首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary A field experiment was conducted on the west side of the San Joaquin Valley in California to determine water use, crop growth, yield and water use efficiency of Acala (SJ-2) cotton (Gossypium hirsutum L.) grown in 0.5 m spaced rows on a Panoche clay loam soil (Typic Torriorthents). Evapotranspiration was determined by water balance techniques utilizing neutron soil moisture measurements. All neutron measurements were made within a 3 m soil profile in 0.20 m increments. The measured evapotranspiration was compared to climatic estimates of potential evapotranspiration, and to calculations using a one-dimensional soil water balance model that separately computed soil water evaporation and plant transpiration. Crop growth was determined by weekly destructive plant sampling. Leaf area was determined along with dry matter components of leaves, stems, fruiting parts (flowers and squares) and bolls. Final yield was determined by machine harvesting (brush stripper) 720 m2 from each plot. Lint yields and fiber quality were determined by sample ginning and fiber analysis at the U.S. Cotton Research Station at Shafter, California. Three irrigation regimes were established that resulted in an evapotranspiration range from a high deficit condition to full irrigation at the calculated atmospheric demand.The measured evapotranspiration of narrow row cotton under a full irrigation regime was 778 mm, 594 mm under a limited irrigation regime and 441 mm under a regime with no post-plant irrigation. The evapotranspiration from these irrigation treatments was accurately simulated by a water balance model. that used inputs of potential evapotranspiration, leaf area index, soil water holding capacity and root development.The average lint yield from narrow row cotton with a full irrigation regime was 1583 kg/ha, the average lint yield from a limited irrigation regime was 1423 kg/ha and the average lint yield from a treatment with no postplant irrigation (fully recharged soil profile at planting) was 601 kg/ha. The full irrigation regime resulted in a dry matter production of approximately 16 t/ha while the limited irrigated regime produce 11 t/ha and the no-postplant irrigation regime produced 7 t/ha of dry matter. The fiber quality results indicated significant (0.05 level) differences only in 50% span length and micronaire, with the 2.5% span length, uniformity index, elongation and strength indicating no difference.Cotton lint yield was found to be directly related to total evapotranspiration although the relationship was slightly non-linear while dry matter yield was found to be linearly related to evapotranspiration. Both lint and dry matter yield were found to have a linear relationship to estimated transpiration from the water balance model calculations.Contribution from the Unived States Department of Agriculture, Agricultural Research Service, Western Region and the University of California  相似文献   

2.
 Field experiments were conducted for 2 years (1997 and 1998) on sandy loam soil in northwestern Botswana to study the effect of five levels of pan evaporation replenishment (20, 40, 60, 80 and 100%) on marketable yield, yield components, irrigation production efficiency and economic return of winter broccoli, carrot, rape and cabbage under a drip irrigation method. The highest mean marketable yield (2 years) of broccoli (19.1 t/ha), carrot (58.9 and 32.9 t/ha), rape (61.8 t/ha) and cabbage (97.2 t/ha) was recorded at 80% of pan evaporation replenishment. The irrigation production efficiency of broccoli (5.9 kg/m3), rape (14.6 kg/m3) and cabbage (23.6 kg/m3) was maximum at 80, 20 and 60% of pan evaporation replenishment respectively. Irrigation replenishment up to 80% of pan evaporation loss did not influence the irrigation production efficiency for total and root yield of carrot. The results revealed that a further increase in irrigation amount resulting from 100% of pan evaporation replenishment did not increase the marketable yield of crops but reduced the irrigation production efficiency significantly. The seasonal water applied and marketable yield of broccoli, carrot, rape and cabbage showed quadratic relationships (R 2 = 0.85–0.98), which can be used for allocating irrigation water within and between the crops. The net return increased with the increase in pan evaporation replenishment. The results revealed that the rape crop is the most remunerative, followed by cabbage, broccoli and carrot. Received: 2 November 1998  相似文献   

3.
冷凉地区膜下滴灌大白菜耗水规律及节水潜力   总被引:1,自引:0,他引:1  
为探索冷凉地区露地大白菜在膜下滴灌条件下的耗水规律与节水潜力,在张家口市灌溉试验站内使用大型称重式蒸渗仪,采用灌水下限指标控制灌水的方法,研究了在膜下滴灌条件下大白菜生育期内蒸发蒸腾与棵间蒸发规律,并通过与常规滴灌和膜孔畦灌的耗水量、产量和水分利用效率等对比,揭示了膜下滴灌在该地区节水增产潜力.结果表明:膜下滴灌大白菜全生育期蒸发蒸腾量214.76 mm,其中:幼苗期、莲座期和结球期蒸腾耗水量分别为14.76,73.56和126.44 mm,日均蒸腾强度为3.64 mm/d;全生育期棵间土壤蒸发量41.10 mm,占总耗水量的19.14%.膜下滴灌相比常规滴灌、膜孔畦灌减少大白菜耗水量14.25,94.17 mm,棵间蒸发与膜孔畦灌相近,相比常规滴灌减少16.18 mm(28.25%),但产量、灌溉水利用效率和水分利用效率可以分别达到80 439.75 kg/hm2,350.24 kg/(hm2·mm),374.56 kg/(hm2·mm),相比常规滴灌提升11 152.65 kg/hm2,18.89 kg/(hm2·mm),72.54 kg/(hm2·mm),相比膜孔畦灌提升14.7 kg/hm2,134.11 kg/(hm2·mm),114.23 kg/(hm2·mm).  相似文献   

4.
Alfalfa yield as related to transpiration,growth stage and environment   总被引:2,自引:0,他引:2  
Summary The utility of water production models as irrigation management tools is dependent upon their accuracy. Development of precise water production models requires a thorough understanding of how water and other factors interact to affect plant growth and yield. The objective of this experiment was to identify significant environmental variables which control water production function (transpiration vs. yield) variability between harvests and seasons for alfalfa (Medicago sativa L.) over a seven year (1981–1987) period in northwestern New Mexico. A single line-source design was used to supply a continuous gradient of irrigation (I) to the crop, and transpiration (T) was calculated as the difference between evapotranspiration, as estimated by the water balance method, and modeled soil water evaporation at each I level. Yield per cutting was found to be a function of T, growing degree-day accumulation, average daily solar radiation, year and harvest number within year. A multiple regression equation formulated with these variables explained 82% of the yield variability. Average yield per cut in 1981 at 50 mm of T was l Mg ha-1 and in 1985 at the same level of T was 2 Mg ha-1 based on the regression model. Yield per cut at any given level of T, as estimated by the coefficients of this equation reached a maximum at year 5.7 and a minimum in year 1. Within a season, yield per unit T was generally greatest at cut 1 and lowest at cut 2. Total seasonal yield was found to be a function of T and year which explained 90% of yield variability. Yield varied from 0.83 Mg ha-1 to 18.1 Mg ha-1 and T varied from 186 mm to 1298 mm.  相似文献   

5.
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the “milk” and “dough” growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.  相似文献   

6.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

7.
A 3-year irrigation trial provided basic information on the response of persimmon (Diospyros kaki cv. Triumph) water use and development to irrigation levels. Constant experimental factors applied to recommended “baseline” crop factors resulted in ratios of irrigation (I) to FAO56 reference crop evapotranspiration (ET0) ranging from 0.35 to 1.14. Vegetative and reproductive growth, sap flow, stem water potential (SWP), and local climate were monitored. An overall increase in yield and vegetative growth in response to irrigation was found, which suggests a potential yield increase for higher irrigation levels (40 tons/ha for annual irrigation of 1,000 mm). At high irrigation, the yield response curve levelled off and the marginal contribution of additional water declined. The up to threefold increase in number of fruits with irrigation, with no influence on natural abscission, suggests that differences in fruit quantities stem from response to irrigation at the earlier growth stages. Mean fruit size and fruit quality, as indicated by the ratio of rejected fruit, increased with irrigation up to I/ET0 of ~0.8. Relative yield increased linearly with relative transpiration. However, post-harvest quality was not influenced. SWP, sap flow, and non-transpirable water fractions indicated that the seasonal irrigation tables were not well tuned. Initial adjustments were made during the final season of the experiment and a new table was developed based on our results. The new table should be a basis for further trials.  相似文献   

8.
A study was conducted to determine the water stress effect on yield and some physiological parameters including crop water stress index for drip irrigated second crop watermelon. Irrigations were scheduled based on replenishment of 100, 75, 50, 25, and 0% soil water depletion from 90 cm soil depth with 3-day irrigation interval. Seasonal crop evapotranspiration (ET) for I100, I75, I50, I25, and I0 were 660, 525, 396, 210, and 70 mm in 2003 and 677, 529, 405, 221, and 75 mm in 2004. Fruit yield was significantly lowered by irrigation water stress. Average water-yield response factor for both of the years was 1.14. The highest yield was obtained from full irrigated treatment as 34.5 and 38.2 t ha−1 in 2003 and 2004, respectively. Lower ET rates and irrigation amounts in water stress treatments resulted in reductions in all measured parameters, except water-soluble dry matter concentrations (SDM). Canopy dry weights, leaf relative water content, and total leaf chlorophyll content were significantly lowered by water stress. Yield and seasonal ET were linearly correlated with mean CWSI values. An average threshold CWSI value of 0.17 before irrigation produced the maximum yield and it could be used to initiate the irrigation for watermelon.  相似文献   

9.
Water shortage is the major bottleneck that limits sustainable development of agriculture in north China. Crop physiological water-saving irrigation methods such as temporal (regulated deficit irrigation) and spatial (partial root zone irrigation) deficit irrigation have been tested with much improved crop water use efficiency (WUE) without significant yield reduction. Field experiments were conducted to investigate the effect of (1) spatial deficit irrigation on spring maize in arid Inland River Basin of northwest China during 1997–2000; (2) temporal deficit irrigation on winter wheat in semi-arid Haihe River Basin during 2003–2007 and (3) temporal deficit irrigation on winter wheat and summer maize in Yellow River Basin during 2006–2007. Results showed that alternate furrow irrigation (AFI) maintained similar photosynthetic rate (Pn) but reduced transpiration rate (Tr), and thus increased leaf WUE of maize. It also showed that the improved WUE might only be gained for AFI under less water amount per irrigation. The feasible irrigation cycle is 7d in the extremely arid condition in Inner River Basin of northwest China and less water amount with more irrigation frequency is better for both grain yield and WUE in semi-arid Haihe River Basin of north China. Field experiment in Yellow River Basin of north China also suggests that mild water deficit at early seedling stage is beneficial for grain yield and WUE of summer maize, and the deficit timing and severity should be modulated according to the drought tolerance of different crop varieties. The economical evapotranspiration for winter wheat in Haihe River Basin, summer maize in Yellow River Basin of north China and spring maize in Inland River Basin of northwest China are 420.0 mm, 432.5 mm and 450.0 mm respectively. Our study in the three regions in recent decade also showed that AFI should be a useful water-saving irrigation method for wide-spaced cereals in arid region, but mild water deficit in earlier stage might be a practical irrigation strategy for close-planting cereals. Application of such temporal and spatial deficit irrigation in field-grown crops has greater potential in saving water, maintaining economic yield and improving WUE.  相似文献   

10.
High evaporative demand and limited precipitation restrict the yield of winter wheat (Triticum aestivum L.) grown in the Loess Plateau of China under semiarid climatic conditions. Grain yield can be improved by effective water management practices. A 13-year field experiment was conducted at the CERN Changwu Agro-ecological Experimental Station of the Loess Plateau to determine optimal irrigation strategies under limited water supply and to develop relationships among grain yield (Y), seasonal evapotranspiration (SET) and water-use efficiency (WUE). The experiment consisted of five irrigation treatments and three blocks. Measurements included grain yield, soil water content at various depth intervals in the 0–3,000 mm layer, irrigation amount, and precipitation. Results showed that winter wheat grown in this area experienced serious water stress during critical growth stages for the no-irrigation treatment. The amount and timing of irrigation had an important effect on grain yield, but significant differences in yield were not observed between the three-irrigation and the four-irrigation treatments. Grain yield was linearly related (R2=0.66) to SET, but differences in WUE were not significant for any of the treatments. The relationship between WUE and Y was best represented by a second order polynomial (R2=0.65) consisting of a nearly linear portion between 1.5 and 5.0 Mg ha–1. Optimum water management of winter wheat in the Loess Plateau should consist of three 87.5 mm irrigations applied at stem elongation, booting, and anthesis.Communicated by J.E. Ayars  相似文献   

11.
采用埋深 1 0 cm的微孔渗灌管对日光温室晚春茬生菜进行了渗灌试验 ,并与沟灌进行了对比。结果表明 ,晚春茬生菜采用渗灌有明显的节水增产效果 ,与沟灌相比可节水 1 9.0 %、增产 1 5 .4 %。通过与栽培措施相结合采用渗灌成功地进行了生菜的定植。渗灌管浅埋灌水可以使表层土壤较快地湿润 ,并达到蔬菜生长所要求的水分 ,同时显著减少灌溉水的深层渗漏 ,提高灌溉水的利用率。温室生菜的田间蒸散量与温室内的蒸发力有直接关系 ,生育期内的日平均田间蒸散量为 2 .0 8mm/d,比沟灌温室内的高。  相似文献   

12.
Research on crop response to deficit irrigation is important to reduce agricultural water use in areas where water is a limited resource. Two field experiments were conducted on a loam soil in northeast Spain to characterize the response of maize (Zea mays L.) to deficit irrigation under surface irrigation. The growing season was divided into three phases: vegetative, flowering and grain filling. The irrigation treatments consisted of all possible combinations of full irrigation or limited irrigation in the three phases. Limited irrigation was applied by increasing the interval between irrigations. Soil water status, crop growth, above-ground biomass, yield and its components were measured. Results showed that flowering was the most sensitive stage to water deficit, with reductions in biomass, yield and harvest index. Average grain yield of treatments with deficit irrigation around flowering (691 g m−2) was significantly lower than that of the well-irrigated treatments (1069 g m(2). Yield reduction was mainly due to a lower number of grains per square metre. Deficit irrigation or higher interval between irrigations during the grain filling phase did not significantly affect crop growth and yield. It was possible to maintain relatively high yields in maize if small water deficits caused by increasing the interval between irrigations were limited to periods other than the flowering stage. Irrigation water use efficiency (IWUE) was higher in treatments fully irrigated around flowering.  相似文献   

13.
Experiments were undertaken at CCS Haryana Agricultural University Farm, Sirsa (India) to estimate the optimum irrigation schedule for cotton resulting in minimum percolation losses. The sprinkler line source technique was adopted for creating various irrigation regimes at different crop growth stages. The SWASALT (Simulation of Water And SALT) model after calibration and validation provided water balance components. The wa-ter management response indicators (WMRI's) such as transpiration efficiency Et/(Irr + P), relative transpiration Et/Etp, evapotranspiration efficiency ET/(Irr + P), soil moisture storage change ΔW/Wint (deficit/excess) and percolation loss Perc/(Irr. + P) were evaluated using water balance components as estimated by the simulation study. Under limited water supply conditions, the optimum irrigation depth was found to be 57 mm at crop growth stages with pre-sowing and 1st irrigation of 120 mm and 80 mm respectively for sandy clay loam underlain by sandy loam soil (Type I). The corresponding values of relative transpiration, transpiration efficiency and evapotranspiration efficiency were 0.65, 0.65 and 0.89 respectively. The crop yield varied linearly with increasing irrigation depth which was evident from increase in relative transpiration with increasing depth of water application. However, increased depth of irrigation resulted in less moisture utilisation from soil storage (20% depletion at 40 mm depth and 4.4% moisture built up at 100 mm depth). The extended simulation study for sandy soil underlain by loamy sand (Type II) indicated that two pre-sowing irrigations each 40 mm and subsequent irrigations of 40 mm at an interval of 20 days depending upon rainfall were optimum. This irrigation scenario resulted in zero percolation loss accompanied by 74% relative transpiration and 14 per cent soil moisture depletion. Received: 20 November 1995  相似文献   

14.
Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.  相似文献   

15.
This paper presents the findings of the effect of some selected deficit irrigation scheduling practices on irrigated maize crop in a sub-catchment in south western part of Tanzania. Field experiments, in which maize (TMV1-ST) variety was planted under total irrigation, were conducted during the dry seasons of 2004 and 2005. Surface irrigation method was used and the crop was planted in basins. The seasonal water applied ranged from 400 to 750 mm. Soil moisture content from both cropped and bare soils, leaf area index, dry matter, and grain yields were measured. The dry matter yield ranged between 6,966 and 12,672 kg/ha, and grain yields obtained were between 1,625 and 4,349 kg/ha. The results showed that deficit irrigation at any crop growth stage of the maize crop led to decrease in dry matter and grain yields, seasonal evapotranspiration and deep percolation. Deficit irrigation in any one growth stage of the maize crop only seems to affect grain production and no significant effect on biomass production, but deficit irrigation that spanned across two or more growth stages affect both biomass and grain production drastically. Crop water use efficiency (WUE) and Irrigation water use efficiency (IWUE) were strongly influenced by the number of growth stages in which deficit irrigations were applied and how critical the growth stages were to moisture stress rather than the amount of irrigation water applied. While maximum WUE was obtained under full irrigation, maximum IWUE was obtained in the deficit irrigation treatment at vegetative growth stage, which suggest that IWUE may be improved upon by practicing deficit irrigation at the vegetative growth stage of the maize crop.  相似文献   

16.
In irrigated agriculture, the production of biomass and marketable yield depend largely on the quantity and salinity of the irrigation water. The sensitivity of field-grown muskmelon (Cucumis melo L. cv. Galia) to water deficit was compared, using non-saline (ECi= 1.2 dS m–1) and saline (ECi=6.3 dS m–1) water. Drip irrigation was applied at 2-day intervals at seven different water application rates for each water quality, including a late water-stress treatment. Neutron scattering measurements showed that the soil layers below the root zone remained dry throughout the experiment, indicating negligible deep percolation. Thus, the sum of the seasonal amount of applied water and the change in soil moisture approximated the cumulative evapotranspiration (ET). Gradual buildup of water and salt stresses resulted in small treatment effects on the size of the vegetative cover and large effects on leaf deterioration and fruit production. Crop responses to salinity may result from an osmotic component of the soil water potential or from other salt effects on the crop physiology. Relating plant data to cumulative ET allowed a distinction to be made between the effect on water availability and specific salinity effects. The relation between fruit fresh weight and ET was not sensitive to ECi. The slopes for fruit dry weights were also insensitive to ECi but the intercept was larger for saline treatments. At any given ET saline water increased fruit number, increased fruit dry matter content and decreased fruit netting, in comparison with non-saline water. The combination of salinity and soil-water deficit was detrimental to fruit quality. Saline soil-water deficit decreased the percentage of marketable (netted) fruit and caused an early end to the period of marketable fruit production. Non-saline soil-water deficit increased the percentage of marketable fruit and had no effect on the duration of the production period. Late non-saline water stress caused a pronounced increase in the percentage of marketable fruit.  相似文献   

17.
Water is a natural resource of prime value that is very often limited and costly, particularly in semi-arid regions. While traditional irrigation methods increase the amount of surface runoff, drip irrigation provides efficient use of the limited water resources. This study was conducted to determine the water-yield relationship and the quality of sweet corn grown under deficit drip irrigation in 1998 and 1999 in Sanliurfa, Turkey. Irrigation treatments analysed in this study were full irrigation as well as 10, 20 and 30% deficiency of Class A pan evaporation. In both years, water use efficiency ranged between 1.18 and 1.36 kg m−3, and irrigation water use efficiency ranged between 1.36 and 1.62 kg m−3. The yield response factor (ky) or the ratio of the decrease in relative yield to the decrease in relative water consumption varied from 0.82 to 1.43, and the water-saving rate ranged from 10.9 to 31.1%. The relationships between fresh ear yield and the irrigation treatments were statistically significant (P < 0.01), and the yield decreased with increasing deficit irrigation. Root dry matter increased with water shortage. Maximum values of leaf area index were obtained at full irrigation, whereas the lowest values were found at 30% water deficiency. The values of the deficit irrigation stress index increased with decreasing water application. Although the protein content increased, the Fe, Zn and Cu concentration of the kernels decreased with increasing water deficiency. Despite the reduction of fresh ear yield with deficit irrigation, the number of marketable ears at 10% water deficiency was still high and acceptable for sweet corn (var. Reward) in south-eastern Turkey.  相似文献   

18.
Agricultural production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant plant varieties or water management for arid and semi-arid areas under water shortage conditions. A field study was conducted to determine effects of seasonal deficit irrigation on plant root yield, quality and water use efficiency (WUE) of sugar beet for a 2-year period in the semi-arid region. Irrigations were applied when approximately 50–55% of the usable soil moisture was consumed in the effective rooting depth at the full irrigation (FI) treatment. In deficit irrigation treatments, irrigations were applied at the rates of 75, 50 and 25% of full irrigation treatment on the same day. Irrigation water was applied by a drip irrigation system. Increasing water deficits resulted in a relatively lower root and white sugar yields. The linear relationship between evapotranspiration and root yield was obtained. Similarly, WUE was the highest in DI25 irrigation conditions and the lowest in full irrigation conditions. According to the averaged values of 2 years, yield response factor (k y ) was 0.93 for sugar beet. Sugar beet root quality parameters were influenced by drip irrigation levels in both years. The results revealed that irrigation of sugar beet with drip irrigation method at 75% level (DI25) had significant benefits in terms of saved irrigation water and large WUE, indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25% saving of irrigation water (DI25) caused 6.1% reduction in the net income.  相似文献   

19.
Summary Little research has been reported which quantifies the response of a carrot (Daucus carrota L. var sativa DC.) seed crop to water management. While the area of seed production of this crop in the United States is less than 3000ha, the return ranges from US $2000 to $ 10 000 ha–1. Because of the need to mature and dry the seed on the plant, carrot seed is generally grown in areas with negligible summer rain and thus depends on irrigation to supply the crop water requirement. A study was conducted to determine the effect of irrigation water management on seed production and crop water use of carrots grown by the root-to-seed method. Two carrot types (Nantes and Imperator) were evaluated in 9 irrigation treatments over a three year study period. Irrigation treatments which replaced a percentage of the calculated crop evapotranspiration on either a daily basis or when a soil water depletion reached 30 mm were used. A trickle irrigation system with the laterals placed on the carrot bed was used to apply a uniform and accurate amount of water. There was a marked difference in the crop response to the water management of the two carrot types used. The Nantes type exhibited a positive response to moderate water deficits in terms of improved pure live seed (PLS) yield while the Imperator achieved its maximum yield when it was not stressed. Higher irrigation applications in the Nantes type resulted in reduced yields while the Imperator was not affected after its non-stress water requirement was met. Soil water data indicated that the most active zone of extraction of water was to a depth of 1.5 m in the soil profile. As the depth of applied water approached the crop water requirement, the depth of extraction was reduced. Increasing the frequency of irrigation also tended to reduce the depth of extraction of soil water. A total crop water use of approximately 550 to 620 mm was needed to achieve the best PLS yield which is roughly equal to potential evapotranspiration in the San Joaquin Valley, during the time that the crop water use was calculated. In such a climate, the irrigation interval should not exceed 3 to 5 days depending on the time of year.  相似文献   

20.
Field experiments were conducted in a tropical region to determine the water-use efficiency (WUE), yield (Y) and evapotranspiration (ET) of a 6-year-old dwarf-green coconut (Cocos nucifera L.) orchard. Three water levels were applied in plots with nine palms. The irrigation treatments denoted as T:50, T:100 and T:150 received 50, 100 and 150 L/plant/day, respectively. The actual evapotranspiration was obtained by the soil water balance (SWB) method. Yield and water-use efficiency were assessed in terms of bunches per plant, fruits per plant and water volume per fruit. The application of the SWB resulted in mean daily ET values of 2.5; 2.9 and 3.2 mm/day for irrigation treatment of T:50, T:100 and T:150, respectively, while the cumulative ET varied from 900 to 1100 mm as irrigation treatment increased from T:50 to T:150. Results also showed that ET values were higher in the beginning and end of the year and lower in the middle of the experimental period. The application of a high irrigation water volume does not necessarily resulted in high coconut fruits yield. Evapotranspiration, fruits yield and water-use efficiency were strongly affected by irrigation water volume in coconut palms. WUE values decreased with increasing irrigation water level for all productivity parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号