首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Decomposition dynamics were compared among green tree leaves, partially decomposed tree leaf litter (i.e., decayed tree leaf litter on forest floor) and a mixture of the two in a warm temperate forest ecosystem in central China to test the influence of litter chemical quality on the degree of decomposition. The study was conducted in situ at two contrasting forest sites, an oak forest dominated by Quercus aliena var. acuteserrata Maxim., and a mixed pine and oak forest dominated by Pinus armandii Franch. and Q. aliena var. acuteserrata. We found marked differences in the rate of decomposition among litter types at both forest sites; the litter decomposition constant, k, was about 39 % greater at the oak forest site and more than 70 % greater at the pine-oak forest site, for green leaves than for partially decomposed leaf litter. The decomposition dynamics and temporal changes in litter chemistry of the three litter types also greatly differed between the two forest sites. At both forest sites, the higher rate of decomposition for the green leaves was associated with a higher nitrogen (N) content and lower carbon to N ratio (C/N) and acid-unhydrolyzable residue to N ratio (AUR/N). We did not find any non-additive effects when mixing green leaves and partially decomposed leaf litter. Our findings support the contention that litter chemical quality is one of the most important determinants of litter decomposition in forest ecosystems at the local or regional scale, but the effect of litter chemical quality on decomposition differs between the contrasting forest types and may vary with the stage of decomposition.  相似文献   

2.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

3.
The dynamics of mixed stands are more complex and less studied than those of monospecific stands. The objective of this work was to analyze the variables involved in seedling occurrence and seedling survival in mixed stands of Pinus pinaster and P. pinea in Mediterranean areas. From 2011 to 2016, regeneration of both species was monitored at two sites located in Central Spain. We installed 72 regeneration plots where seedling dynamics were monitored. All the trees in the study areas were measured and mapped. Additionally, we took hemispherical photographs in each regeneration plot. The average density of P. pinea seedlings over the study period was almost 20 times larger than that of P. pinaster. Our results indicate that the seedlings of both species grow under moderate light conditions. In addition, we found that the occurrence of seedlings of both species was related to the structure of the stand. P. pinea seedlings grew where the density and size of P. pinaster trees were low and where P. pinea trees provided moderately sheltered conditions, whereas the number of P. pinaster seedlings was related to under intermediate densities of P. pinaster trees. Furthermore, seedling survival was positively associated with age of the seedlings and negatively with the August average maximum temperature. The temporal continuity of mixed stands of P. pinea and P. pinaster in the study area is compromised by the observed lack of regeneration of P. pinaster.  相似文献   

4.

Key message

In Abies alba Mill. stands and mixed stands of A. alba and Picea abies L. (H. Karst), microsites neighbouring the trunks of adult trees were more conducive to A. alba regeneration. Although at the stand level, the effect of Fagus sylvatica L. was positive; the local effect of the adult F. sylvatica neighbourhood was insignificant. Hence, forming mixed stands with a fine-grained mosaic of admixed species might better facilitate natural regeneration of A. alba than monospecific stands.

Context

The establishment of natural regeneration in Abies alba Mill. stands is a slow, spatially heterogeneous and stochastic process. Recent studies based on inventory data indicate that A. alba more readily regenerates in mixed stands than in monospecific stands.

Aims

The objective was to examine how this positive association evidenced at the stand level operates on the scale of microsites with contrasting local species composition and stand density.

Methods

In 8 monospecific and 22 mixed stands with Fagus sylvatica L. or Picea abies L. (H. Karst), microsites with a contrasting density of A. alba seedlings were selected and compared in terms of local species composition, stand density, canopy characteristics and topsoil properties.

Results

In A. alba stands, seedling density was positively associated with the proximity of adult trees. In mixed stands of A. alba and P. abies, adult trees of both species exerted a positive effect on A. alba regeneration, but the P. abies neighbourhood influenced regeneration occurrence more strongly than the A. abies neighbourhood. In mixtures with F. sylvatica, however, the effect of local stand density and local species composition was not evidenced at all.

Conclusion

Although at the stand level, P. abies and F. sylvatica exert a positive effect on A. alba regeneration, on the microsite scale, their influences differ. In stands with a dominance of A. alba, the hampered seedling establishment in gaps may be considered an inhibitive effect that facilitates the emergence of other species.
  相似文献   

5.
Fine roots absorb nutrients and water for photosynthesizing leaves, which in return provide them with hydrocarbon products. Knowledge of the fine root biomass (FRB) at the individual tree level and its relationships with other components related to tree growth, especially leaves aboveground, is scarce. Therefore, we reviewed the FRB of major forest-forming species using a database of 518 forest stands compiled from the literature, including 21 tree species and 16 shrub species, in order to confirm the relationships between environmental or forest stand variables and FRB at the stand and tree levels, and we further determine the relationships between fine roots belowground and leaves aboveground. Correlations between FRB and site characteristics (latitude, elevation, age, density, and basal area) appeared to be species-specific. There were hardly any significant correlations between stand FRB and latitude, elevation, stand age and stand density. Tree FRB was better correlated with tree basal area than stand FRB with stand basal area. There was a significant linear relationship between tree FRB and tree basal area. In addition, individual FRB was significantly linearly related to leaf biomass for all analyzed species. When these species were grouped into coniferous and deciduous, or all species together, there were still significant linear relationships between tree FRB and tree basal area and leaf biomass. The ratios of FRB to leaf biomass varied between and among species and even among regions for the same species. For both Picea abies and Pinus sylvestris, the ratio of FRB to leaf biomass was negatively related to the ratio of annual actual evapotranspiration to annual potential evapotranspiration, which was an indicator of water availability.  相似文献   

6.
The amount of photosynthetic radiation intercepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (L AI), and the light extinction coefficient (k). We quantified L AI and k in stands of black wattle (Acacia mearnsii De Wild.) over a 7-year growth cycle at two locations in the state of Rio Grande do Sul, Brazil. Our study was conducted in commercial stands in agroecological regions with high densities of black wattle plantations. L AI was calculated as the ratio between the leaf area of a tree and its planting space, and k was derived from Beer’s law. L AI depends on the planting site and stand age. Between the two sites, the L AI was similar over time, the amount of variation differed. Values of k depended only on stand age, with the highest average observed for stands up to 5 years old. The trend of k during the plantation cycle was inversely proportional to L AI and was correlated with L AI, leaf area, leaf dry mass, canopy volume, height, branches dry mass, total dry mass, and crown diameter.  相似文献   

7.
Tree occurrence in silvopastoral systems of Central America has been under pressure for various reasons including attempts to improve grassland productivity and the need for wood. However, scattered isolated trees are also recognized to provide ecosystem services like shade, fodder and fruits that are important to cattle in the dry season. In addition, trees may enhance the climate change mitigation potential of silvopastoral systems through increased carbon (C) uptake and subsequent soil carbon sequestration. Through differences in plant traits like nutrient uptake, canopy structure and litter quality, tree species may have an effect on C and nutrient cycling. Due to a prevailing north-easterly wind in the study area, three distinct areas associated with the impact of tree litter deposition were identified: (1) open pasture—no tree litter deposition; (2) tree canopy—above and belowground tree litter; and (3) leaf litter cone—aboveground tree litter deposition. Furthermore, the effect of tree species, Guazuma ulmifolia and Crescentia alata, were considered. The presence of trees, as compared to pasture, caused larger topsoil C, N and P contents. In the subsoil, C content was also larger due to tree presence. Soil fractionation showed that tree-induced larger litter input subsequently increased free and occluded OM fractions and ultimately increased stabilized SOM fractions. Therefore, trees were found to enhance soil C sequestration in these silvopastoral systems. This is also supported by the soil respiration data. Although the respiration rates in the pasture subplots were lower than in the leaf litter subplots, the difference was not significant, which suggests that part of the extra C input to the leaf litter subplots stayed in the soil. Nutrient cycling was also enhanced by tree presence, but with a clear differentiation between species. C. alata (Jícaro) enhanced available and stabilized forms of organic N, while G. ulmifolia (Guácimo) enhanced available soil P and stabilized organic P.  相似文献   

8.
紫金山两种主要林型有机物层中丝状真菌多样性   总被引:5,自引:0,他引:5  
本文对紫金山两种主要林型,栓皮栎林(Quercus variabilis)和马尾松-枫香(Pinus massoniana-Liguidam barformasana)混交林的有机物层(L, F, H层及土壤淋溶A层)可培养丝状真菌多样性进行了研究。通过分离鉴定,共得到真菌67种,其中接合菌3种、子囊菌5种、半知菌类56种和未确定种3种,半知菌类最为丰富。两种林型分解真菌优势种群为链格孢(Alternaria sp.)、曲霉(Aspergillus spp.)、枝孢(Cladosporium sp.)、毛霉(Mucor sp.)、青霉(Penicillium sp.)、木霉(Trichoderma spp.)、根霉(Rhizopus sp.)、粘帚霉(Gliocladium sp.)。混交林型中真菌的种类和数量明显高于栓皮栎林。两个林型均以F层真菌种类最多,但F层之间和L层之间真菌多样性差异较大。在混交林型中从马尾松针叶上分离的真菌种类和数量比从枫香上分离得到的少; 从马尾松针叶上分离的真菌丰富度随着有机物层深度增加而增加,枫香则反之。比较两个林型以及混交林的两种落叶上真菌种类发现,随着有机物层深度的增加,真菌的种类差异性却随之减少,即同时出现在两个林型或两种针叶上的真菌种类增多。真菌种类随着分解过程的进行具有明显的演替现象。混交林型中同一层内不同落叶上分解真菌多样性的差异,表明凋落物基质的差异是决定真菌种类和数量的重要因素  相似文献   

9.
[目的]研究外源性氮和磷对马占相思凋落叶的分解速率、分解过程中N、P、K含量和土壤生化特性的影响,以便为森林土壤养分管理提供参考。[方法]以广东省云勇林场马占相思林下凋落叶为试验材料,采用尼龙网袋分解法,设置对照(CK)、施N(10 g·m~(-2))、施P(5 g·m~(-2))、施N+P(N 10 g·m~(-2)+P 5 g·m~(-2))4种处理,每隔3个月取样1次,并测定凋落叶残留量和N、P、K含量。[结果]表明:施N、P和N+P处理对马占相思凋落叶的分解均为促进作用。各处理马占相思凋落叶的N含量在分解过程中大致保持稳定,施P和N+P处理的凋落叶P含量在分解过程中总体呈波动性上升,而各处理的凋落叶K含量变化规律不明显。施N、P和N+P处理提高了马占相思林土壤的有机质和全N含量,促进脲酶、磷酸酶及过氧化氢酶的活性。[结论]施N、P和N+P处理促进了马占相思凋落叶的分解,有利于马占相思林的养分循环。  相似文献   

10.
The productivity of Robinia pseudoacacia (R.p.) pure forest usually declines at the late growth stage, and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tree species that can be mixed with R.p., the interspecific relationship is an important issue. Therefore, we gathered the autumn litter fall from R.p. and 10 other species from the Loess Plateau of China were mixed in dual species litterbags (R.p. + each other species) and buried them in soil for a 345 days lab decay incubation. We measured the litter mass loss and nutrient contents to determine whether the nutrient release was affected by mixed species litter decomposition. The impacts of mixed litter decomposition on macro-elements release were more obvious than on micro-elements. The litters with similar substrate quality might show variable impacts on nutrients release in mixed decomposition. The C loss and release of nutrient was improved by descending order when R.p. litter was mixed with Hippophae rhamnoides, Ulmus pumila, Populus simonii, Larix principis-rupprechtii and Quercus liaotungensis (Q.l.). But, except for Q.l., only the other species were recommended as suitable mix-plants for R.p. since promoting a high turnover of the nutrient in the litter compartment and a rapid availability for tree.  相似文献   

11.
The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure (40 ha) and a mixed (45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark–Evans index (CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices. Sampling was undertaken in a grid based on a square lattice using square plots (30 m × 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic (h t ) and the density-based standardised Morisita (I p ), patchiness (IP) and Cassie (C A ) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.  相似文献   

12.
The biodiversity of arbuscular mycorrhizal fungi (AMF) was surveyed in the Kolm region of Iran in three adjacent sites, a natural stand, a 10-year-old and a 15-year-old plantation of Amygdalus scoparia. To date, there have been few studies of AMF biodiversity in Iran, especially in the western forests of the country. For this study, soil and root samples were taken from A. scoparia rhizosphere soil in spring and autumn. Almost half of the root length was colonized by AMF. We identified 13 AMF species belonging to Glomeraceae, Claroideoglomeraceae or Diversisporaceae. The three plantations differed in terms of soil electrical conductivity, organic C and P. Spore density was significant correlated with P concentration. Root length colonization was correlated only with soil Ca. Species diversity and richness were significantly correlated with soil N, P, organic C and spore density. AMF diversity in 15-year-old plantations was more similar to that in the natural stand than in the 10-year-old plantation. We confirmed that a 15-year-old plantation is not similar in terms of AMF colonization to natural stands. We conclude that more than 15 years are required for AMF colonization of plantations to resemble that of natural stands.  相似文献   

13.

Key message

Stand density has a positive effect on C, K and Mg concentration in needle litterfall and a negative one on C, N, Ca, K, Mg, P, S, Zn, and Cu release from needle litter. Consequently, forest management practices such as thinning decrease nutrient concentration in needle litterfall and accelerate nutrient release from decomposing needles in Pinus halepensis plantations in Spain.

Context

Silvicultural practices usually include stand density reduction resulting in changes in litterfall and litter decomposition rates. Little is known about the effect on nutrient concentrations in litterfall and nutrient release during decomposition even when this is the main path of nutrient return to soils.

Aims

The aims of the study are to evaluate the seasonal pattern of nutrient concentration in litterfall, to study how nutrients are released from needle litterfall during decomposition, and to assess whether local basal area of the stand affects nutrient concentration of litterfall and nutrient release during litter decomposition.

Methods

Eight plots were established on each of four stands covering the widest range in local basal area. A littertrap and 15 litterbags were placed on each plot. Periodically, needle litterfall and litter contained in the litterbags were analyzed for C, N, Ca, K, Mg, P, S, Fe, Cu, Mn, and Zn.

Results

Local basal area had a positive effect on C, K, and Mg concentration in needle litterfall and a negative effect on the release of all the nutrients studied but Fe and Mn during the first 2 years of litter decomposition.

Conclusion

Density management of stands has an impact on nutrient cycling, reducing nutrient concentration in needle litterfall, and accelerating nutrient release during decomposition.
  相似文献   

14.
Allelopathic effects of Eucalyptus camaldulensis Dehnh. were confirmed in Petri dish and pot experiments in our previous studies. However, the degree to which such effects under controlled experiments exist in more complex ecological settings remains to be tested. Thus, the present study was carried out by incorporating different proportions of ground litter of E. camaldulensis in soil. The growth of three agricultural crops: falen (Vigna unguiculata (L.) Walp.), chickpea (Cicer arietinum L.), and arhor (Cajanus cajan (L.) Millsp.), and two tree species, kala koroi (Albizia procera (Roxb.) Benth.) and ipil ipil (Leucaena leucocephala (Lam.) de Wit) were tested. There were inhibitory effects of leaf litter on germination, shoot and root growth, leaf number, and collar diameter as well as a reduction of nodulation by legume crops (25–80% reduction). The extent of the effects was dependent on the proportion of leaf litter, the species and the type of traits. In contrast to shoot growth, the effect on root growth was more severe. No effect on germination was found with the agriculture crops while the two tree species showed reduced germination. The effect was greater in the presence of higher proportions of leaf litter mixed in soil while in some cases lower proportions stimulated growth. Not all species were suppressed; A. procera, C. cajan, V. unguiculata showed compatible growth while C. arietinum and L. leucocephala were found incompatible. This study provides evidence that E. camaldulensis has allelopathic potential under field conditions and a careful selection of associated crops in agroforestry systems is highly recommended.  相似文献   

15.
New measures for effective monitoring and controlling of bark beetle infestations are needed as a response to intensified outbreaks caused by the climate change. Various environmental factors affect tree health and susceptibility, as well as stand predisposition to bark beetles. European spruce bark beetle Ips typographus L. abundance and outbreak frequency in Finland has significantly increased during the last decade. The ability to identify sites under a high risk of infestation would facilitate adaptation to this new situation and help target limited forest health management resources. Accordingly, our goal was to investigate the importance of various stand, soil and topographic characteristics in the assessing predisposition of Norway spruce dominated urban forest in southern Finland to I. typographus infestations. Information on the environmental factors was assessed in the field in 2014 and derived from a digital elevation model. Ips typographus infestation intensity was classified into three infestation index classes based on tree-wise symptoms of resin flow, discoloration and defoliation. Cumulative logit link models were utilized for investigating stand-level infestation probability. The best explanatory factors were aspect, slope, site type and soil texture. Models with the highest cumulative probabilities for severe infestation were linked with eastern aspect, moderate steep slope and rich site type fertility (0.72) and eastern aspect, shallow soil and rich site type fertility (0.71). Higher soil C/N ratios with east aspect and rich site type fertility was associated with an increased risk of severe infestation in a third model. The lowest risk was associated with southern and southwestern aspects, fine soil texture, moderate site fertility and gentle slopes.  相似文献   

16.
Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) dominate many of the European forest stands. Also, mixtures of European beech and Scots pine more or less occur over all European countries, but have been scarcely investigated. The area occupied by each species is of high relevance, especially for growth evaluation and comparison of different species in mixed and monospecific stands. Thus, we studied different methods to describe species proportions and their definition as proportion by area. 25 triplets consisting of mixed and monospecific stands were established across Europe ranging from Lithuania to Spain in northern to southern direction and from Bulgaria to Belgium in eastern to western direction. On stand level, the conclusive method for estimating the species proportion as a fraction of the stand area relates the observed density (tree number or basal area) to its potential. This stand-level estimation makes use of the potential from comparable neighboring monospecific stands or from maximum density lines derived from other data, e.g. forest inventories or permanent observations plots. At tree level, the fraction of the stand area occupied by a species can be derived from the proportions of their crown projection area or of their leaf area. The estimates of the potentials obtained from neighboring monospecific stands, especially in older stands, were poorer than those from the maximum density line depending on the Martonne aridity index. Therefore, the stand-level method in combination with the Martonne aridity index for potential densities can be highly recommended. The species’ proportions estimated with this method are best approximated by the proportions of the species’ leaf areas. In forest practice, the most commonly applied method is an ocular estimation of the proportions by crown projection area. Even though the proportions of pine were calculated here by measuring crown projection areas in the field, we found this method to underestimate the proportion by 25% compared to the stand-level approach.  相似文献   

17.
We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil’s semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season. Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant (R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.  相似文献   

18.
Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3–28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.  相似文献   

19.
Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osmanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leaf-chlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture and use efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration.  相似文献   

20.
We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and Physocarpus opulifolius under flooding stress. Our results indicate a significantly higher flooding tolerance of P. opulifolius compared to P. amurensis. Especially in P. amurensis, the limitation of non-stomatal factors played a major role in the advanced stages of flooding stress, observed as a rapid increase of the intercellular CO2 concentration (C i) and a decrease of the stomatal limitation value (L s). The maximal PSII photochemical efficiencies (F v/F m) and actual photochemical efficiency (Ф PSII) in the leaves of P. opulifolius were significantly higher, and the extent of decrease during the flooding process was smaller than in P. amurensis. In addition, the non-chemical quenching (NPQ) in the leaves of P. opulifolius significantly increased from the 10th day under flooding stress, while the variation of NPQ in the leaves of P. amurensis was much smaller. This indicates that the leaves of P. opulifolius had not only higher PSII photochemical activity, but also improved tolerance to flooding stress, which may be caused by its ability to dissipate excess excitation energy by starting NPQ. At the 16th day under flooding stress, the P IABS significantly decreased with greater extent of decrease than F v/F m in the leaves of both Physocarpus, but the decreasing extent of P IABS in P. opulifolius was significantly smaller than in P. amurensis. In the 16th day under flooding stress, the fluorescence at J and I point (V J and V I) in P. amurensis were significantly higher, and the extent of increase in V J was greater than V I. However, the variations of V J and V I in the leaves of P. opulifolius were smaller, suggesting that the damage sites of flooding stress to PSII in the leaves of P. amurensis were mainly located in the electron transport process from QA at the PSII receptor side to QB. Flooding stress reduced the proportion (φE o ) of luminous energy absorbed by the PSII reaction center for the electron transport following Q A ? , while the maximum quantum yield (φD o) of non-photochemical quenching increased. However, the TRo/RC and ETo/RC in the leaves of P. amurensis decreased accompanied by a dramatic increase of energy (DIo/RC) from the dissipation in the reaction center. This further indicated that the function of the PSII reaction center in the leaves of P. amurensis was significantly lower than in P. opulifolius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号