首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
潜水轴流泵结构动应力分析   总被引:1,自引:0,他引:1  
采用CFX 和Workbench软件在多工况下对潜水轴流泵的转子部件进行耦合计算,分析了转子部件在流体作用力、离心力以及重力作用下的应力、应变的分布规律,指出转子部件由于变形过大以及强度不足而引发失效事故的可能性.结果表明:轮毂受到的轴向力方向与叶轮受到的轴向力相反,且其受到的轴向力随着流量的增大而增大,在大流量情况下,轮毂可起到平衡轴向力的作用.从径向、轴向和周向变形可以看出,径向变形极小,周向变形最大,是叶轮的主变形,说明了扭矩在整个变形中占据了主要作用.叶片背面的压力值明显低于工作面,在叶片工作面靠近进口侧轮毂处附近区域出现较高应力区,会产生应力集中现象,且随着流量的增大,主应力减小.对水泵进行静力结构分析、强度校核,不仅可以降低事故的发生率,而且可以为轴流泵的水力优化设计提供有力的参考.  相似文献   

2.
为了研究重力坝运行期各工况应力分布情况,以腊寨水电站混凝土重力坝为研究对象,通过非线性弹塑性有限元法进行重力坝运行期各工况应力分布仿真计算,同时采用《混凝土重力坝设计规范》(NB/T 35026—2014)计算并与有限元计算结果进行对比分析.结果表明各静态工况中,最大拉应力和压应力均发生在溢流表孔坝段模型下的正常蓄水位工况,最大拉应力为2.82 MPa,作用位置为坝踵周围,最大压应力为2.51 MPa,作用位置为下游坝趾处,而挡水坝段的压应力值为1.84 MPa,作用位置在洞室周围;各抗震工况中,最大拉应力发生在挡水坝段模型下的"正常+地震"工况,其值为4.01 MPa,作用位置为闸墩与溢流面结合处周围,超出了混凝土的动态强度,需要对其进行配筋;最大压应力发生在冲沙孔坝段模型下的"正常+地震"工况,其值为3.25 MPa,作用位置为边墙周围,小于混凝土的抗压强度.有限元计算比《混凝土重力坝设计规范》计算得到的应力小,能基本反映结构实际受力情况,据其选定的混凝土结构为较优结构.  相似文献   

3.
部分泵站可进行反向发电工况运行,可以为泵站创造一定的经济效益。此时水泵转轮处于非设计工况,运用双向流固耦合对此时转轮的应力及变形规律进行研究,得出转轮最大应力发生在叶片进水侧叶片与转轮连接处,约为5.8 MPa,并从轮毂向轮缘处逐渐递减;最大形变发生在转轮叶片的进水口边缘处,约为0.013 mm,从轮缘向轮毂中心递减。根据转轮的应力分布情况进行理论计算,最小安全系数为9.24。利用workbench平台中的专业疲劳分析模块,利用疲劳分析工具Fatigue tools估算转轮的疲劳寿命,得出转轮根部为疲劳安全系数最小的部位为9.088 2,与转轮最大应力分布位置相同。两者的安全系数值均在转轮的疲劳寿命在材料安全范围内,在反向发电运行时满足安全稳定的要求。  相似文献   

4.
为提高低速货车在满载和碰撞工况下的安全性能,利用三维软件SolidWorks对某130型低速货车车架(主要承载部件)进行三维实体建模,采用有限元软件ABAQUS进行动强度和碰撞模拟分析。结果表明:该型车架在满载工况下,应力主要集中在纵梁与板簧的接触点附近,最大应力值为322 MPa,低于车架材料的屈服极限值(350 MPa),但安全系数较低。车架在低速碰撞过程中应力主要集中于保险杠、下侧梁和中横梁等处,应力最高值为368 MPa。车架保险杠与刚性墙接触面积最大,其碰撞变形量也最大,为3.98 mm。研究结果可为车架结构的进一步改进设计提供参考依据。  相似文献   

5.
锚环组合三维接触分析数值模拟与试验   总被引:2,自引:0,他引:2  
采用有限元软件MSC.Marc提供的接触分析模块,建立锚环组合的三维有限元模型,对其进行模拟仿真,得到了锚环的应力应变分布规律。仿真结果表明:锚环的各部分变形呈规律性变化,轴向变形随锚环上质点与锚环中心轴距离增加而减小,径向和周向变形则呈相反变化;锚环受到的等效应力在芯部达到最大值,轴向应力从锚环的边部到芯部逐渐增加,径向和周向应力逐渐减小。模拟得到该组合能承受的极限载荷p=2100MPa。对锚环组合进行了静载拉伸试验,测试数据与模拟数据吻合较好,从而证明了有限元分析的正确性与可信度。  相似文献   

6.
考虑外圈与轴承座之间的过盈配合,求解套圈装配应力、滚道变形量、轴承应力分布和疲劳寿命,并分析过盈量的大小对计算结果的影响.结果表明:随着过盈量的增加,套圈最大应力和外圈滚道最大变形量逐渐增大,且变形量与过盈量值相当;在载荷作用下,随着过盈量的增加,轴承内圈和滚子最大等效应力基本不变,外圈最大等效应力逐渐减小;轴承最大接触应力不随装配过盈量的改变而变化.  相似文献   

7.
为解决轴承使用寿命低影响整桥乃至整车安全性能的问题,通过改变轴承型号,同时改变前轮毂内、外轴承挡肩之间距离,优化前桥轮毂轴承受力位置等方式,确保轮毂内、外轴承使用寿命较基础前桥提升1倍以上。运用ANSYS Workbench有限元分析对前轮毂同步分析,根据轴承受力位置优化前轮毂形态,使前轮毂最大应力降低30%以上,确保零部件寿命协同提升。  相似文献   

8.
轴流泵叶轮进出口流场的测量   总被引:5,自引:0,他引:5  
为了获得轴流泵内部流动的真实情况,设计了内部流动测量装置.运用五孔球形探针,对高效轴流泵在0.8Qopt,1.0Qopt和1.2Qopt工况下的叶轮进口和出口速度矢量分布、静压分布和总压分布进行了测量,并分析了不同工况下的轴面速度、环量、圆周方向分速度和压力分布等.测量结果表明:轴流泵模型进口在0.8Qopt至1.2Qopt工况范围内,流动稳定,进口轴向速度从轮毂到轮缘逐渐减小,且进口预旋很小,不同径向位置的静压基本相等.在最优工况下,轮毂与可调叶片间无间隙时,轴流泵叶轮出口基本呈现等环量流型,轴面速度呈现抛物线分布,且效率高.若轮毂侧存在间隙,间隙处的环量、轴面速度、压力和效率均明显下降.  相似文献   

9.
大尺寸低压铸造铝合金轮毂在服役状态下疲劳寿命研究较少,是其广泛应用于重载车型的原因之一。因此,利用有限元方法建立重载车用低压铸造铝合金轮毂径向疲劳模型,在轮辋胎圈座上施加等效径向载荷,并考虑充气压力对轮毂的影响,对轮毂进行有限元分析,以确定轮毂的应力应变分布。在应力分析基础上,考虑轮毂在成型过程中不同部位力学性能差异造成其疲劳性能不同,运用应力疲劳理论对轮毂径向疲劳过程进行寿命预测。结果表明:在径向疲劳过程中,内轮缘变形量相对较大,这与相关文献结果符合;与小尺寸铝合金轮毂、大尺寸钢制轮毂相比,轮辋外侧连接内轮缘圆角处应力值相对较高,轮毂通风口之间没有出现应力集中;轮辋外侧圆角处寿命最低,预测结果符合轮毂实际使用情况,为轮毂结构设计与后期改进提供依据。  相似文献   

10.
为了研究液力减速器内部流场空化特性,基于ANSYS CFX软件,采用RNG k-ε湍流模型和Zwart-Gerber-Belamri空化模型,选取液力减速器模型单个流道作为研究对象,对其在泵轮外环壁不同压力时进行数值模拟,并搭建减速器试验台,进行降压性能试验.将数值模拟结果与试验结果进行对比分析,验证了数值模拟方法对液力减速器空化特性预测是可靠的.研究结果表明:数值模拟方法获得的性能曲线与试验结果变化趋势一致,且可以捕捉到空化初生状态,数值模拟与试验结果平均误差为3.24%,可较好地反映液力减速器内部空化特性;随着泵轮外环壁压力不断降低,空化最先发生在泵轮叶片吸力面靠近轮毂的位置,之后向叶片中部扩大,直至占据叶片吸力面大部分区域;空泡分布在径向存在不均匀性,泵轮外环壁压力为0.25 MPa时,空化区域面积比(Sc/S)随着径向位置(r/R)的增大呈现先增大后减小的趋势,空化现象在流道靠近轮毂位置(r/R=0.3~0.5处)较为严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号