首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The purpose of this investigation was to characterize the shedding pattern of feline leukemia virus (FeLV) RNA in saliva, and to correlate it with the proviral load in whole blood, viral load in plasma, levels of p27 in saliva and plasma, the isolation of infectious FeLV from saliva, and the titers of FeLV-specific antibodies of the IgG and IgA isotypes. We evaluated 24 experimentally FeLV-infected cats for these parameters using real-time RT-PCR and PCR, cell culture assay and sandwich ELISA. We observed that shedding of viral RNA in saliva was a consistent feature in viremic cats. Latently FeLV-infected cats, displaying a very low proviral load, did not shed infectious virus in saliva, but occasionally shed viral RNA. Consequently, salivary shedding of FeLV RNA may not necessarily indicate a transmission potential for susceptible cats. This study also confirmed previous results from our laboratory, showing that a negative result for p27 in plasma, or for viral RNA in plasma or saliva does not exclude FeLV infection, considering that blood cells from those cats contained provirus. We also showed that FeLV RNA and DNA were stable for more than 64 days in saliva samples stored at room temperature. We conclude that the detection of FeLV RNA in saliva may be a useful indicator of viremia, and that the detection of salivary viral RNA by RT-PCR could become a reliable tool for the diagnosis of FeLV infection, which is facilitated by the low invasive method of collection of the samples.  相似文献   

2.
In felids, feline leukemia virus (FeLV) infection results in a variety of outcomes that range from abortive (virus readily eliminated and never detectable) to progressive infection (persistent viremia and viral shedding). Recently, a novel outcome was postulated for low FeLV infectious doses. Naïve cats exposed to faeces of persistently infected cats seroconverted, indicating infection, but remained negative for provirus and p27 antigen in blood. FeLV provirus was found in some tissues but not in the bone marrow, infection of which is usually considered a necessary stage for disease progression. To investigate the impact of low FeLV doses on young cats and to test the hypothesis that low dose exposure may lead to an unknown pathogenesis of infection without involvement of the bone marrow, 21 cats were infected oronasally with variable viral doses. Blood p27, proviral and viral loads were followed until week 20 post-infection. Tissue proviral loads were determined as well. The immune response was monitored by measuring FeLV whole virus and p45 antibodies; and feline oncornavirus-associated cell membrane antigen (FOCMA) assay. One cat showed regressive infection (transient antigenemia, persistent provirus-positivity, and seroconversion) with provirus only found in some organs at sacrifice. In 7 of the 20 remaining cats FOCMA assay positivity was the only sign of infection, while all other tests were negative. Overall, the results show that FeLV low dose exposure can result in seroconversion during a presumed abortive infection. Therefore, commonly used detection methods do not detect all FeLV-infected animals, possibly leading to an underestimation of the prevalence of infection.  相似文献   

3.
Feline leukaemia virus (FeLV) infection in felids results mainly from oronasal exposure to infectious saliva and nasal secretions, but the potential for viral transmission through faeces and urine has not been completely characterized. In order to assess and compare potential FeLV transmission routes, we determined the viral kinetics in plasma, saliva, faeces and urine during early experimental FeLV infection (up to week 15 post-exposure) in specific pathogen-free cats. In addition to monitoring p27 antigen levels measured by ELISA, we evaluated the presence of infectious particles by cell culture assays and quantified viral RNA loads by a quantitative real-time TaqMan polymerase chain reaction. RNA load was associated with infection outcome (high load-progressive infection; low load-regressive infection) not only in plasma, but also in saliva, faeces and urine. Infectious virus was isolated from the saliva, faeces and urine of infected cats with progressive infection as early as 3-6 weeks post-infection, but usually not in cats with regressive infection. In cats with progressive infection, therefore, not only saliva but also faeces and to some extent urine might represent potential FeLV transmission routes. These results should be taken into account when modelling FeLV-host interactions and assessing FeLV transmission risk. Moreover, during early FeLV infection, detection of viral RNA in saliva may be used as an indicator of recent virus exposure, even in cats without detectable antigenaemia/viraemia. To determine the clinically relevant outcome of FeLV infection in exposed cats, however, p27 antigen levels in the peripheral blood should be measured.  相似文献   

4.
FeLV was discovered 40 years ago and vaccines have been commercially available for almost two decades. So far, most FeLV pathogenesis and vaccine studies were conducted assaying parameters, such as virus isolation and antigen detection. Accordingly, regressive infection was characterized by transient or undetectable viremia, while persistent viremia is typically observed in cats with progressive infection. Using real-time polymerase chain reaction assays, the spectrum of host response categories to FeLV infection was recently refined by investigating proviral and plasma viral RNA loads. Cats believed to be immune to FeLV infection were found to turn provirus-positive after virus exposure. Moreover, efficacious FeLV vaccines were found unable to prevent provirus-integration and minimal viral replication. Remarkably, no difference was found in initial proviral and plasma viral RNA loads between cats with different infection outcomes. Only subsequently, the infection outcome is associated with FeLV loads. FeLV provirus was found to persist for years; reoccurrence of viremia and disease development was observed in some cats. Thus, aviremic provirus-positive cats are FeLV carriers and, following reactivation, may act as an infection source. However, integrated viral DNA may also be essential for solid protection and long-lasting maintenance of protective immunity. In conclusion, real-time TaqMan PCR and RT-PCR assays are highly sensitive and specific. They yield a more sensitive measure for FeLV exposure than antigen detection, virus isolation or immunofluoresence assays. We recommend the use of real-time PCR assays to identify FeLV exposed cats, particularly in catteries, and investigate obscure clinical cases that may be FeLV-associated. The use of sensitive molecular methods will contribute to a more in-depth understanding of the FeLV pathogenesis.  相似文献   

5.
Molecular techniques have demonstrated that cats may harbour feline leukaemia virus (FeLV) provirus in the absence of antigenaemia. Using quantitative real-time polymerase chain reaction (qPCR), p27 enzyme-linked immunosorbent assay (ELISA), anti-feline oncornavirus-associated cell-membrane-antigen (FOCMA) antibody testing and virus isolation (VI) we investigated three groups of cats. Among cats with cytopenias or lymphoma, 2/75 were transiently positive for provirus and anti-FOCMA antibodies were the only evidence of exposure in another. In 169 young, healthy cats, all tests were negative. In contrast, 3/4 cats from a closed household where FeLV was confirmed by isolation, had evidence of infection. Our results support a role for factors other than FeLV in the pathogenesis of cytopenias and lymphoma. There was no evidence of exposure in young cats. In regions of low prevalence, where the positive predictive value of antigen testing is low, qPCR may assist with diagnosis.  相似文献   

6.
Transmission of feline leukaemia virus in the milk of a non-viraemic cat   总被引:3,自引:0,他引:3  
The possibility of the transmission of feline leukaemia virus (FeLV) from latently infected cats was studied. Five female cats with latent infections were examined for evidence of transmission of the virus to their kittens. One of the cats infected members of four consecutive litters of kittens which subsequently became persistently viraemic and transmitted the virus to other susceptible kittens by contact. Shortly after birth its kittens were apparently FeLV-free since neither viral antigen nor infectious virus was detected in their blood and no virus was found in cell cultures made from aspirates of bone marrow. The kittens became viraemic from 45 days of age onwards at a time when their passively acquired colostral FeLV neutralising antibodies were no longer detectable. Transmission of the virus occurred via the milk since both FeLV antigen and infectious virus were found in milk samples taken six weeks after kittening and the virus was transmitted to a fostered kitten. Eleven weeks after the birth of the fourth litter the cat became viraemic. The intermittent presence of FeLV antigens detected by the Leukassay F test, but not infectious virus, in the plasma of this cat over the previous months and a low level of serum neutralising antibodies distinguished it from four other latently infected queens which did not transmit infection to their kittens. These factors may indicate a risk of milk transmission and reactivation of latent virus.  相似文献   

7.
Most studies that investigate the prevalence of infections with feline leukemia virus (FeLV) are based on the detection of p27 antigen in blood, but they do not detect proviral DNA to identify the prevalence of regressive FeLV infections. The aim of the present study was to assess the prevalence and status of FeLV infection in cats in Southern Germany. P27 antigen enzyme-linked immunosorbent assay (ELISA), anti-p45 antibody ELISA, DNA polymerase chain reaction (PCR) of blood and RNA PCR of saliva were performed. Nine out of 495 cats were progressively (persistently) infected (1.8%) and six were regressively (latently) infected (1.2%). Cats with regressive infections are defined as cats that have been able to overcome antigenemia but provirus can be detected by PCR. Twenty-two unvaccinated cats likely had abortive infections (regressor cats), testing FeLV antigen- and provirus-negative but anti-p45 antibody-positive. Most of the FeLV-vaccinated cats did not have anti-FeLV antibodies. Both progressive, as well as regressive infections seem to be rare in Germany today.  相似文献   

8.
9.
Cats exposed to feline leukemia virus (FeLV), a naturally occurring gammaretrovirus develop either progressive or regressive infection. Recent studies using analyses with enhanced sensitivity have correlated loads throughout FeLV with the clinical outcome, though remarkably, during the acute phase of infection, proviral and viral RNA burdens in the peripheral blood do not differ between groups. We hypothesized that viral loads in specific leukocyte subsets influence the infection outcome. Using a method established to determine the proviral and cell-associated viral RNA loads in specific leukocyte subsets, we evaluated viral loads in eleven FeLV-exposed specific pathogen-free (SPF) cats 2.5 years post-infection. Six cats had undergone regressive infection whereas five were persistently viremic. Aviremic cats had lower total proviral blood loads than the persistently infected cats and FeLV proviral DNA was shown to be integrated into genomic DNA in four out of four animals. Lymphocytes were predominantly infected vs. moncytes and granulocytes in aviremic cats. In contrast, persistently viremic cats were provirus-positive in all leukocyte subsets. The acute phase kinetics of FeLV infection were analyzed in two additional cats; an early lymphoreticular phase with productive infection in lymphocytes in both cats and in monocytes in one cat was followed by infection of the granulocytes; both cats became persistently infected. These results indicate that FeLV persistent viremia is associated with secondary viremia of bone marrow origin, whereas regressive cats only sustain a non-productive infection in low numbers of lymphocytes.  相似文献   

10.
OBJECTIVE: To determine whether infectious retrovirus was inactivated in bones from FeLV-infected cats after ethylene oxide (ETO) sterilization or preservation in a 98% solution of glycerol in an in vitro cell culture system. SAMPLE POPULATION: Metatarsal bones obtained from 5 FeLV-infected cats and cultured with feline fibroblast cells. PROCEDURE: Metatarsal bones were treated with 100% ETO, a 98% solution of glycerol, or left untreated. Twenty-five flasks of feline fibroblast cells were assigned to 5 groups: negative control, positive control, ETO-treated bone, glycerol-treated bone, and untreated bone with 5 replicates/group for 4 passages. Media and cell samples were harvested from every flask at each passage to measure FeLV p27 antigen and the number of copies of provirus per 100 ng of DNA, respectively. RESULTS: All negative control and ETO-treated group replicates were negative for FeLV p27 antigen and provirus throughout the study. All positive control group replicates were positive for FeLV p27 antigen and provirus at passages 1 to 4. Untreated bone group replicates were positive for FeLV p27 antigen at passages 3 and 4 and provirus beginning at passage 2. Glycerol-treated group replicates had delayed cell replication and were negative for FeLV p27 antigen and provirus at passages 1 to 4 and 2 to 4, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Ethylene oxide sterilization of bone from FeLV-infected cats appeared to abrogate transmission of infectious retrovirus and effectively sterilized bone allografts. Impact for Human Medicine-Additional studies to confirm effectiveness of ETO treatment of allograft tissues for prevention of pathogen transmission via transplantation are warranted.  相似文献   

11.
Natural or experimental feline immunodeficiency virus (FIV) infection in cats is often associated with hematologic abnormalities which are similar to those observed in human immunodeficiency virus (HIV) infected patients. To determine if cells in bone marrow are infected with FIV and whether severity of hematopoietic disorder is correlated with the level of viral infection, bone marrow tissues from ten experimentally and two naturally FIV infected cats were examined by in situ hybridization for presence of FIV RNA. Seven of the 12 FIV infected cats were also naturally or experimentally coinfected with feline leukemia virus (FeLV). FIV RNA was detected mainly in megakaryocytes and unidentified mononuclear cells in the bone marrow of cats that were sick and had marrow hypercellularity and immaturity. These included all cats in the acute phase of FIV infection and two of seven long term FIV infected cats. One long term FIV infected cat with lymphosarcoma was also positive for FIV RNA in bone marrow cells. The other four long term FIV infected cats were relatively healthy, with normal bone marrow morphology, and were negative for FIV infected cells. Bone marrow from three non-infected and two cats infected with FeLV alone were also negative for FIV RNA by in situ hybridization. We concluded that megakaryocytes and mononuclear cells were targets of the viral infection and that the presence of FIV RNA in cells of the bone marrow correlated with marrow hypercellularity and immaturity, and severity of illness.  相似文献   

12.
13.
Feline leukemia virus is an oncogenic retrovirus that can result in a wide variety of neoplastic and non-neoplastic diseases, including immunosuppression. Diagnosis of FeLV infection can be achieved by several methods, including virus isolation; IFA assay of a peripheral blood smear; and detection of a viral protein (called p27) by ELISA testing of whole blood, plasma, serum, saliva, or tears. Commercially available ELISA kits have revolutionized FeLV testing and have become very popular as "in-house" procedures. This article discusses the interpretation of ELISA results and compares them with IFA assay findings. Feline immunodeficiency virus is a lentivirus that causes immunosuppression, but not neoplasia, in cats. It originally was called feline T-lymphotropic lentivirus. Differentiating FIV infection from the immunosuppressive type of FeLV infection requires virus isolation or serology. The most rapid method for diagnosis of FIV infection is ELISA testing for antiviral antibody.  相似文献   

14.
In this paper the design and use of a semi-quantitative real-time polymerase chain reaction assay (RT-PCR) for feline leukaemia virus (FeLV) provirus is described. Its performance is evaluated against established methods of FeLV diagnosis, including virus isolation and enzyme-linked immunoassay (ELISA) in a population of naturally infected cats. The RT-PCR assay is found to have both a high sensitivity (0.92) and specificity (0.99) when examined by expectation maximisation methods and is also able to detect a large number of cats with low FeLV proviral loads that were negative by other conventional test methods.  相似文献   

15.
16.
The performance of a micro ELISA test for detection of feline leukemia virus (FeLV) infection was evaluated. The test was found specific for FeLV and feline sarcoma virus (FeSV) group-specific antigens in blood, plasma or serum of infected cats. Other common feline pathogens were negative to the test.Quantities as little as 7.8 ng of p-27 (the major group specific antigen of FeLV) per ml of sample gave positive results. The correlation between the micro ELISA test and the indirect immunofluorescent test commonly used for diagnosis of FeLV infection was 98% in 116 clinical cases and 184 samples from cats inoculated with FeLV and 100% in 100 specific pathogen-free cats.  相似文献   

17.
Specified pathogen-free cats were naturally infected with FCoV or experimentally infected with FCoV type I. Seroconversion was determined and the course of infection was monitored by measuring the FCoV loads in faeces, whole blood, plasma and/or monocytes. Tissue samples collected at necropsy were examined for viral load and histopathological changes. Experimentally infected animals started shedding virus as soon as 2 days after infection. They generally displayed the highest viral loads in colon, ileum and mesenteric lymph nodes. Seroconversion occurred 3-4 weeks post infection. Naturally infected cats were positive for FCoV antibodies and monocyte-associated FCoV viraemia prior to death. At necropsy, most animals tested positive for viral shedding and FCoV RNA was found in spleen, mesenteric lymph nodes and bone marrow. Both experimentally and naturally infected cats remained clinically healthy. Pathological findings were restricted to generalized lymphatic hyperplasia. These findings demonstrate the presence of systemic FCoV infection with high viral loads in the absence of clinical and pathological signs.  相似文献   

18.
Detection of transient and persistent feline leukaemia virus infections   总被引:3,自引:0,他引:3  
A study was made of cats persistently or transiently viraemic with feline leukaemia virus (FeLV) following experimental oronasal infection. Cats of two ages were exposed to the virus. One group was infected when eight weeks old in the expectation that most of the cats would become persistently viraemic, and the second group when 16 weeks old, so that some would show signs of a transient infection and then recover. The periods following infection when virus was detectable in the blood and in the oropharynx were determined for each group. Three methods for detecting viraemia were compared: virus isolation, immunofluorescence on blood smears and an enzyme-linked immunosorbent assay (ELISA). There was good overall agreement among the three tests in detecting virus-positive cats. Virus was found sooner after infection by virus isolation than by the other methods, and virus appeared in the blood slightly sooner in cats which developed persistent viraemia than in transiently viraemic cats. Infectious FeLV was isolated from the oropharynx of all of the persistently viraemic cats, in most cases simultaneously with virus in the plasma. Virus was also isolated from the mouth of most transiently viraemic cats. Under field conditions such transient excretion of virus lasting only a few days would rarely be detected in a single sampling. This might explain how FeLV is maintained in free range urban cats in the absence of a large number of cats with persistent active FeLV infection. For routine diagnosis, immunofluorescence would appear to offer the best chance of differentiating transient and persistent infections by FeLV.  相似文献   

19.
In the past, feline leukaemia virus (FeLV) infection, and also latent FeLV infection, were commonly associated with lymphoma and leukaemia. In this study, the prevalence of FeLV provirus in tumour tissue and bone marrow in FeLV antigen-negative cats with these tumours was assessed. Seventy-seven diseased cats were surveyed (61 antigen-negative, 16 antigen-positive). Blood, bone marrow, and tumour samples were investigated by two polymerase chain reaction (PCR) assays detecting deoxyribonucleic acid (DNA) sequences of the long terminal repeats (LTR) and the envelope (env) region of the FeLV genome. Immunohistochemistry (IHC) was performed in bone marrow and tumour tissue. None of the antigen-negative cats with lymphoma was detectably infected with latent FeLV. The prevalence of FeLV viraemia in cats with lymphoma was 20.8%. This suggests that causes other than FeLV play a role in tumorigenesis, and that latent FeLV infection is unlikely to be responsible for most feline lymphomas and leukaemias.  相似文献   

20.
A significant drop in the prevalence of feline leukaemia virus (FeLV) antigenaemic cats and antigen-associated lymphomas has been observed after the introduction of FeLV vaccination and antigen-testing with removal of persistently antigenaemic cats. However, recent reports have indicated that regressively infected cats may contain FeLV provirus DNA and that lymphoma development may be associated with the presence of provirus alone. In the present study, we investigated the presence of FeLV antigen and provirus DNA in 50 lymphomas by immunohistochemistry and semi-nested polymerase chain reaction, respectively. Interestingly, almost 80% of T-cell lymphomas and 60% of B-cell lymphomas contained provirus DNA while only 21% of T-cell lymphomas and 11% of B-cell lymphomas expressed FeLV antigen. In conclusion, our results support previous hypotheses that vaccination and removal of persistently antigenaemic cats have led to a drop in FeLV antigen-expressing lymphomas. However, FeLV provirus DNA is still present in a high percentage of feline lymphomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号