P = 0.003) and FCR (r = 0.42; P = 0.002), but not with initial BW, d 71 BW, d 71 ultrasound FT, initial ultrasound LM area, d 71 ultrasound LM area, or ADG. The FCR was positively correlated with initial BW (r = 0.46; P = 0.0005), d 71 BW (r = 0.34; P = 0.01), and DMI (r = 0.40; P = 0.003) and was negatively correlated with ADG (r = -0.65; P = 0.001). There were no differences among RFI groups for HCW, LM area, FT, KPH, USDA yield grade, marbling score, or quality grade. Reflectance color b* scores of steaks from high RFI steers were greater (P = 0.02) than those from low RFI steers. There was no difference between high and low RFI groups for LM calpastatin activity. Warner-Bratzler shear force and sensory panel tenderness and flavor scores of steaks were similar across RFI groups. Steaks from high RFI steers had lower (P = 0.04) off-flavor scores than those from low RFI steers. Cook loss percentages were greater (P = 0.005) for steaks from low RFI steers than for those from mid RFI steers. These data support current views that RFI is independent of ADG, but is correlated with DMI and FCR. Importantly, the data also support the hypothesis that there is no relationship between RFI and beef quality in purebred Angus steers.  相似文献   

5.
In a 2-yr study, we evaluated the effect of different forage allocations on the performance of lactating beef cows and their calves grazing stockpiled tall fescue. Allocations of stockpiled tall fescue at 2.25, 3.00, 3.75, and 4.50% of cow-calf pair BW/d were set as experimental treatments. Conventional hay-feeding was also evaluated as a comparison to grazing stockpiled tall fescue. The experiment had a randomized complete block design with 3 replications and was divided into 3 phases each year. From early December to late February (phase 1) of each year, cows and calves grazed stockpiled tall fescue or were fed hay in the treatments described above. Immediately after phase 1, cows and calves were commingled and managed as a single group until weaning in April (phase 2) so that residual effects could be documented. Residual effects on cows were measured after the calves were weaned in April until mid-July (phase 3). During phase 1 of both years, apparent DMI of cow-calf pairs allocated stockpiled tall fescue at 4.50% of BW/d was 31% greater (P < 0.01) than those allocated 2.25% of BW/d. As allocation of stockpiled tall fescue increased from 2.25 to 4.50% of cow-calf BW/d, pasture utilization fell (P < 0.01) from 84 +/- 7% to 59 +/- 7%. During phase 1 of both years, cow BW losses increased linearly (P < 0.02) as forage allocations decreased, although the losses in yr 1 were almost double (P < 0.01) those in yr 2. During phases 2 and 3, few differences were noted across treatment groups, such that by the end of phase 3, cow BW in all treatments did not differ either year (P > 0.40). Calf ADG in phase 1 increased linearly (P < 0.01) with forage allocation (y = 0.063x + 0.513; R(2) = 0.91). However, calf gain per hectare decreased linearly (P < 0.01) as stockpiled tall fescue allocations increased (y = -26.5x + 212; R(2) = 0.97) such that gain per hectare for cow-calf pairs allocated stockpiled tall fescue at 4.50% BW/d was nearly 40% less (P < 0.01) than for those allocated 2.25% of BW/d. Allocating cow-calf pairs stockpiled tall fescue at 2.25% of BW/d likely optimizes its use; because cow body condition is easily regained in the subsequent spring and summer months, less forage is used during winter, and calf gain per hectare is maximized.  相似文献   

6.
A winter grazing experiment was conducted to evaluate the effects of stocking rate and corn gluten feed supplementation on forage mass and composition and the BW and BCS of bred 2-yr-old cows grazing stockpiled forage during winter. Two 12.2-ha blocks containing Fawn, endophyte-free, tall fescue and red clover were each divided into 4 pastures of 2.53 or 3.54 ha. Hay was harvested from the pastures in June and August of 2003 and 2004, and N was applied at 50.5 kg/ha at the initiation of stockpiling in August. On October 22, 2003, and October 20, 2004, twenty-four 30-mo-old Angus-Simmental and Angus cows were allotted by BW and BCS to strip-graze for 147 d at 0.84 or 1.19 cow/ha. Eight similar cows were allotted to 2 dry lots and fed tall fescue-red clover hay ad libitum. Corn gluten feed was fed to cows in 2 pastures to maintain a mean BCS of 5 (9-point scale) at each stocking rate and in the dry lots (high supplementation level) or when weather prevented grazing (low supplementation level) in the remaining 2 pastures at each stocking rate. Mean concentrations of CP in yr 1 and 2 and IVDMD in yr 2 were greater (P < 0.10) in hay than stockpiled forage over the winter. At the end of grazing, cows fed hay in dry lots had greater (P < 0.05) BCS in yr 1 and greater (P < 0.10) BW in yr 2 than grazing cows. Grazing cows in the high supplementation treatment had greater (P < 0.10) BW than cows grazing at the low supplementation level in yr 1. Cows in the dry lots were fed 2,565 and 2,158 kg of hay DM/cow. Amounts of corn gluten feed supplemented to cows in yr 1 and 2 were 46 and 60 kg/ cow and did not differ (P = 0.33, yr 1; P = 0.50, yr 2) between cows fed hay or grazing stockpiled forage in either year. Estimated production costs were greater for cows in the dry lots because of hay feeding.  相似文献   

7.
Brangus cows (n = 29) were used in three experiments to evaluate the effects of parity (multiparous vs. primiparous) and potential genetic merit for milk production (high vs. low) on forage intake during late gestation, early lactation, and late lactation. Cows were selected for milk production based on their sire's EPD for milk production (MEPD). Cows had ad libitum access to (130% of previous 2-d average intake) low-quality hay (5.3% CP and 76% NDF), and cottonseed meal was supplemented to ensure adequate degradable intake protein. All females were adapted to diets for at least 7 d, and individual intake data were collected for 9 d. During the lactation trials, actual milk production was determined using a portable milking machine following a 12-h separation from calves. During late gestation, multiparous cows consumed 24% more (P = 0.01) forage DM (kg/d) than primiparous cows; however, parity class did not influence forage intake when intake was expressed relative to BW. Furthermore, MEPD did not influence forage intake during late gestation. During early lactation, multiparous cows produced 66% more (P < 0.001) milk than primiparous cows, and high MEPD tended (P = 0.10) to produce more milk than low MEPD. Multiparous cows consumed 19% more (P < 0.0001) forage DM than did primiparous cows when expressed on an absolute basis, but not when expressed on a BW basis. High-MEPD cows consumed 8% more (P < 0.05) forage DM than did low-MEPD cows. During late lactation, multiparous cows produced 84% more milk than primiparous cows, although MEPD did not influence (P = 0.40) milk yield. In addition, multiparous cows consumed 17% more (P < 0.01) forage DM per day than primiparous cows, but when intake was expressed relative to BW, neither parity nor MEPD influenced forage DMI during late lactation. Milk yield and BW explained significant proportions of the variation in forage DMI during early and late lactation. Each kilogram increase in milk yield was associated with a 0.33- and 0.37-kg increase in forage DMI for early and late lactation, respectively. Results suggest that multiand primiparous cows consume similar amounts of low-quality forage DM, expressed per unit of BW, during late gestation and lactation. Selecting beef cows for increased genetic merit for milk production increases forage DMI during early lactation.  相似文献   

8.
The objectives of this research were to determine the influence of protein supplementation frequency on cow performance, grazing time, distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, harvest efficiency, percentage of supplementation events frequented, and CV for supplement intake for cows grazing low-quality forage. One hundred twenty pregnant (60 +/- 45 d) Angus x Hereford cows (467 +/- 4 kg BW) were used in a 3 x 3 Latin square design for one 84-d period in each of three consecutive years. Cows were stratified by age, BCS, and BW and assigned randomly to one of three 810-ha pastures. Treatments included an unsupplemented control (CON) and supplementation every day (D; 0.91 kg, DM basis) or once every 6 d (6D; 5.46 kg, DM basis) with cottonseed meal (CSM; 43% CP, DM basis). Four cows from each treatment (each year) were fitted with global positioning system collars to estimate grazing time, distance traveled, maximum distance from water, cow distribution, and percentage of supplementation events frequented. Collared cows were dosed with intraruminal n-alkane controlled-release devices on d 28 for estimation of DMI, DM digestibility, and harvest efficiency. Additionally, Cr2O3 was incorporated into CSM on d 36 at 3% of DM for use as a digesta flow marker to estimate the CV for supplement intake. Cow BW and BCS change were greater (P < or = 0.03) for supplemented treatments compared with CON. No BW or BCS differences (P > or = 0.14) were noted between D and 6D. Grazing time was greater (P = 0.04) for CON compared with supplemented treatments, with no difference (P = 0.26) due to supplementation frequency. Distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, and harvest efficiency were not affected (P > or = 0.16) by protein supplementation or supplementation frequency. The percentage of supplementation events frequented and the CV for supplement intake were not affected (P > or = 0.58) by supplementation frequency. Results suggest that providing protein daily or once every 6 d to cows grazing low-quality forage increases BW and BCS gain, while decreasing grazing time. Additionally, protein supplementation and supplementation frequency may have little to no effect on cow distribution, DMI, and harvest efficiency in the northern Great Basin.  相似文献   

9.
Seventy-two (36 in each of two consecutive years) lactating, British-crossbred cows (609 +/- 19 kg) were used to evaluate effects of feeding a feather meal-blood meal combination on performance by beef cows fed grass hay. Bromegrass hay (9.6% CP, DM basis) was offered ad libitum and intake was measured daily in individual Calan electronic headgates. Acclimation to Calan gates began approximately 20 d after parturition, and treatments were initiated 21 d later. Cows were assigned randomly to one of four treatments (DM basis) for 60 d: 1) nonsupplemented control (CON), 2) energy control (ENG; 790 g/d; 100% beet pulp), 3) degradable intake protein (DIP; 870 g/d; 22% beet pulp and 78% sunflower meal), or 4) undegradable intake protein (UIP; 800 g/d; 62.5% sunflower meal, 30% hydrolyzed feather meal, and 7.5% blood meal). Net energy concentrations of supplements were formulated to provide similar NE(m) intakes (1.36 Mcal/d). The DIP and UIP supplements were calculated to supply similar amounts of DIP (168 g/d) and to supply 64 and 224 g/d of UIP, respectively. Forage DMI (kg/d) decreased in supplemented vs. nonsupplemented (P = 0.03) and DIP vs. UIP (P = 0.001); however, when expressed as a percentage of BW, forage DMI was not different (P = 0.23). Supplemented cows tended (P = 0.17) to lose less BW than CON. Body condition change was not affected (P = 0.60) by postpartum supplementation. No differences were noted in milk production (P = 0.29) or in calf gain during the supplementation period (P = 0.74). Circulating insulin concentrations were not affected by treatment (P = 0.42). In addition, supplementation did not affect circulating concentrations of NEFA (P = 0.18) or plasma urea nitrogen (P = 0.38). Results of the current study indicate that supplementation had little effect on BW, BCS, milk production, or calf BW when a moderate-quality forage (9.6% CP) was fed to postpartum, winter-calving cows in optimal body condition (BCS > 5). Supplemental UIP did not enhance cow performance during lactation. Forage UIP and microbial protein supply were adequate to meet the metabolizable protein requirements of lactating beef cows under the conditions of this study.  相似文献   

10.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

11.
One hundred thirty-seven spring-born yearling beef heifers of British breed types were used to determine the relationships between residual feed intake (RFI) and growth rate, body composition, mature size, and fertility. Heifers were housed in a dry lot facility during the experimental period, and data were collected over a 2-yr period (yr 1, n = 67; yr 2, n = 70). Individual feed intake, BW, BCS, hip height, and ultrasonic measurements [subcutaneous rib fat (UBF), rump fat (URF), LM area (LMA), and intramuscular fat (IMF)] of body composition were recorded. Individual feed intakes (kg of TDN consumed/d) were used to calculate RFI combining both years of data. Heifers averaged 387.0 ± 19.4 d of age and 337.1 ± 29.9 kg of BW at initiation of the experiment. Mean ADG was 1.14 ± 0.21 kg/d during the trial. Based on RFI, with year of test and farm of origin included in the model as covariates, heifers were classified into groups: positive (POS; 0.74 kg of TDN/d) or negative (NEG; -0.73 kg TDN/d) for first analysis and high (HI), medium (MED), or low (LO; mean RFI = 1.06, -0.01, and -1.13 kg of TDN/d, respectively) subsequently. An initial phenotypic relationship (P < 0.05) between RFI and both UBF and URF (r = 0.19 and 0.17, respectively) was sustained (P < 0.01) with UBF (r = 0.27) and URF (r = 0.24) to trial conclusion. No other correlations with RFI were significant. Heifers classified as POS reached puberty earlier than those classified as NEG (414 ± 3.83 vs. 427 ± 4.67 d of age, P = 0.03), and possessed greater LMA per 100 kg of BW (LMACWT) at conclusion of the trial (P < 0.01). Medium heifers exhibited less URF (P < 0.05) compared with either HI or LO heifers at trial initiation. Low heifers possessed less LM area (cm(2)) per 100 kg of BW (P < 0.05) than HI but did not differ (P > 0.10) from MED heifers at either the beginning or the end of test. Additionally, a negative linear relationship was observed between RFI and age at puberty (P < 0.05). Each 1-unit increase in RFI corresponded to a decrease of 7.5 d in age at puberty, but did not affect pregnancy or conception rates (P > 0.10). Differences in body fat and rate of metabolism associated with RFI could delay reproductive maturity.  相似文献   

12.
To establish the effect of sward height, concentrate feeding time, and restricted time for grazing on forage utilization by grazing cattle, 32 crossbred beef (24 Angus and eight Hereford) cows (632 kg BW) and calves (104 kg BW) were grouped by weight and calving date. They were assigned randomly to two sward height treatments (4 to 8 or 8 to 12 cm), replicated four times. The herbage comprised mainly Kentucky bluegrass, orchardgrass, some forbs, and white clover. The cows were restricted to 12 h/d grazing (0700 to 1900) or unrestricted to 24 h/d grazing and fed a concentrate supplement (4.1 kg DM.cow(-1).d(-1), approximately 0.65% of BW or 33% of total DMI) either at 0700 or 1800. The experiment was repeated over three 15-d periods in May, June/July, and August 2000. The herbage on high sward height pasture was higher (P = 0.06) in NDF and ADF and lower (P < 0.01) in CP than low sward height herbage. For cows restricted to 12 h/d grazing, supplementing at 0700 as opposed 1800 resulted in greater (P = 0.04) forage DMI (8.6 vs. 8.1 kg/d), whereas cows that were unrestricted showed little change (8.2 kg/d at 0700 vs. 8.4 kg/d at 1800). Supplementing at 1800 as opposed to 0700 resulted in greater (P = 0.03) herbage DM digestibility (67.7 vs. 64.5%) for cows on high sward height, whereas cows on low sward height exhibited minimal differences (65.4% at 1800 vs. 66.3% at 0700). Cows restricted to 12 h/d grazing and supplemented at 0700 as opposed to 1800 resulted in greater (P = 0.06) digestible DMI (5.0 vs. 4.7 kg/d), whereas unrestricted cows exhibited the opposite response (4.6 kg/d digestible DMI at 0700 vs. 4.9 kg/d at 1800). Supplementing at 1800 as opposed to 0700 increased the time spent grazing to a greater (P = 0.09) extent for restricted than for unrestricted cows. When forage availability or grazing time was limiting (due to a low forage allowance and restricted access to forage, respectively) supplementing concentrates at 0700 resulted in greater forage utilization and intake rate because of increased forage DMI, DM digestibility, and digestible DMI. However, when forage or grazing time was not limiting, supplementing concentrates at 1800 resulted in greater forage utilization because of increased forage DM digestibility.  相似文献   

13.
Seventy-six Angus steers chosen from breeding lines divergently selected for residual feed intake (RFI) were studied to quantify the relationship between RFI and the daily rate of methane production (MPR). A 70-d feeding test using a barley-based ration was conducted in which the voluntary DMI, feeding characteristics, and BW of steers were monitored. The estimated breeding value (EBV) for RFI (RFI(EBV)) for each steer had been calculated from 70-d RFI tests conducted on its parents. Methane production rate (g/d) was measured on each steer using SF(6) as a tracer gas in a series of 10-d measurement periods. Daily DMI of steers was lower during the methane measurement period than when methane was not being measured (11.18 vs. 11.88 kg; P = 0.001). A significant relationship existed between MPR and RFI when RFI (RFI(15d)) was estimated over the 15 d when steers were harnessed for methane collection (MPR = 13.3 x RFI(15d) + 179; r(2) = 0.12; P = 0.01). Animals expressing lower RFI had lower daily MPR. The relationship established between MPR and RFI(15d) was used to calculate a reduction in daily methane emission of 13.38 g accompanied a 1 kg/d reduction in RFI(EBV) in cattle consuming ad libitum a diet of 12.1 MJ of ME/kg. The magnitude of this emission reduction was between that predicted on the basis of intake reduction alone (18 g x d(-1) x kg of DMI(-1)) and that predicted by a model incorporating steer midtest BW and level of intake relative to maintenance (5 g x d(-1) x kg of DMI(-1)). Comparison of data from steers exhibiting the greatest (n = 10) and lowest (n = 10) RFI(15d) showed the low RFI(15d) group to not only have lower MPR (P = 0.017) but also reduced methane cost of growth (by 41.2 g of CH(4)/kg of ADG; P = 0.09). Although the opportunity to abate livestock MPR by selection against RFI seems great, RFI explained only a small proportion of the observed variation in MPR. A genotype x nutrition interaction can be anticipated, and the MPR:RFI(EBV) relationship will need to be defined over a range of diet types to account for this.  相似文献   

14.
Two experiments were conducted to determine the effects of whole soybean supplementation on intake, digestion, and performance of beef cows of varying age. Treatments were arranged in a 2 x 3 factorial with 2 supplements and 3 age classes of cows (2-yr-old, 3-yr-old, and mature cows). Supplements (DM basis) included 1) 1.36 kg/d of whole raw soybeans, and 2) 1.56 kg/d of a soybean meal/hulls supplement. Supplements were formulated to provide similar amounts of protein and energy, but a greater fat content with the whole soybeans. Supplements were individually fed on Monday, Tuesday, Thursday, and Saturday mornings. During the treatment period, cows had free choice access to bermudagrass hay [Cynodon dactylon (L.) Pers.; 8.4% CP; 72% NDF; DM basis]. In Exp. 1, 166 spring-calving Angus and Angus x Hereford crossbred beef cows were individually fed supplements for an average of 80 d during mid to late gestation. During the first 50 d of supplementation, cows fed soybean meal/hulls gained more BW (10 kg; P < 0.001) and body condition (0.18 BCS units; P = 0.004) than cows fed whole soybeans. However, BW change (P = 0.87) and BCS change (P = 0.25) during the 296-d experiment were not different between supplements. Although calves from cows fed soybean meal/hulls were 2 kg heavier at birth, there was no difference in calf BW at weaning between supplements. Additionally, first service conception rate (68%; P = 0.24) and pregnancy rate (73%; P = 0.21) were not different between supplements. In Exp. 2, 24 cows from Exp. 1 were used to determine the effect of supplement composition on forage intake and digestion; cows remained on the same supplements, hay, and feeding schedule as Exp. 1. Crude fat digestibility was the only intake or digestibility measurement influenced by supplement composition; fat digestibility was higher for cows fed whole soybeans compared with cows fed the soybean meal/hulls supplement (58.1 vs. 48.8%). Hay intake and DMI averaged 1.63 and 1.92% of BW daily, respectively. Dry matter, NDF, and CP digestibility averaged 54.1, 55.1, and 63.2%, respectively. Compared with supplementation with soybean meal/ hulls, whole soybean supplementation during mid to late gestation resulted in reduced BW weight gain during supplementation, inconsistent effects on reproduction, no effect on calf weaning weight, and no effect on forage intake or digestion.  相似文献   

15.
Cow and calf performance was determined in a 2-yr, 2 x 2 factorial, grazing experiment using Coastal or Tifton 85 (T85) replicated Bermudagrass pastures (4 pastures each; each pasture 4.86 ha), without or with aeschynomene creep-grazing paddocks (n = 4, 0.202 ha each, planted in May of each year, 13.44 kg/ha). On June 10, 2004, and June 8, 2005, 96 winter-calving beef "tester" cows and their calves were grouped by cow breed (9 Angus and 3 Polled Hereford/group), initial cow BW (592.9 +/- 70.1 kg, 2-yr mean), age of dam, calf breed (Angus, Polled Hereford, or Angus x Polled Hereford), calf sex, initial calf age (117 +/- 20.1 d, 2-yr mean), and initial calf BW (161.3 +/- 30.4 kg) and were randomly assigned to pastures. Additional cow-calf pairs and open cows were added as the forage increased during the season. Forage mass was similar for all treatment pastures (P > 0.70; 2-yr mean, 6,939 vs. 6,628 kg/ha, Coastal vs. T85; 6,664 vs. 6,896 kg/ha, no creep grazing vs. creep grazing). Main effect interactions did not occur for performance variables (P > 0.10; 2-yr means), and year affected only the initial and final BW of the calves and cows. The 91-d tester calf ADG was greater for calves grazing T85 than Coastal (0.94 vs. 0.79 kg; P < 0.01), and for calves creep grazing aeschynomene compared with calves without creep grazing (0.90 vs. 0.82 kg; P < 0.03). Calf 205-d adjusted weaning weights were increased for calves grazing T85 compared with Coastal (252.9 vs. 240.3 kg; P < 0.01) and for calves with access to creep grazing (249.9 vs. 243.3 kg; P < 0.05). The IVDMD of esophageal masticate from pastures had a forage x creep grazing interaction (P < 0.05; Coastal, no creep grazing = 57.4%; Coastal, creep grazing = 52.1%; T85, no creep grazing = 59.1%; T85, creep grazing = 60.0%), and IVDMD was greater (P < 0.05) for T85 than for Coastal pastures. Cows were milked in August 2004, and in June and August 2005, with variable milk yields on treatments, but increased milk protein (P < 0.05) for cows grazing T85 compared with Coastal pastures in August each year, contributing to increased calf gains on T85 pastures. These results complement previous research with T85 and indicate increased forage quality and performance of cattle grazing T85 pastures. Calf gains on T85 pastures and for calves on creep-grazed aeschynomene paddocks were high enough to influence the efficiency of cow-calf operations.  相似文献   

16.
Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most-and the leastefficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d-10 to d 60 relative to the calving date were used. Cows were classified into most-efficient(i.e. with low RFI, n = 10) and least-efficient(i.e. with high RFI, n = 10) based on a linear regression model involving dry matter intake(DMI), fat-corrected milk(FCM), changes in body weight(BW), and metabolic BW.Results: The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d-10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii. In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows.Conclusions: The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows.  相似文献   

17.
Two trials were conducted to determine the effect of energy source (ENG) and ruminally degradable protein (RDP) on lactating cow performance and intake and digestion in beef steers. In Trial 1, 78 cow-calf pairs were used in a 2 x 2 factorial design to determine the effect of ENG (corn or soyhulls; SH) and RDP (with our without sunflower meal) to a forage diet for lactating beef cows. The basal diet consisted of 75% grass hay (11.5% CP) and 25% wheat straw (7.4% CP). Supplement treatments and predicted RDP balances were corn (-415 g of RDP/d); SH (-260 g of RDP/d); corn plus RDP (0 g of RDP/d); or SH plus RDP (0 g of RDP/d). Data were analyzed as a split-plot in time, with pen as the experimental unit (two pens per treatment). No interaction between ENG and RDP was present (P > 0.08) for any response variable. No differences (P > 0.39) due to ENG or RDP were noted for BW, BCS, or milk yield; however, final calf weight tended to increase with ENG (P = 0.06). In Trial 2, a 5 x 5 Latin square was used to determine effects of ENG and RDP on intake and digestion in steers (686 +/- 51 kg BW). Treatments were arranged as a 2 x 2 plus one factorial and comprised a control (CON; grass hay, 7% CP), grass hay plus 0.4% BW SH, grass hay plus 0.4% BW SH and 0.15% BW sunflower meal, grass hay plus 0.4% BW corn, and grass hay plus 0.4% BW corn and 0.2% BW sunflower meal. Preplanned contrasts included main effects of ENG and RDP, ENG x RDP interaction, and CON vs. supplemented (SUP) treatments. Supplementation increased total DMI compared with CON (P = 0.001), but forage DMI was greater (P = 0.001) for CON than for SUP. An ENG x RDP interaction occurred for forage DMI (P = 0.02); addition of RDP to corn decreased forage intake, whereas addition of RDP to SH had no effect. There was an ENG x RDP interaction (P = 0.001) for ruminal pH; pH tended to increase with RDP addition to SH (P = 0.07), but decreased with RDP addition to corn (P = 0.001). Supplementation increased ruminal ammonia compared with CON (P = 0.001). Likewise, RDP increased ruminal ammonia (P = 0.001). An interaction occurred for OM disappearance (OMD; P = 0.01). The RDP addition to SH numerically decreased OMD (P = 0.23), whereas RDP addition to corn numerically increased OMD (P = 0.14). Intake and digestion seem to respond differently to RDP addition depending on supplemental energy source. Both corn or SH seem to be suitable supplements for the quality of forage used in this trial. Addition of supplemental protein did not improve cow or calf performance.  相似文献   

18.
Two 120-d trials (May to September, 1988 and 1989) determined the effects of grazing tall fescue (two varieties) or orchardgrass on forage intake and performance by beef cows. Each summer, 48 cow-calf pairs grazed endophyte-infected Kentucky-31 tall fescue (KY-31), endophyte-free Mozark tall fescue (MOZARK), or Hallmark orchardgrass (OG) pastures (16 pairs/treatment). Forage OM intakes and digestibilities were determined during June and August each year. Cow and calf BW and milk production were determined every 28 d. During June of both years, OM intakes did not differ (P greater than .10) among treatments. During August of 1988, intakes were 18% lower (P less than .05) by KY-31 cows (1.6% of BW) than by MOZARK or OG cows (average 1.95% of BW); however, no differences (P greater than .10) were measured in August of 1989. Estimates of ergovaline consumption during June from KY-31 were between 4.2 (1988) and 6.0 mg/d (1989), whereas August estimates were between 1.1 (1988) and 2.8 mg/d (1989). Ergovaline in MOZARK estrusa was below detection limits, except in August of 1989. Cows that grazed KY-31 lost three times (P less than .01) more BW than cows that grazed MOZARK or OG (42 vs 9 and 13 kg, respectively). Milk production by KY-31 cows was 25% lower (P less than .01) than that by cows that grazed MOZARK or OG (6.0 vs average of 8.0 kg/d). Similarly, slower (P less than .01) calf gains were noted for KY-31 than for MOZARK or OG (.72 vs .89 and .88 kg/d, respectively). Cows grazing KY-31 experienced accelerated BW loss and reduced milk production and weaned lighter calves than did cows grazing MOZARK or OG. Decreased performance was not explained by consistently reduced forage intakes; hence, altered nutrient utilization was suspected.  相似文献   

19.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

20.
Eighteen Angus steers (438 +/- 4 kg of BW) were supplemented with varying levels of corn oil (0 g/kg of BW, none; 0.75 g/kg of BW, MED; or 1.5 g/kg of BW, HI) on rotationally stocked, endophyte-free tall fescue to determine the effect of supplemental oil level on in vivo digestibility, intake, performance, and carcass traits. Pelleted cottonseed hulls were used as a carrier for the oil supplements, and all supplements were offered to steers using Calan gate feeders for individual intake determination. On d 49, each steer was dosed with a controlled-release capsule containing chromium sesquioxide, and fecal samples were obtained 12 d later over a 7-d period to estimate fecal output that, with forage, supplement, and fecal indigestible NDF concentration, was used to estimate DMI and in vivo total diet digestibility. Steers were slaughtered at the end of the 116-d grazing period, and carcass data were collected at 24 h postmortem. Total fatty acid intake linearly increased with corn oil supplementation, and forage DMI, total DMI, and total DE intake were linearly decreased (P < 0.01). The decrease in total DMI was reflected in forage substitution rates greater (P < or = 0.01) than 1, with a trend (P = 0.09) for a greater substitution rate in HI than in MED. In vivo DM, OM, and NDF digestibility were linearly decreased (P < 0.01) by corn oil supplementation. Average daily gain and final BW tended (P = 0.09) to increase linearly in response to oil level. Oil conversion (0.36 kg of BW gain/kg of corn oil) was greater (P < or = 0.05) than zero and did not differ (P = 0.15) between MED and HI. Dressing percent (P = 0.09), carcass weight (P = 0.01), and carcass backfat thickness (P = 0.01) increased linearly with oil supplementation. No treatment effect was observed for carcass LM area, KPH percentage, marbling score, or yield grade (P > 0.10). Oil supplementation to grazing steers linearly reduced forage DMI intake; however, animal performance was maintained and tended to be greater for oil-supplemented cattle. Oil supplementation increased carcass fat thickness and weight without altering other carcass quality parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号