首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
LTR-逆转座子是构成基因组特别是植物基因组的重要组分。它们在寄主基因组的进化过程中起到重要作用。马铃薯是重要的经济作物和粮食作物,其全基因组序列的公布为进一步研究其遗传组成和演化提供了基础。本文以马铃薯全基因组序列为材料,用结构分析和同源比对的方法分离得到9318个完整的LTR_逆转座子,7281个非完整(trtmcated)LTR-逆转座子元件和3657个soloLTR元件。进一步研究表明,gypsy类转座子在距今两百万年(millionyearsago,MYA)时转座活性被抑制,而copia类元件活跃至今。马铃薯和番茄比较基因组学的研究表明,LTR-逆转座子序列变异率为18.73%,远高于基因序列的7.37%和CDS序列的5.01%。  相似文献   

2.
植物转座元件及其分子标记的研究进展   总被引:1,自引:0,他引:1  
转座元件是基因组中可移动的DNA分子,在真核生物的基因和基因组进化中起着重要的作用。植物的转座元件分为反转录转座子和DNA转座子两大类,其中,反转录转座子又分为长末端重复序列(LTR)反转录转座子和非LTR反转录转座子两个亚类,而DNA转座子分为自主元件、非自主元件和微型反向重复转座元件(MITE)三种类型。基于植物转座元件的分子标记目前主要有序列特异扩增多态性(S-SAP)、MITE显示、转座子显示(TD)、MITE位点间多态性(IMP)、反转录转座子位点(IRAP)、反转录转座子-微卫星扩增多态性(REMAP)和基于反转录转座子插入多态性(RBIP)。综述了这些分子标记技术的原理及其在生物遗传多样性与系统进化分析、基因作图、品种鉴定等方面的应用。  相似文献   

3.
自私遗传元件(SGEs)采用对自身有利的方式进行传递,它们在生物中广泛存在,在生物进化中具有不可替代的重要作用。SGEs被认为是生物基因组的重要部分,它们以低拷贝数长期稳定地寄生在宿主及其基因组中。SGEs的种类很多,所熟知的有转座元件、Wolbachia、B染色体、减数分裂驱动元件、限制-修饰系统和Medea基因等。为了加强自身的传播,这些元件通过许多方法操控宿主配子发生过程或宿主生殖,如诱导减数分裂驱动或胞质不亲和性和雌性化、雄性致死或雄性不育等。它们对宿主的调控和宿主基因组对这种调控的反应可能暗含着性别决定的进化、物种形成等重要机制。本文对SGEs的种类及其作用的研究进展进行了综述。  相似文献   

4.
No evidence exists of distillation in Mexico before European contact. The Philippine people in Colima established the practice in the 16th Century to produce coconut spirits. Botanical, toponymic, archaeological, and ethnohistoric data are presented indicating that agave distillation began in Colima, in the lower Armería-Ayuquila and Coahuayana-Tuxpan river basins, using Agave angustifolia Haw. and through adaptation of the Philippine coconut spirits distillation technique. Subsequent selection and cultivation of agaves led to their domestication and diversification. This did not take place in the lower river basins, where agave populations tended to disappear. The distillation technique spread to the foothills of Colima volcanoes and from there to all of western Mexico, leading to creation of tequila and other agave spirits. Two factors aided producers in avoiding strict Colonial prohibitions and were therefore key to the diffusion and persistence of agave spirits production: (1) clandestine fermentation in sealed, underground pits carved from bedrock, a native, pre-European contact technique; and (2) small, easy-to-use Philippine-type stills that could be hidden from authorities and allowed use of a broad range of agave species. Dedicated to Henry Bruman in honor of his contribution to the understanding of coconut and agave genetic resources history in America.  相似文献   

5.

Sugarcane (Saccharum spp.) is a special crop plant that underwent anthropogenic evolution from a wild grass species to an important food, fodder, and energy crop. Unlike any other grass species which were selected for their kernels, sugarcane was selected for its high stem sucrose accumulation. Flowering in sugarcane is not favored since flowering diverts the stored sugar resources for the reproductive and developmental energy needs. Cultivars are vegetatively propagated and sugarcane breeding is still essentially focused on conventional methods, since the knowledge of sugarcane genetics has lagged that of other major crops. Cultivar improvement has been extremely challenging due to its polyploidy and aneuploidy nature derived from a few interspecific hybridizations between Saccharum officinarum and Saccharum spontaneum, revealing the coexistence of two distinct genome organization modes in the modern variety. Alongside implementation of modern agricultural techniques, generation of hybrid clones, transgenics and genome edited events will help to meet the ever-growing bioenergy needs. Additionally, there are two common biotechnological approaches to improve plant stress tolerance, which includes marker-assisted selection (MAS) and genetic transformation. During the past two decades, the use of molecular approaches has contributed greatly to a better understanding of the genetic and biochemical basis of plant stress-tolerance and in some cases, it led to the development of plants with enhanced tolerance to abiotic stress. Hence, this review mainly intends on the events that shaped the sugarcane as what it is now and what challenges ahead and measures taken to further improve its yield, production and maximize utilization to beat the growing demands.

  相似文献   

6.
Groundnut, an important crop of many countries of the world, is susceptible to a range of diseases and pests. High levels of resistances are not available in the cultivated gene pool as the crop is said to have a narrow genetic base. Narrow genetic base is attributed to the evolution of the crop which took place by the combination of A and B genome species, and later doubling their chromosome number, giving rise to tetraploid cultivated groundnut. Direct utilization of cross-compatible wild relatives, which are diploids, to broaden the genetic base and introduction of useful traits, is not a straight-forward process due to ploidy differences between the cultivated species and wild relatives. Hence amphiploids and autotetraploids were created by not only combining the putative genomes, but many other A and B genome species, thus producing a highly variable population of tetraploid groundnuts also called new sources of Arachis hypogaea. This study describes the development and characterization of newly generated tetraploid groundnuts and the level of molecular diversity as assessed by DArT markers.  相似文献   

7.
The Arachis genus is native to South America, and contains 70–80 described species assembled into nine sections. A better understanding of the level of speciation and taxonomic relationships is a prerequisite to the effective use of Arachis species in peanut breeding programs. Forty-eight genotypes representing 19 species in 6 sections were evaluated to assay the genetic variability within and among species, and 10 recombinant lines and those parents were identified with introgression of Arachis species chromosome segments into A. hypogaea genome using SRAP markers. Sixty of sixty-four SRAP primers tested were selected for DNA amplification reactions. A dendrogram and principal component analysis were constructed based on 353 SRAP polymorphic bands of the accessions. The number of scored polymorphic bands per each primer combination varied from 1 to 25 with an average of 5.9 per reaction. Estimates of genetic distance among the 48 accessions Arachis species ranged from 0.11 to 0.76. A-genome accessions 475845 (A. duranensis), and 331197 (A. villosa) were most closely associated to A. hypogaea. The first two PCAs accounted for 77.74% (62.02 and 15.72%) of the total variation observed and separated the different genomic groups. SRAPs also identified introgression of Arachis species chromosome segments into A. hypogaea. genome with 10 recombinant lines and those parents. The present results indicated that SRAPs can be used to determine the genetic relationships among species of the different sections of the genus Arachis and to identify introgression of Arachis genus chromosome segments into A. hypogaea genome.  相似文献   

8.
Genomic in situ hybridization (GISH) was used to investigate the genomic relationships among some newly collected species of genus Setaria. Previous work identified that S. viridis and S. adhaerens carry genomes A and B, respectively. GISH patterns obtained in this report clearly distinguished the genome of S. grisebachii from the known genomes A and B, and indicated its new genomic constitution which we suggest to name genome C of the Setaria genus. The two sets of chromosomes of tetraploid S. queenslandica hybridized well with the A genome of S. viridis indicating its autotetraploid nature. This is the first autotetraploid identified in the Setaria genus, which should be classified into the primary A genome gene pool rather than the tertiary gene pool as previously classified. GISH patterns did not distinguish the genome of S. leucopila from the A genome of S. viridis and S. italica, suggesting its close relation with foxtail millet. Strong hybridization signals were observed when S. adhaerens genomic DNA was used as probe to hybridize the chromosomes of diploid S. verticillata, inferring its B genome nature. Combined with morphological observation and previous work, we deduce that diploid S. verticillata and S. adhaerens are probably taxonomically the same species with different names. Y. Wang and H. Zhi contributed equally to this article.  相似文献   

9.
Elymus trachycaulus complex species are known for their morphological variability, but little is known about their genetic basis. The phylogenetic relationships among the E. trachycaulus complex, and their systematic relation to other species in Triticeae remain unknown. Nucleotide diversity of ribulose-1,5 bisphosphate-carboxylase (rbcL) gene in E. trachycaulus complex species and several other Triticeae was first characterized and compared. A primary conclusion of the present study is that nucleotide diversity for rbcL gene in E. trachycaulus species was detected with the estimates of nucleotide diversity θ = 0.00039 and π = 0.00043. The estimate of nucleotide diversity in rbcL gene for species with different genome constitution here ranged from 0.00099 (π) and 0.00099 (θ) for the species with Ns genome to 0.00226 (π) and 0.00291 (θ) for the species with St genome. The phylogenetic relationships of these species were assessed using these rbcL sequences. A total of 47 variable positions including 19 parsimony-informative sites were detected among 24 accessions of 18 species/subspecies. The species with St, H/I and Ns genomes well separated from each other, and formed a three distinct clades with higher bootstrap values support for both Parsimony and NJ analyses. The St genome containing species is sister group of H/I genome containing species. Our result confirms that Pseudoroegneria is the maternal genome donor to these Elymus species studied here, regardless of their distribution. Elymus trachycaulus complex are more related to each other than to E. glaucescens, E. patagonicus, and E. solandri. This study suggested that Elymus species with StH genomes may form from multiple closely related sets of donors.  相似文献   

10.
The evolutionary history of artichoke and cultivated cardoon and their relationships to wild allies of the genus Cynara are not fully understood yet. To try resolve the evolutionary patterns leading to the domestication of these two crops, a study of molecular evolution was undertaken. The species C. cardunculus, including artichoke, cultivated and wild cardoon, together with four wild Cynara species were taken into consideration. Internal (ITS) and external (ETS) rDNA transcribed spacers were used as markers of nuclear genome, the psbA-trnH spacer as a marker of chloroplast genome. Sequences were analysed using phylogenetic analysis packages. Molecular data indicate that the whole genus is quite recent and that the domestication of artichoke and cultivated cardoon, crops diverging for reproduction system and use, are independent events which diverge in time and space. As for wild Cynara species, an evolutionary pattern consistent with their present geographical distribution was hypothesized in relation to the climatic changes occurring in the Mediterranean during the last 20 millennia: C. humilis and C. cornigera appeared to have differentiated first, C. syriaca and C. baetica were differentiated in a second period, while C. cardunculus showed to be the most recent and plastic species. The high plasticity of C. cardunculus has not only allowed its nowadays wide distribution, but has also given the potential for domestication. Dedicated to the memory of Richard Neville Lester (1937–2006) who greatly contributed to the understanding of the evolution, domestication, and genetic resources of eggplants as well as to the biosystematics and taxonomy of allied species. IGV Publication N. 78 of the Institute of Plant Genetics, CNR  相似文献   

11.
Einkorn wheat is known as the donor of ‘A’ genome to cultivated wheat and source of many important genes. Therefore, genetic erosion in cultivated wheat provides a good reason to investigate genetic diversity in these species. In the present study, genetic diversity of 14 populations of Triticum urartu and Triticum boeoticum collected from west and north-west of Iran was examined by IRAP and REMAP markers. In total, 26 out of 36 IRAP and 41 out of 88 REMAP combinations amplified polymorphic and scorable banding patterns. IRAP and REMAP combinations produced 6.53 and 5.21 polymorphic bands per assay, respectively. Mean of polymorphism information content for IRAPs and REMAPs were 0.38 and 0.40 and marker index values for them were 2.60 and 2.09, respectively. Analysis of molecular variance based on IRAP and REMAP data revealed significant within and among population variances, although within population variance was higher than that of among population. Primer combinations based on Sukkula and Nikita retrotransposons produced the highest number of markers in the whole population. Cluster and principal coordinate analyses using REMAP data grouped the populations based on the species and geographical origin, but grouping based on IRAP could not separate the two species. However, based on both marker systems considerable diversity was observed among and within the studied populations.  相似文献   

12.
The origin, diversity and distribution of hexaploid wheat still remain somewhat unclear. In this study we examined the patterns of genetic diversity and phylogenetic relationships of seven hexaploid wheat species using integration site polymorphism of the LTR retrotransposons. Forty-eight accessions (most of them aboriginal) of seven wheat species from different geographical regions were studied using sequence-specific amplification polymorphisms. Phylogenetic relationships among species were constructed with SplitsTree 4.10 based on Dice’s matrices. Genetic distances between the accessions clustered with PAST software were estimated by principal component analysis. All the accessions differentiated into two main groups, one including European spelt and the other combining common, club and Indian dwarf (shot) wheat with the Asian spelt. The spelt species T. macha, T. vavilovii and spelt spike (speltoid) free-threshing T. petropavlovskyi were intermediate between the two groups. The separation of these spelt species from all other accessions was determined by differences in the A genome. European spelt was subdivided into Central European and Spanish branches. As different genetic pools were characteristic of European and Asian spelt, European spelt could not originate directly from the Asian one. Supposedly, the A genome mostly harbors the species-forming or taxonomically important genes that distinguish spelt species from free-threshing ones, which group together with Asian spelt. Grouping of Asian spelt with free-threshing wheat suggests their close relatedness and confirms the hypothesis that free-threshing hexaploid wheats originated from the Asian spelt ancestor.  相似文献   

13.
Triticum timopheevii (genome symbol AAGG) comprises two subspecies, cultivated ssp. timopheevii, and wild ssp. armeniacum. These two subspecies are considered as allotetraploids of AA genome from Triticum diploid species and SS genome from Aegilops species. The difference in genome symbol (G vs. S) is due to wide genetic variations among four SS genome species, Ae. bicornis, Ae. longissima, Ae. searsii, and Ae. speltoides. In order to study the origin of T. timopheevii, we compared 19th intron (PI19) sequence of the PolA1 gene, encoding the largest subunit of RNA polymerase I. Two different sized DNA fragments containing PI19 sequences (PI19A and PI19G) were amplified both in ssp. timopheevii and ssp. armeniacum. Shorter PI19A (112 bp) sequences of both subspecies were identical to PI19 sequences of two AA species, T. monococcum and T. urartu. Interestingly, the longer PI19G (241–243 bp) sequences of ssp. armeniacum showed more similarity to PI19 sequences of Ae. speltoides whereas ssp. timopheevii showed more similarity to PI19 sequences of other three SS genome species. The results indicated that two subspecies of T. timopheevii, ssp. armeniacum or ssp. timopheevii, might have arisen independently by allotetraploidization of AA genome with Ae. speltoides or one of the remaining three Aegilops species, respectively.  相似文献   

14.
The phenotypic and genetic differentiation between the two related Coffea species (C. liberica Hiern and C. canephora Pierre) was examined. These species differed markedly in terms of leaf, inflorescence, fruit and seed characters. A genetic map of the interspecific cross Coffea liberica × C. canephora was constructed on the basis of 72 BC1 hybrids. Eighty-three AFLP markers, four inter simple sequence repeats (ISSR) and five microsatellites corresponding to Coffea liberica species-specific markers were mapped into 16 linkage groups. The total length of the map was 1502.5 cM, with an average of 16.3 cM between markers and an estimated genome coverage of 81%. The two species were evaluated relative to 16 quantitative traits and found to be significantly different for 15 of them. Eight QTLs were detected, associated with variations in petiole length, leaf area, number of flowers per inflorescence, fruit shape, fruit disc diameter, seed shape and seed length. Results on segregation distortion and the under-representation of particular markers were interpreted in terms of genome differentiation. The implications for the introgression of QTLs involved in advantageous morphological traits (number of flowers per inflorescence, fruit and seed shape) are discussed.  相似文献   

15.
The diversity of chloroplast genomes has played an important role, as have those of nuclear and mitochondrial genomes, in the evolution of plants. The sequences of the chloroplast genome supply unsubstituted information for genome analysis. In order to understand the genetic differentiation and relationship of cotton species, we investigated the cytoplasmic diversity of chloroplast genomes in 41 Gossypium accessions with 75 chloroplast simple sequence repeat (cpSSR) markers. The markers were developed from reference sequences of the chloroplast genomes of G. hirsutum and G. barbadense and covered approximately 12.6 kb. Among the 75 markers, 50 were polymorphic, with polymorphism information content values ranging from 0.11 to 0.88. Analyses of the dataset demonstrated that single copy regions were much more informative than inverted repeat regions. The non-coding sequences were well differentiated among these species. For some common cpDNA haplotypes, the E-genome species that may be the oldest of the extant cotton species was deduced. The differentiation of A-genome species lagged behind that of AD-genome species. Neither G. herbaceum nor G. arboreum was the cytoplasmic donor of tetraploid species, strongly suggesting that AD genomes originated from an extinct ancestor of modern A-genome species. We speculate that the genetic differentiation of the chloroplast genome of each cotton species resulted from the dispersal of that species and its adaptations to local ecological conditions. These cpSSR markers provided valuable information to reveal the diversity and differentiation of cotton during evolution.  相似文献   

16.
Polyploidization has been viewed as a highly dynamic process and a major force in the evolution of higher plants, including many important crops. To better understand the genomic evolution of Brassica polyploids, we used the Brassica triangle, including three allopolyploids and three diploids, to study genomic evolution after the formation of polyploids. Based on the inter-simple sequence repeat (ISSR) analysis, the different degree of A, B or C genomic modifications were observed in the three Brassica allopolyploids. In B-contained allopolyploids, B genome always altered less than the other genome (A or C), showing that B genome was relatively conserved in the evolution of Brassica allopolyploids. ISSR data supported that a higher degree of ancestral genomic divergence gave rise to a greater frequency of genomic change of polyploids. The possible mechanisms for the genomic changes and the reason for the relatively conserved B genome were discussed.  相似文献   

17.
Consensus chloroplast simple sequence repeat (ccSSR) makers were used to assess the genetic variation and genetic relationships of 80 accessions from 25 taxa of the genus Avena. Fifteen out of 16 ccSSR markers (93.75%) were polymorphic. A total of 51 alleles were detected at the 16 ccSSR loci. The number of alleles per locus ranged from 1 to 6, with an average of 3.2 alleles. Among these ccSSR loci, the highest polymorphism information content (PIC) value was 0.754, while the lowest PIC value was 0. The mean genetic similarity index among the 80 Avena accessions was 0.545, ranging from 0.188 to 1.000. To assess the usefulness of ccSSRs in separating and distinguishing between haplome (genome) groups, we used ordination by canonical discriminant analysis and classificatory discriminant analysis. Although discriminant analysis separated the haplome groups unequivocally, it was up to 69% predictive of correctly classifying an individual plant whose haplome(s) is unknown in the case where it belonged to the A haplome group, 75% where it belonged in the AC group, and almost 80% where it belonged in the ACD group. The analysis of genetic similarity showed that diploid species with the A haplome were more diverse than other species, and that the species with the As haplome were more divergent than other diploid species with the A haplome. Among the species with the C haplome, A. clauda was more diverse than A. eriantha and A. ventricosa. In the cluster analysis, we found that the Avena accessions with the same genomes and/or belonging to the same species had the tendency to cluster together. As for the maternal donors of polyploid species based on this maternally inherited marker, A. strigosa served as the maternal donor of some Avena polyploidy species such as A. sativa, A. sterilis and A. occidentalis from Morocco. A. fatua is genetically distinct from other hexaploid Avena species, and A. damascena might be the A genome donor of A. fatua. Avena lusitanica served as the maternal parents during the polyploid formation of the AACC tetraploids and some AACCDD hexaploids. These results suggested that different diploid species were the putative A haplome donors of the tetraploid and hexaploid species. The C genome species A. eriantha and A. ventricosa are largely differentiated from the Avena species containing the A, or B, or D haplomes, whereas A. clauda from different accessions were found to be scattered within different groups. Wei-Tao Li and Yuan-Ying Peng have contributed equally to this paper.  相似文献   

18.
The genus Aegilops L. is a very important genetic resource for the breeding of bread wheat Triticum aestivum. Therefore, an accurate and easy identification of Aegilops species is required. Traditionally, identification of Aegilops species has relied heavily on morphological characters. These characters, however, are either not variable enough among Aegilops species or too plastic to be used for identification at the species level. Molecular markers that are more stable within species, therefore, could be the alternative strategy towards an accurate identification. Since the chloroplast DNA has a lower level of evolution compared to the nuclear genome, an attempt was made in this study to investigate polymorphism in the chloroplast DNA among 21 Aegilops species (including Ae. mutica that is now known as Amblyopyrum muticum) and between the latter and T. aestivum to generate markers for the diagnosis of all targeted species. Cleaved amplified polymorphic sequence (CAPS) applied on 22 coding and non-coding chloroplast regions using 80 endonucleases and sequencing of two of those regions revealed little polymorphism between T. aestivum and the various Aegilops species examined and to a less extent was the variation among Aegilops species. Polymorphism observed among species analysed allowed the discrimination of T. aestivum and 12 Aegilops species.  相似文献   

19.
The complete nucleotide sequence of the rapeseed (Brassica napus L.) chloroplast genome (cpDNA) was determined. The 152,860 bp cpDNA contained a pair of 26,035 bp inverted repeat regions (IR), which are separated by small and large single copy regions (SSC and LSC) of 83,030 and 17,760 bp, respectively. The major portion (56.4%) of the B. napus cpDNA consists of gene coding regions, while intergenic spacers make up 43.6% of the complete genome. The average AT content of the B. napus cpDNA is 63.7% and for the LSC, SSC and IR region is 65.9, 70.8 and 57.7%, respectively. Fifteen genes contained one intron, while three genes had two introns. In total, 86 simple sequence repeats were identified. The detailed comparison of the B. napus with one of its putative parents, B. rapa L. cpDNA indicated that the two species were highly similar. The entire gene pool and relative positions of 113 individual genes were identical to those of B. rapa cpDNA. The sequence divergence analysis of B. napus and B. rapa showed only 0.133% in the coding regions, 0.275% in the intron regions, and 0.348% in the intergenic spacer regions. The phylogenies based on 61 protein coding genes from 48 cpDNA sequences provided strong support for monophyly of many major classes of angiosperms and provided support that Amborella could be a sister to all other angiosperms. Our analysis also supported that B. napus is the closest species to B. rapa and B. rapa could be the mathernal parent of B. napus cv. zy036.  相似文献   

20.
A genomic DNA fragment (pAA7-2) amplified by a random amplified polymorphic DNA primer from the rice cultivar IR68 was used to assess the genetic variation and genetic relationships among the species of genus Oryza. A Southern hybridization experiment of diverse upland rice accessions using a single restriction enzyme HindIII generated unique DNA fingerprint for each accession. The differential hybridization pattern reflecting the copy number variation of pAA7-2 in a collection of wild species and cultivated species of rice provided insight about the genetic relationships among them. All AA genome species exhibited clear banding pattern suggesting presence of fewer copies of this sequence. Strongest hybridization signal was obtained in species belonging to BB, CC, GG, BBCC, CCDD genomes, whereas weakest hybridization signal was visible in EE, FF, and HHJJ genome species. Oryza brachyantha was the most divergent species. Clear difference in banding pattern was evident between Oryza schlechteri and Oryza coarctata belonging to HHKK genome. Although pAA7-2 had no repetitive sequences often associated with hypervariable loci, homology to a putative unclassified expressed retrotransposon distributed over several rice chromosomes was responsible for the complex banding patterns. There were more sites homologous to pAA7-2 sequence in corn and sorghum genome compared with the rice genome. The study demonstrates the potential of pAA7-2 as a powerful molecular tool for DNA fingerprinting, genetic diversity, phylogenetic, and evolutionary studies in Oryza sativa and its wild relatives and other grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号