首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A set of 13 waxy rice genotypes prepared by chemical-induced mutation of rice variety TNG67 and 7 waxy rice varieties widely grown in Taiwan were compared for structural, rheological and retrogradation characteristics of starches. Wide differences in retrogradation enthalpy (ΔHret), gel firmness and storage modulus (Gret) were observed for 2-week stored gels of 20 starches. Ratio of short-to-long amylopectin chains was significantly higher (p < 0.05) in starches from mutant genotypes than in commercial varieties. ΔHret and Gret of starch pastes stored over 4 weeks showed stronger correlation with amylopectin chain-profile compared to those stored for 2 weeks. Amount of long amylopectin chains was correlated positively (p < 0.05) with ΔHret and gel firmness. Overall, ratio of short-to-long amylopectin chains affected almost all the rheological and retrogradation parameters. Results of this study can be useful to plant breeders and food industry for quality improvement and selection of waxy rice mutants for various applications.  相似文献   

2.
Since its first appearance, the alkali test has been extensively employed in rice quality studies as an indirect estimation of the gelatinisation temperature and the cooking quality. Nevertheless, the modifications brought to this method during the years focused on the experimental conditions of the test without taking into account the subjective interpretation of the results. The aim of this study was the search for a reasonable substitute for the human visual decision-making process implicated in the alkali test and, in particular, for a digital image analysis method involving the use of a flatbed scanner (easy to use and available at low cost) to quantitatively measure the degree of dispersion of rice kernels during the test. Significant correlations were found between a new index, the rice kernel disintegration area, obtained from Image Analysis, and the alkali spreading value (r = 0.942, P ≤ 0.01), the amylose content (r = −0.855, P ≤ 0.01) and the micro-visco-amylographic gelatinisation temperature (r = −0.928, P ≤ 0.01).  相似文献   

3.
Retrogradation of gelatinised starch is the main phenomenon that influences the texture of cooked rice. The rate of retrogradation is affected by several factors including amylose and amylopectin ratio, protein and fibre. The objective of this study was to analyse the pasting properties and the retrogradation behaviour of six traditional and five aromatic Italian rice varieties. The pasted gels, after cooling, were evaluated by dynamic rheological measurements for up to 7 days of storage at 4 °C. The samples were also analysed by a NIR spectrometer. The pasting properties and the retrogradation behaviour of milled rice flours strongly depended on the rice varieties. During gel ageing, a noticeable increase of G′ and G″ was observed only for the milled rice varieties Asia, Gange, Fragrance and Vialone Nano, characterised by a high amylose content. No further hardening was found either for the other milled varieties or for all the brown samples. The methods used in this work (dynamic oscillatory rheometry and FT-NIR spectroscopy) turned out to be very useful in the definition of rice starch gels ageing.  相似文献   

4.
Gelatinized waxy and normal corn starches at various concentrations (20–50%) in water were stored under temperature cycles of 4°C and 30°C (each for 1 day) up to 7 cycles or at a constant temperature of 4°C for 14 days to investigate the effects of temperature cycling on the retrogradation of both starches. Compared to starches stored only at 4°C, both starches stored under the 4/30°C temperature cycles exhibited smaller melting enthalpy for retrogradation (ΔHr), higher onset temperature (To), and lower melting temperature range (Tr) regardless of the starch concentration tested. Fewer crystallites might be formed under the temperature cycles compared to the isothermal storage, but the crystallites formed under temperature cycling appeared more homogeneous than those under the isothermal storage. The effect of starch content on the retrogradation was greater when the starch gels were stored under cycled temperatures. The reduction in ΔHr and the increase in conclusion temperature (Tc) by retrogradation under 4/30°C temperature cycles became more apparent when the starch concentration was lower (20 or 30%). Degree of retrogradation based on melting enthalpy was greater in normal corn starch than in waxy corn starch when starch content was low.  相似文献   

5.
A cost-effective, faster and efficient way of screening wheat samples suitable for tortilla production is needed. This research aimed to develop prediction models for tortilla quality (diameter, specific volume, color and texture parameters) using grain, flour and dough properties of 16 wheat flours. Another set of 18 samples was used to validate the models. The prediction models were developed using stepwise multiple regression. Dough rheological tests had higher correlations with tortilla quality than grain and flour chemical tests. Mixograph mixing time and dough resistance to extension (from extensibility test using a texture analyzer) were correlated best with tortilla quality, particularly tortilla diameter (r = −0.87 and −0.86 respectively, P < 0.01). Insoluble polymeric proteins (IPP) and gluten index were significantly correlated with tortilla diameter (r = −0.70 and −0.67 respectively, P < 0.01) and specific volume (r = −0.73, P < 0.01). Tortilla diameter was the quality parameter best explained (R2 = 0.86) by the prediction models using mixing time and dough resistance to extension. Rheological parameters such as rupture distance and maximum force were also successfully predicted. These prediction models, developed from linear equations, will be an easy and fast tool for breeders to advance or eliminate wheat lines specifically bred for tortilla production.  相似文献   

6.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

7.
In Argentina, delayed sowing causes a decrease in seed yield and in radiation use efficiency (RUE) of peanut crops (Arachis hypogaea L.), but it is not known if RUE reduction is mainly due to reduced temperature during late reproductive stages or to a sink limitation promoted by decreased seed number in these conditions. We analyzed seed yield determination and RUE dynamics of two cultivars (Florman and ASEM) in four irrigated field experiments (Expn) grown at three sites and five contrasting sowing dates (between 17 October and 21 December) in three growing seasons. An additional field experiment was performed with widely spaced plants (i.e. with no interference among them) to evaluate the effect of peg removal on RUE and leaf carbon exchange rate (CER). Seasonal dynamics of mean air temperature and irradiance, biomass production (total and pods), and intercepted photosynthetically active radiation (IPAR) were followed. Seed yield and seed yield components (pod number, seeds per pod, seed number and seed weight) were determined at final harvest. Crop growth rate (CGR) and pod growth rate (PGR) were computed for growth phases of interest. RUE values for crops sown until 14 November were 1.89–1.98 g MJ−1 IPAR, within the usual range. RUE decreased significantly for cv. Florman in the late sowing of Exp1 (29 November) and for both cultivars in Exp3 (21 December sowing). Across experiments, seed yield (4.5-fold variation relative to minimum) was strongly associated (r2 = 0.87, P < 0.0001) with variations in seed number (3.5-fold variation relative to minimum), and to a lesser extent (r2 ≤ 0.54, P ≤ 0.001) to variations in seed weight (1.9-fold variation relative to minimum). Seed number was positively related (P < 0.01) to CGR (r2 = 0.66) and to PGR (r2 = 0.72) during the R3–R6.5 phase (seed number determination window), while crop growth during the grain-filling phase (i.e. between R6.5 and final harvest) was positively associated with grain number (r2 = 0.80, P < 0.001). No association was found between RUE and mean air temperature, neither for the whole cycle nor for the phase between R6.5 and final harvest, which showed the largest temperature variation (16.4–22.4 °C) across experiments. Use of mean minimum temperature records (range between 13.8 and 18.5 °C) did no improve the relationship. However, grain-filling phase RUE showed a positive (r2 = 0.69, P = 0.003) linear response to seed number across experiments. This apparent sink limitation of source activity was consistent with the reduced RUE (from 2.73 to 1.42 g MJ−1 IPAR) and reduced leaf CER at high irradiance (from ca. 30 to 15 μmol m−2 s−1) for plants subjected to 75% peg removal.  相似文献   

8.
Among the yield components, grain weight is considered a conservative trait whose determination is still beyond our complete understanding. Crop physiology uses a whole approach to study this complex trait, which can provide helpful information to plant breeders and molecular biologists. This study emphasizes the understanding of pre- and post-anthesis determinants of final grain weight. A field experiment was carried out in two growing seasons evaluating two wheat cultivars contrasting in grain weight potential. Carpel weight at pollination, grain dimensions, grain water, dry matter and volume dynamics were assessed. Among grain dimensions, grain length was the trait, which explained final grain weight (r2 = 0.78; P < 0.01 and r2 = 0.94; P < 0.001 for the 1st and 2nd season, respectively) and it was the first trait to stabilize after anthesis. Water content of grains stabilized little later and also showed a strong association with final grain weight (r2 = 0.93; P < 0.01 and r2 = 0.98; P < 0.01 for the 1st and 2nd season respectively). Most importantly, carpel weight at pollination showed a positive and linear association with final grain weight (r2 = 0.79, P < 0.01 and r2 = 0.86 P < 0.01 for the 1st and 2nd season, respectively) irrespective of the cultivar and grain position. In addition, positive associations were also found between grain volume, water content, grain length, and carpel weight at pollination. Therefore, the associations between pre- and post-anthesis traits found in this study support the hypothesis that grain weight is determined before anthesis and fruit tissues (i.e., pericarp in cereals and sunflower) set an upper limit to grain weight.  相似文献   

9.
Starch is a major component of rice grain and thus plays an important role in grain quality. For breeding rice with improved quality, the thermal and retrogradation properties of starch may be routinely measured. Since direct measurement is time-consuming and expensive, rapid predictive methods based on near-infrared spectroscopy (NIRS) can be applied to measure these quality parameters. In this study, calibration models for measurement of thermal and retrogradation properties were built from the spectra of grain and flour samples. The results indicated that both grain and flour spectra could give similar accuracy (r2=∼0.78) in determining the peak temperature (Tp) and conclusion temperature (Tc) of gelatinization. However, flour spectra (r2=0.80) were superior to the grain spectra (r2=0.73) in measuring onset temperature (To). Furthermore, the thermal properties of width at half peak height (ΔT1/2) and enthalpy of gelatinization (ΔHg), and retrogradation properties of enthalpy of retrogradation (ΔHr) and retrogradation percentage (R%) could only be successfully modeled with the flour spectra. The models reported in the present study are usable for routine screening of a large number of samples in early generation of selection in breeding programs. For accurate assay of the thermal and retrogradation properties, however, direct instrumental measurement should be employed in later generations.  相似文献   

10.
Knowledge of the changes in agronomic and photosynthetic traits associated with genetic gains in grain yield potential is essential for an improved understanding of yield-limiting factors and for determining future breeding strategies. The objectives of this study were to identify agronomic and photosynthetic traits associated with genetic gains in grain yield of facultative wheat (Triticum aestivum L.) between 1981 and 2008 in Henan Province, the most important wheat producing area in China. During the 2006-2007 and 2007-2008 crop seasons, a yield potential trial comprising 18 leading and new cultivars released between 1981 and 2008 was conducted at two locations, using a completely randomised block design of three replicates. Results showed that average annual genetic gain in grain yield was 0.60% or 51.30 kg ha−1 yr−1, and the significant genetic improvement in grain yield was directly attributed to increased thousand grain weight which also contributed to the significant increase in harvest index. The genetic gains in rates of net photosynthesis at 10, 20 and 30 days after anthesis were 1.10% (R2 = 0.46, P < 0.01), 0.68% (R2 = 0.31, P < 0.05) and 6.77% (R2 = 0.34, P < 0.05), respectively. The rates of net photosynthesis at 10 (r = 0.58, P < 0.05), 20 (r = 0.59, P < 0.05) and 30 (r = 0.65, P < 0.01) days after anthesis were closely and positively correlated with grain yield. A slight decrease in leaf temperature and an increase in stomatal conductance after anthesis were also observed. Grain yield was closely and positively associated with stomatal conductance (r = 0.69, P < 0.01) and transpiration rate (r = 0.63, P < 0.01) at 30 days after anthesis. Therefore, improvement of those traits was the likely basis of increasing grain yield in Henan Province between 1981 and 2008. The genetic improvement in yield was primarily attributed to the utilization of two elite parents Yumai 2 and Zhou 8425B. The future challenge of wheat breeding in this region is to maintain the genetic gain in grain yield and to improve grain quality, without increasing inputs for the wheat-maize double cropping system.  相似文献   

11.
Flours derived from rice varieties with different amylose content possess distinct physicochemical and molecular properties. The aim of this study was to determine optimal processing conditions for preparing rice flour-based foods with reduced starch digestibility. To do so, we evaluated the in vitro starch digestibility of rice flours with five varieties. Reducing the amount of water (from 10-fold to 4-fold of rice flour) used for cooking rice flour lowered its starch digestibility, and the magnitude of the decrease was positively correlated with amylose content. When retrogradation of cooked rice flour proceeded for 7 days, the digestibility of high-amylose rice flours declined rapidly in the first 3 days, whereas the digestibility of low-amylose rice flours declined continuously. Our analysis also demonstrated that the chain length distribution of starch molecules and the final and setback viscosity pasting properties were the most important parameters affecting the digestibility of rice flours. Based on our results, it appears possible to reduce rice starch digestibility by establishing optimum processing conditions for different varieties. We suggest a 7-fold addition of water and retrogradation for 1 day for high-amylose rice varieties and a 4-fold addition of water with 3 days of retrogradation for low-amylose rice.  相似文献   

12.
The effect of acetylation of milled rice grains of selected varieties (TDK 8, YRW 4, Reiziq, Amber 33, and SHZ 2) with varying apparent amylose contents (3.8–26.6%) on their physicochemical properties was investigated. Milled rice samples were treated with different acetic anhydride concentrations (0.004–0.04 g per 100 g of milled rice samples in 225 mL of water). Results showed that glutinous (TDK 8), very low amylose (YRW 4) and low amylose containing varieties (Reiziq) were prone to acetylation even with 0.004 g of acetic anhydride. X-ray diffraction patterns showed an increase in the crystallinity in acetylated samples and formation of V-type crystals, suggesting the possible interaction of acetic anhydride with starch. Acetylation of rice grains resulted in reduced peak and final viscosities and gel strength, particularly in glutinous (TDK 8) and very low amylose (YRW 4) rice. Differential calorimetric study showed that acetic anhydride treatment resulted in reduced thermal transition temperatures and enthalpy of all varieties. Although increase in the retrogradation thermal temperatures was observed, the enthalpy of retrogradation was reduced with increasing acetylation, suggesting that the extent of starch retrogradation was lower in all varieties with more prominent reduction in the glutinous type. Furthermore, the texture of cooked acetic anhydride treated rice grains was less hard and showed more adhesiveness. This study demonstrated that the acetylation of rice grains (instead of flour) was successfully achieved, showing the potential of applying acetylation to alter the textural, pasting, thermal and retrogradation properties of rice.  相似文献   

13.
More rapid progress in breeding peanut for reduced aflatoxin contamination should be achievable with a better understanding of the inheritance of, aflatoxin trait and physiological traits that are associated with reduced contamination. The objectives of this study were to estimate the heritability of aflatoxin traits and genotypic (rG) and phenotypic (rP) correlations between drought resistance traits and aflatoxin traits in peanut. One hundred-forty peanut lines in the F4:6 and F4:7 generations were generated from four crosses, and tested under well-watered and terminal drought conditions. Field experiments were conducted under the dry seasons 2006/2007 and 2007/2008. Data were recorded for biomass (BIO), pod yield (PY), drought tolerance traits [harvest index (HI), drought tolerance index (DTI) of BIO and PY, specific leaf area (SLA), and SPAD chlorophyll meter reading (SCMR)], and aflatoxin traits [seed infection and aflatoxin contamination]. Heritabilities of A. flavus infection and aflatoxin contamination in this study were low to moderate. The heritabilities for seed infection and aflatoxin contamination ranged from 0.48 to 0.58 and 0.24 to 0.68, respectively. Significant correlations between aflatoxin traits and DTI (PY), DTI (BIO), HI, biomass and pod yield under terminal drought conditions were found (rP = −0.25** to 0.32**, rG = −0.57** to 0.53**). Strong correlations between SLA and SCMR with A. flavus infection and aflatoxin contamination were also found. Positive correlations between SLA at 80, 90, and 100 DAP and aflatoxin traits were significant (rP = 0.13** to 0.46**, rG = 0.26** to 0.81**). SCMR was negatively correlated with aflatoxin traits (rP = −0.10** to −0.40**, rG = −0.11** to −0.66**). These results indicated that physiological-based selection approaches using SLA and SCMR might be effective for improving aflatoxin resistance in peanut.  相似文献   

14.
This study aimed at investigating the effects of amylose content (AC) of 0.12–19.00% w/w on dry basis, cooling rate (1, 3, 5, and 9 °C/min), and aging time (24, 48, and 72 h) on structure, physical properties and sensory attributes of rice starch-based puffed products. They had an influence upon the crystalline type, and the relative crystallinity (RC). The thermal and physical properties of starch gels were also determined. Amorphism was found for starch gels with 0.12% AC. The polymorphisms (B and V) and differential scanning calorimetric endotherms were found for those with AC ≥4.00%. The RC, retrogradation enthalpy (ΔHr) and gel hardness increased with AC and aging time. The cooling rate did not affect RC, but increased ΔHr and gel hardness. The higher AC and aging time resulted in higher hardness, fracturability, crispiness and bulk density, but lower expansion ratio and less oiliness of the puffed products. The hardness, fracturability, crispiness and bulk density of puffed products were well correlated with the RC of starch gel.  相似文献   

15.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

16.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

17.
Storage retrogradation behavior and properties of sorghum, maize, and rice starches were compared to better understand the relationship of amylopectin fine structure to quality issues. Long-term changes in texture of starch gels were attributed to amylopectin retrogradation. In starch pastes aged 7 days at 4 °C, change in the storage modulus (ΔG) during heating (representing intermolecular associations) was highly and positively correlated (r = 0.93, p < 0.01) with the proportion of fraction I (FrI) long chains from debranched amylopectin. One sorghum cultivar, Mota Maradi, showed a dramatic increase in the storage modulus (G′) over the 7 day storage period that was related to its high proportion of FrI. Pastes/gels made from starches with normal (20–30%) amylose content and higher proportions of FrI long chains from debranched amylopectin tended to become firmer with more syneresis during extended storage. Both degree of polymerization measurements and previous models for amylopectin structure indicate that FrI represents long B chains of amylopectin. Cereal cultivars having amylopectin structures with lower proportion of long B chains were speculated to give improved quality products with lower rates of retrogradation and staling. This is particularly an issue in sorghum foods where products generally lack storage stability and tend to stale relatively quickly.  相似文献   

18.
Vital wheat gluten and lecithin (GL) (50:50, w/w) were dry blended in a coffee grinder and a 9.5% (w/v) aqueous slurry was jet-cooked (steam pressures of 65 psi/g inlet and 40 psi/g outlet) to disaggregate wheat gluten and facilitate better dispersion of the two components. The jet-cooked material was freeze-dried and stored at 0 °C for future use. The GL blend was added to pure food grade common maize and rice starch at concentrations of 0 (control), 6, 11, 16, and 21%. Starch gelatinization and retrogradation temperature transitions were determined using Differential Scanning Calorimetry (DSC). From the DSC profiles, the change in the ΔH value was used as an indication of starch retrogradation, where a higher ΔH value indicated higher retrogradation. The ΔH values of the blends at 4 °C had higher values than the −20 °C and the ambient (25 °C) storage temperatures. Overall, the 21% GL/starch blends reduced retrogradation by 50%. The lower amylose content of rice starch relative to maize starch was reflected in Rapid Visco Amylograph (RVA) measurements of peak viscosity, and similarly, Texture Analyzer (TA) measurements indicated that maize starch gel is firmer than rice starch gel. Retrogradation was also evaluated by observing G′, the shear storage modulus, as a function of time after running a standard pasting curve. Using this method, it appears that GL has a significant effect on maize starch retrogradation, since low concentrations (<0.4%, w/w) reduced G′ up to 40%. The opposite behavior was seen in rice starch, where G′ increased directly with added GL. It appears that the amylose level in the rice starch is too low to be affected by the GL, and the increase seen in G′ is most likely due to added solids.  相似文献   

19.
A collection of 191 durum wheat accessions representing Mediterranean Basin genetic diversity was grown in nine different environments in four countries, with productivities ranging from 0.99 to 6.78 t ha−1. The population breeding structure comprised eight genetic subpopulations (GSPs) using data derived from 97 evenly distributed SSR markers. The phenotypic structure was assessed: (i) from the mean values of six agronomic traits across environments (multivariate), and (ii) from data representing each trait in each environment (univariate). Mean daily maximum temperature from emergence to heading was significantly (P < 0.05) and negatively associated to yield, accounting for 59% of yield variations. Significant but weak relationships were obtained between the genetic similarities among accessions and their overall agronomic performance (r = 0.15, P < 0.001), plant height (r = 0.12, P < 0.001), spike–peduncle length (r = 0.06, P < 0.01) and thousand kernel weight (r = 0.03, P < 0.05), suggesting a very low possibility of prediction of the agronomic performance based on random SSR markers. The percentage of variability (measured by sum of squares) explained by the environment varied between 76.3 and 98.5% depending on the trait, while that explained by genotypes ranged between 0.4 and 12.6%, and that explained by the GE interaction ranged from 1.1 to 12.5%. The clustering of the accessions based on multivariate phenotypic data offered the best explanation of genotypic differences, accounting for 30.3% (for yield) to 75.1% (for kernel weight) of the observed variation. The genotype × environment interaction was best explained by the phenotypic univariate clustering procedure, which explained from 28.5% (for kernel weight) to 74.9% (for days to heading) of variation. The only accessions that clustered both in the genetic dissimilarities tree and the tree obtained using Euclidean distances based on standardized phenotypic data across environments were those closely related to the CIMMYT hallmark founder ‘Altar 84’, the ICARDA accessions adapted to continental-dryland areas, and the landraces, suggesting that genetic proximity corresponded to agronomic performance in only a few cases.  相似文献   

20.
Flour from long-grain, high-amylose, milled rice was extruded in a double screw extruder. Response surface methodology (RSM) using a face-centered cube design was used to evaluate the effects of operating variables, namely the screw speed (200–300 rpm), barrel temperature (100–160 °C), and feed moisture content (16–22%) on some functional, physical, pasting, and digestibility characteristics of the extrudates. Regression analyses showed that water absorption index (WAI) was significantly (P<0.05) affected by all linear, quadratic, and interaction terms. Viscosity values of extruded rice flours were far less than those of their corresponding unprocessed rice flour dispersed in the Micro Visco Amylo Graph (MVAG) indicating that the starches had been partially pregelatinized by extrusion process. Peak viscosity indicated a high positive correlation with hot paste viscosity (HPV) and cold paste viscosity (CPV) with r>0.700 (P<0.01). The effects of processing on the in vitro digestibility of starch fractions in rice extrudates was tested using controlled enzymatic hydrolysis with alpha-amylase and glucoamylase. The starch-digestion rate depended mainly on processing conditions. Rapidly digestible starch (RDS) was found to correlate negatively with slowly digestible starch (SDS) (r=−0.964, P<0.01) and with resistant starch (RS) (r=0.793, P<0.01), respectively. Whereas SDS correlated positively with RS (r=0.712, P<0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号