首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD), which is a major problem in East Asia and West Europe. Quick identification of PWN is needed to prevent the dispersal of PWD to healthy forests. Various detection methods of PWN have been developed using anatomical characters and molecular markers. These methods are not suitable for rapid diagnosis because it is difficult to distinguish B. xylophilus from the non‐pathogenic species Bursaphelenchus mucronatus based on morphological characters without expertise in nematode taxonomy and most PCR or isothermal amplification detection methods require time‐consuming processes. In this study, we developed an on‐site PWN detection method using a recombinase polymerase amplification (RPA) assay with a novel extraction buffer (DAP buffer). This new PWN detection method is able to extract genomic DNA from PWN in pinewood by simple buffer consisting of sodium hydrate, polyethylene glycol 200 and dimethyl sulfoxide in 10 min without using the experimental devices and able to distinguish between B. xylophilus and other Bursaphelenchus spp. by amplifying the species‐specific 5S rDNA fragment of B. xylophilus in 10 min. Taken together, our protocol can obtain the result for the detection of PWN in pine tree samples within 30 min. This result suggests that RPA/DAP assay is much faster, easier and cheaper than the conventional methods for detecting PWN.  相似文献   

2.
As a result of the detection of the pinewood nematode Bursaphelenchus xylophilus in Portugal, and its subsequent spread to Spain, intense surveys were conducted to screen for the presence of Bursaphelenchus species in Romania. Herein, we report recent surveys of insects potentially vectoring Bursaphelenchus species collected using trap trees or pheromone‐baited traps placed in the forest. Trap felled spruce trees (Picea abies) and pheromone‐baited traps were installed in six different counties in Romania (Bra?ov, Sibiu, Suceava, Hunedoara, Timi? and Dâmbovi?a). Ten different species of insects distributed among Curculionidae and Cerambycidae were obtained. Nematodes were extracted from insects and observed to validate the presence of Bursaphelenchus specimens. One female identified as Monochamus sutor was the only specimen carrying nematodes in the genus Bursaphelenchus. Nematodes were identified as B. mucronatus based on morphological and molecular features. This is the first detection and report of natural spread of B. mucronatus in Romania. The absence of B. xylophilus was confirmed in the areas of Romania surveyed in this work.  相似文献   

3.
A polymerase chain reaction-restriction fragment length polymorphism analysis was used to discriminate isolates of Bursaphelenchus xylophilus and B. mucronatus. The amplifications of B. xylophilus isolates yielded one fragment of approximately 890 bp and that of B. mucronatus was about 930 bp. Digestion of amplified products of each nematode isolate with five restriction endonucleases revealed the following results: 1) Dra I digestion of the internal transcribed spacer (ITS) products of B. xylophilus populations yielded two fragments of 510 and 380 bp. Dra I could not digest the ITS products of B. mucronatus populations; 2) Sal I could not digest the ITS products of all B. xylophilus populations, but it could digest those of B. mucronatus populations into two fragments, which were 720 and 220 bp; 3) digested products of four B. xylophilus populations by Msp I yielded two fragments of 530 and 360 bp, except GZ02, which could not be digested. B. mucronatus populations yielded three fragments: 340, 290, and 180 bp; 4) all populations of B. xylophilus and B. mucronatus could not be digested by Apa I; 5) digestion of the ITS products of B. xylophilus and B. mucronatus yielded two fragments of 520 and 370 bp, and 530 and 400 bp respectively. The restriction endonucleases Dra I and Sal I could be used to identify B. xylophilus and B. mucronatus. Because the results of digestion of B. xylophilus and B. mucronatus were markedly different, they were very easy to be identified and applied; Msp I and Xho I were not suitable for identification of B. xylophilus and B. mucronatus and Apa I could not identify and distinguish between B. xylophilus and B. mucronatus. __________ Translated from Journal of Nanjing Forestry University, 2005, 30(4): 5–9 [译自: 南京林业大学学报]  相似文献   

4.
Bursaphelenchus mucronatus is closely related to the pinewood nematode Bursaphelenchus xylophilus, the causative agent of pine wilt disease. B. xylophilus became a devastating pest when it was introduced in the Far East; however, B. mucronatus is considered to have low virulence. Morphological similarities between Bxylophilus and Bmucronatus make the accurate morphological identification of both species difficult. Thus, it has become important to pay attention towards B. mucronatus impact and the need of discrimination of these two species. To distinguish among the two species, a B. mucronatus‐specific sequence‐characterized amplified region (SCAR) marker has been developed. The specific Random amplified polymorphic DNA (RAPD) fragment of B. mucronatus, OPY01‐M850 was excised from agarose gels and purified. The gel‐purified fragment was cloned into the pGEM®‐T Vector and subjected to sequencing. Based on the sequenced RAPD fragments, a number of SCAR primers were designed. It is demonstrated that OPY01‐M850 through primers Y01F/R can be transformed into a B. mucronatus‐specific SCAR‐Y01‐M609 marker. Primers set Y01F/R had high specificity that could be used for the discriminative identification of B. mucronatus versus B. xylophilus.  相似文献   

5.
6.
Bursaphelenchus mucronatus is a parasitic nematode of pine that is widely distributed in the natural pine forests of Asia and Europe. It has a very similar morphology and biology to that of Bursaphelenchus xylophilus, the causal agent of pine wilt disease, but has generally been considered to be non‐pathogenic to pine. However, in some provinces of China, B. mucronatus has been isolated from dead pine trees rather than B. xylophilus. Previous studies have shown that B. mucronatus can induce the death of pine seedlings under glasshouse conditions. To investigate the virulence of B. mucronatus, 2‐year‐old seedlings of Pinus massoniana and Pinus elliottii were inoculated with one of six isolates of B. mucronatus under field conditions in April 2014 and their condition was monitored over a year. The virulence of the six B. mucronatus isolates differed on the three host species: P. elliottii seedling mortality ranged from zero to six of the 18 inoculated seedlings, whereas P. massoniana seedling mortality ranged from four to 12 of the 18 inoculated seedlings. Three B. mucronatus isolates that appeared to cause different levels of mortality among the seedlings were used to inoculate 12‐year‐old Pinus thunbergii trees in August 2014. The trees were monitored for a year, during which time between 4 and 12 of the 18 inoculated trees in each treatment wilted and died. The average monthly temperature during the test period appeared to be similar to that of the historical average in the test areas; however, both study sites experienced above‐average rainfall. This study demonstrated that B. mucronatus has potential virulence on pine trees and provided experimental evidence that high temperatures or drought stress is not essential for the virulence of B. mucronatus.  相似文献   

7.
H. Zhao  C. Chen  S. Liu  P. Liu  Q. Liu  H. Jian 《Forest Pathology》2013,43(6):444-454
To assess the role of bacteria in pine wilt disease (PWD), aseptic M form (with a mucronated tail) and R form (with a round tail) of Bursaphelenchus xylophilus and B. mucronatus were obtained and compared, in terms of reproduction and pathogenicity, with non‐aseptic nematode. In addition, bacteria isolated from non‐aseptic nematodes and pine trees inoculated with non‐aseptic nematodes were identified. The results indicated that the bacteria associated with nematodes significantly lowered the reproduction of R form of B. xylophilus and B. mucronatus. Both the non‐aseptic and aseptic R forms of B. xylophilus induced death in all infected 7‐ to 8‐year‐old pine trees, while the non‐aseptic and aseptic M forms of B. xylophilus and B. mucronatus caused almost no plant mortality. High numbers of the non‐aseptic and aseptic R forms of B. xylophilus were distributed throughout the inoculated trees, while B. mucronatus and M form of B. xylophilus nematodes were lower in number and their distribution in stems limited within the inoculation site. Bacteria isolated from non‐aseptic nematodes were not recovered from the pine trees inoculated with these same kinds of nematodes. Two species of bacteria were both isolated from non‐aseptic B. mucronatus and from R form of B. xylophilus. Microbacterium trichotecenolyticum was common to both the control and inoculated pine trees. These results suggest that R form of B. xylophilus is the causal agent of PWD and that bacteria cannot increase the virulence of B. xylophilus and B. mucronatus.  相似文献   

8.
In this study, we characterized the diversity of Pseudomonas associated with Bursaphelenchus xylophilus, its insect vector (Monochamus galloprovincialis) and its host (Pinus pinaster), by a culture‐independent approach using rpoD clone libraries. Clone libraries of Pseudomonas rpoD were obtained from B. xylophilus, M. galloprovincialis and infected P. pinaster. Most M. galloprovincialis and B. xylophilus sequences grouped together in the P. fluorescens group. Genes related to xenobiotics degradation and phenylacetate synthesis were present in the genomes of the type strains closely related to sequences retrieved from the nematode libraries. Results demonstrated that the nematode, during its life stages inside the tree, maintains a diverse Pseudomonas community that is closely related to the one associated with the insect vector. These bacteria might contribute to degradation of xenobiotics and tree weakening during the nematode tree infection.  相似文献   

9.
The pine wood nematode, Bursaphelenchus xylophilus, causes severe damage to pines in Eastern Asia. Bursaphelenchus mucronatus and B. doui resemble closely B. xylophilus morphologically, moreover they were found frequently in this area recently. It is necessary to identify the three species precisely and rapidly. In this study, we report the results of a multiplex one‐step polymerase chain reaction (PCR) utilizing five primers to identify and discriminate the three Bursaphelenchus species simultaneously. The multiplex one‐step PCR yielded one fragment of about 1000 bp for all Bursaphelenchus populations tested. Futhermore, B. xylophilus, B. mucronatus and B. doui produced another fragment of about 100, 350 and 600 bp respectively. This approach is simple and reliable to simultaneously identify the above three species within the xylophilus group usually encountered together in a nematode assay.  相似文献   

10.
Coniferous wood imported from the Asian part of Russia was surveyed in Germany (Mukran ferry terminal, highway and railway border station in Frankfurt/Oder) and Austria (railway in Marchegg, Retz and Wr. Neustadt, Lower Austria). The consignments consisted of mixed timber of Pinus/Picea or Pinus/Larix. Out of 625 samples investigated, 51 samples (8.5%) yielded eight Bursaphelenchus species. Bursaphelenchus mucronatus was found 42 times in Pinus, Picea and Larix wood, Bursaphelenchus hylobianum and Bursaphelenchus fraudulentus were detected twice, in Pinus/Larix and in Larix, respectively. The following species were each found once: Bursaphelenchus leoni in mixed timber of Pinus/Picea, Bursaphelenchus ‘borealis’ in Pinus, Bursaphelenchus hellenicus and Bursaphelenchus paracorneolus in Larix. One sample of Larix wood from Krasnoyarsk region contained a few specimens corresponding to Bursaphelenchus xylophilus. Bursaphelenchus mucronatus was present in about 30% of the samples showing signs of insect attack. A Monochamus species was found in a sample from Irkutsk. Most of the B. mucronatus isolates found belonged to the European genotype, whereas the East Asian genotype was found in three instances. This is the first report of B. fraudulentus, B. hellenicus, B. leoni, B. paracorneolus and the East Asian genotype of B. mucronatus in Russia. Bursaphelenchus hylobianum is the only species found in Russian wood and not in Europe so far. The species were identified morphologically and by internal transcribed spacer (ITS)‐restriction fragment length polymorphism (RFLP) technique. Species‐specific ITS‐RFLP patterns were established for B. hylobianum. In the case of the isolate morphologically corresponding to B. xylophilus, DNA extraction from the available low number of specimens failed to yield sufficient rDNA for ITS‐RFLP analysis.  相似文献   

11.
The pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, J. Agric Res. 48, 1934, 949), Nickle (J. Nematol. 2, 1970, 375), is the causative agent of the pine wilt disease and causes serious damage to pine forests around the world. During a survey for the pinewood nematode, four other Bursaphelenchus species (Bursaphelenchus mucronatus, B. sexdentati, B. anamurius and B. vallesianus) were isolated from wilted pine trees in Turkey. To understand the effects of these Bursaphelenchus species on wilting of pine trees, a study was conducted under greenhouse conditions. Two‐year‐old seedlings of three pine species (Pinus nigra, P. brutia and P. pinea) and one cedar species (Cedrus libani) were used. Fifteen seedlings of each species were inoculated with nematodes and 10 seedlings of each species served as controls. The inoculum densities used for each seedling contained approximately 1000 (±100) nematodes of all life stages in 0.25 ml of distilled water. The first wilting symptoms were observed in the fifth week in all pine species but not in the cedar seedlings. All seeding mortality occurred between the 5th and 13th weeks of the study; no mortality was observed outside of this period. The most pathogenic nematode species was B. mucronatus, closely followed by the other species. The most susceptible seedling species was P. nigra, and C. libani was the most resistant species.  相似文献   

12.
The 2013 annual monitoring programme for the pinewood nematode, Bursaphelenchus xylophilus, analysed a total of 267 wood samples collected from declining or symptomatic coniferous trees distributed among national forests, gardens, public parks, distribution centres, wood‐processing industries, as well as 104 samples collected from wood packing material originated from several other countries. From a total of eight species found, five have been previously reported from Romania, while three other species (Bursaphelenchus abietinus, Bursaphelenchus fraudulentus and Bursaphelenchus fuchsi) represent new findings for Romania. In addition, B. mucronatus was found in packing wood originated from Russia. Herein, we provide a morphological, morphometric and molecular characterization for the new species found for Romania. Bursaphelenchus xylophilus was not detected.  相似文献   

13.
For diagnosis of pine wilt disease, a simple PCR‐RFLP method was developed to identify and to differentiate two similar nematode species, based on a living or preserved single specimen. Pinewood nematodes, Bursaphelenchus xylophilus, and Bursaphelenchus mucronatus were examined. A single nematode in 1 µl of distilled water was put on a glass slide. When the water had almost dried the nematode was crushed with a filter paper chip, 1.5 mm × 1.5 mm, with the aid of forceps. The filter paper chip containing nematode remains was immediately placed into PCR buffer as the DNA template. The primer set used was to amplify ribosomal DNA containing the inter‐transcribed spacer (ITS) 1, 5.8S and ITS2 regions. The PCR product was consistently obtained from a single nematode, and digesting the product with restriction endonuclease, Hinf I, enabled discrimination between B. xylophilus and B. mucronatus. This method was simple, convenient and definitive, and could successfully determine the pathogen in the diagnosis of pine wilt disease. This method was applicable also to nematode specimens preserved under various conditions except in the case of those preserved in aldehyde‐containing fixatives.  相似文献   

14.
The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses in pine forests. The plant‐parasitic nematodes have a complex life cycle that includes the secretion of effector proteins through a stylet into the host cell to promote parasitism. In this study, SignalP 4.1 and TMHMM 2.0 were used in preliminary screens for candidate effectors and were expressed in Nicotiana benthamiana through the PVX virus expression vector. The yeast signal sequence trap system was used to further study the function of the signal peptide of an effector, BxSapB2. In situ hybridization was conducted to investigate the localization of BxSapB2, followed by RNA interference technology (RNAi) to assess the functions of BxSapB2. The results demonstrate that BxSapB2 is a secreted protein that induces cell death in N. benthamiana and is highly expressed in esophageal gland cells and amphids of B. xylophilus. BxSapB2 was determined to be related to the pathogenicity of B. xylophilus. The results of this work indicate that BxSapB2 plays an important role in the interactions between B. xylophilus and the hosts.  相似文献   

15.
The objectives of this study were to determine the reproductive potential and the time required for completion of the life cycle of Bursaphelenchus xylophilus under Finnish summer temperature conditions. The reproductive success of B. xylophilus was compared with the potential of a Finnish isolate of B. mucronatus. The latter appeared more successful in reproduction particularly when cultured on Finns syhestris wood.  相似文献   

16.
The pine nematode Bursaphelenchus mucronatus has been associated with pine wilt in China. This work was intended to investigate the role of the pathogenicity‐related β‐1,4‐endoglucanase gene of B. mucronatus in the infection of pines. In this study, the full‐length cDNA of the Bm‐eng‐1 gene was cloned and characterized from a B. mucronatus isolate. Phylogenetic analysis suggested that the Bm‐eng‐1 gene of B. mucronatus may be acquired from fungi through horizontal gene transfer. The function of the gene was demonstrated using RNA interference. RNA interference indicated that Bm‐eng‐1 was involved in the dispersal, reproductive ability and pathogenicity of B. mucronatus. In situ hybridization showed that Bm‐eng‐1 was specifically expressed in the oesophageal gland of B. mucronatus. Furthermore, to investigate the relation between β‐1,4‐endoglucanase activities and virulence of different isolates, the β‐1,4‐endoglucanase activities and the expression levels of Bm‐eng‐1 were detected in six B. mucronatus isolates with different virulence. β‐1,4‐Endoglucanase activity was generally higher in pathogenic isolates than in non‐pathogenic isolates, and the Bm‐eng‐1 expression levels in different isolates were positively correlated with the β‐1,4‐endoglucanase activity. These findings suggested that β‐1,4‐endoglucanase plays important roles in the pathogenic process of B. mucronatus, and the differential expression of the gene may underlie the different activity levels of β‐1,4‐endoglucanase, subsequently influencing variations in virulence of B. mucronatus isolates.  相似文献   

17.
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, leads to serious losses to pine forestry around the world. Pinus massoniana, which is vulnerable to be attacked by the PWN, is the dominant species used in pine forestry in China. The objective of this study is to develop a direct PCR‐based method for detecting B. xylophilus in the wood of P. massoniana without a separate nematode extraction step. A simple procedure was first developed for isolating B. xylophilus DNA in 5 mg pine wood tissue samples harbouring PWN for detection by PCR amplification. A B. xylophilus‐specific amplicon of 403 bp (DQ855275) was generated by PCR from the infested wood tissue. The entire procedure can be completed within 5 h with one pair of primers. This assay can serve as a rapid, cheap and environmentally friendly method to detect B. xylophilus in samples of P. massoniana.  相似文献   

18.
19.
We examined the effectiveness of a new Bursaphelenchus xylophilus detection kit, based on loop‐mediated isothermal amplification (LAMP), in old discs taken from the stem base of B. xylophilus‐infested dead trees of Pinus armandii var. amamiana (PAAm) occurring in their natural habitats. LAMP products, representing a past B. xylophilus infection, were detected in two consecutive trials from 16 of 20 discs collected from PAAm trees that died between 2003 and 2006. Bursaphelenchus xylophilus were more frequently detected using LAMP in wood samples taken from sapwood than from heartwood. No significant differences in the detection of B. xylophilus using LAMP were observed in relation to the disc collection time (from 3 to 6 years before the analysis). Bursaphelenchus xylophilus were not detected using LAMP in four discs, although a B. xylophilus infection had been confirmed for the original PAAm trees at the time they were found dead. This may have resulted from the small amount of wood chips needed for the LAMP test or the reduced number and uneven distribution of the nematode in the old dead trees. The results indicate that the new B. xylophilus detection kit will be a very efficient tool for conducting retrospective analysis of PAAm mortality factors.  相似文献   

20.
To clarify the pathogenicity of Bursaphelenchus nematodes to adult pine trees, inoculation experiments using six species of B. xylophilus group nematodes and ca. 10‐year‐old trees of Pinus thunbergii were conducted. Trees inoculated with an avirulent isolate (C14‐5) of B. xylophilus did not die during the survey, but showed a decline in oleoresin exudation compared with the controls. Fifteen months after the inoculation, a small number of B. xylophilus survived in a tree inoculated with B. xylophilus C14‐5. Trees inoculated with B. mucronatus, B. doui, B. luxuriosae, B. conicaudatus and Bursaphelenchus sp. NK224 (undescribed) showed no decline in oleoresin exudation and no external symptoms of wilt. However, 9 months after the inoculation, a small number of B. luxuriosae survived in a tree inoculated with the nematodes, although four other nematode species were not isolated from trees inoculated with them. These results were approximately consistent with our previous results (Kanzaki, N.; Aikawa, T.; Maehara, N.; Ichihara, Y., 2010, J. For. Res.; in press), in which an avirulent isolate (OKD‐1) of B. xylophilus and B. luxuriosae caused water flow inhibition without external symptoms in 3‐year‐old seedlings. Therefore, to examine the pathogenicity of the nematodes to pines, it is useful to use 3‐year‐old seedlings in inoculation experiments when adult trees cannot be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号