首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
Synthetic hexaploid wheat is an effective genetic resource for transferring agronomically important genes from Aegilops tauschii to common wheat. Wide variation in grain size and shape, one of the main targets for wheat breeding, has been observed among Ae. tauschii accessions. To identify the quantitative trait loci (QTLs) responsible for grain size and shape variation in the wheat D genome under a hexaploid genetic background, six parameters related to grain size and shape were measured using SmartGrain digital image software and QTL analysis was conducted using four F2 mapping populations of wheat synthetic hexaploids. In total, 18 QTLs for the six parameters were found on five of the seven D-genome chromosomes. The identified QTLs significantly contributed to the variation in grain size and shape among the synthetic wheat lines, implying that the D-genome QTLs might be at least partly functional in hexaploid wheat. Thus, synthetic wheat lines with diverse D genomes from Ae. tauschii are useful resources for the identification of agronomically important loci that function in hexaploid wheat.  相似文献   

2.
The D-genome progenitor of hexaploid wheat, Aegilops tauschii Coss., has a wide natural species range in central Eurasia and possesses wide natural variation in heading and flowering time. Here, we report identification of two Ae. tauschii accessions insensitive to short day length. Similarly to a loss or reduced degree of vernalization requirement, the photoperiod-insensitive mutations were found only in the early flowering sublineage (TauL1b) of Ae. tauschii. Quantitative trait locus (QTL) analyses using two F2 mapping populations showed that a QTL for heading time on the long arm of chromosome 5D was related to the early heading phenotype of the photoperiod-insensitive accessions under short-day conditions. In the photoperiod-insensitive accession, expression patterns of two flowering-related genes were altered under short-day conditions compared with the patterns in photoperiod-sensitive accessions. This study indicates that analysis of natural variations in the Ae. tauschii population is useful to find novel genetic loci controlling agronomically important traits.  相似文献   

3.
Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5′ upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.  相似文献   

4.
Aegilops tauschii Coss. is the D-genome donor to hexaploid bread wheat (Triticum aestivum) and is the most promising wild species as a genetic resource for wheat breeding. To study the population structure and diversity of 81 Ae. tauschii accessions collected from various regions of its geographical distribution, the genomic representation of these lines were used to develop a diversity array technology (DArT) marker array. This Ae. tauschii array and a previously developed DArT wheat array were used to scan the genomes of the 81 accessions. Out of 7500 markers (5500 wheat and 2000 Ae. tauschii), 4449 were polymorphic (3776 wheat and 673 Ae. tauschii). Phylogenetic and population structure studies revealed that the accessions could be divided into three groups. The two Ae. tauschii subspecies could also be separately clustered, suggesting that the current taxonomy might be valid. DArT markers are effective to detect very small polymorphisms. The information obtained about Ae. tauschii in the current study could be useful for wheat breeding. In addition, the new DArT array from this Ae. tauschii population is expected to be an effective tool for hexaploid wheat studies.  相似文献   

5.
It was recently shown that allopolyploidy brings novel epistatic interactions to genes belonging to different genomes. However, systematic studies of the phenotypic relationships between synthetic hexaploid wheats and their parental lines have not been conducted. In this study, 27 synthetic hexaploid wheats were produced by crossing the tetraploid wheat cultivar ‘Langdon’ with 27 accessions of Aegilops tauschii. Variations in 20 morphological and flowering traits were analysed in both the synthetic wheat lines and the parental Ae. tauschii accessions. The 20 traits exhibited large variations in the wheat lines. For many of the traits, the degree of variation in the parental accessions was reduced in the hexaploid derivatives. Principal component analysis of floret‐related traits divided the Ae. tauschii accessions into two subspecies, ssp. tauschii and ssp. strangulata, but this parental pattern of subspecific division was not detectable in the hexaploids. Our results suggest that the ‘Langdon’ genome may have an alleviating effect on the expression of D‐genome‐derived variations in derived synthetics.  相似文献   

6.
Advanced backcross QTL analysis was used to identify QTLs for seedling and adult plant resistance to leaf rust in introgression lines derived from a cross between the spring wheat cultivar ‘Saratovskaya 29’ and a synthetic allopolyploid wheat (T. timopheevii/T. tauschii). F2 mapping populations involving two backcross selections (‘BC5’ and ‘BC9’ lines) were genotyped with microsatellite markers. Two significant QTL for adult plant resistance were identified in line ‘BC5’: one on chromosome 2B, but originating from chromosome 2G, explained 31% of the trait variance. The other, derived from T. tauschii and mapped to the short arm of chromosome 2D explained 19% of the trait variance. In the second line, one major seedling and adult plant resistance QTL was identified on chromosome 2B. Both QTL co-located to the same marker interval. Such introgression lines, resulting from the reconstruction of common wheat genome, are of interest both as initial material for breeding and improvement of current cultivars, and as a resource for the study of the interaction and transformation of genomes.  相似文献   

7.
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.  相似文献   

8.
Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat’s genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.  相似文献   

9.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

10.
In order to characterise quantitative trait loci (QTLs) for Type I and Type II resistance against Fusarium head blight (FHB) in wheat, a population of recombinant inbred lines derived from the cross Cansas (moderately resistant)/Ritmo (susceptible) was evaluated in spray-inoculated field trials over three seasons. Map-based QTL analysis across environments revealed seven QTLs on chromosomes 1BS, 1DS, 3B, 3DL, 5BL, 7BS and 7AL (QFhs.whs-1B, QFhs.whs-1D, QFhs.whs-3B, QFhs.whs-3D, QFhs.whs-5B, QFhs.whs-7A, QFhs.whs-7B) associated with FHB resistance. They accounted for 56% of the phenotypic variance. QFhs.whs-1D primarily appeared to be involved in resistance to fungal penetration, whereas the other QTLs mainly contributed to resistance to fungal spread. FHB resistance was significantly correlated with plant height (PH) and heading date (HD). Including all single environments, corresponding overlaps of QTLs for FHB resistance and QTLs for PH/HD occurred at six loci, among them two consistently detected QTLs, QFhs.whs-5B and QFhs.whs-7A. When significant effects of PH and HD on FHB resistance were eliminated by covariance analysis, a second QTL analysis revealed possible escape mechanisms for the majority of the coincidental loci.  相似文献   

11.
The inheritance of flowering time trait in spring-type rapeseed (Brassica napus L.) is poorly understood, and the investigations on mapping of quantitative trait loci (QTL) for the trait are only few. We identified QTL underlying variation for flowering time in a doubled haploid (DH) mapping population of nonvernalization-responsive canola (B. napus L.) cultivar 465 and line 86 containing introgressions from Houyou11, a Chinese early-flowering cultivar in Brassica rapa L. Significant genetic variation in flowering time and response to photoperiod were observed among the DH lines from 465/86. A molecular linkage map was generated comprising three types of markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 4 major loci, localized on four different linkage groups A6, A7, C8 and C9. These loci each accounted for between 9.2 and 12.56 % of the total genotypic variation for first flowering. The published high-density maps for flowering time mapping used different marker systems, and the parents of our crosses have different genetic origins, with either spring-type B. napus or B. rapa. So we cannot determine whether the QTL on the same linkage groups were in the same region or not. There was evidence of additive × additive epistatic effects for flowering time in the DH population. Epistasis existed not only between main-effect QTLs, but also between QTLs with minor effects. Four pair of epistasis effects between minor QTLs explained about 20 % of the genetic variance observed in the DH population. The results indicated that minor QTLs for flowering time should not be ignored. Significant genotypes × environment interactions were also found for the quantitative traits, and with significant change in the ranking of the DH lines in different environments. The results implied that FQ3 was a non-environment-specific QTL and may control flowering time by autonomous pathway. FQ4 were winter-environment-specific QTL and may control flowering time by photoperiod-pathway. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for high altitude areas, via marker-assisted selection.  相似文献   

12.
High molecular weight glutenin subunit composition and variation in 95 Elite-1 synthetic hexaploid (SH) wheats (Triticum turgidum/Aegilops tauschii; 2n = 6× = 42; AABBDD) were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis method (SDS-PAGE). Twenty two different alleles at Glu-1 loci in SHs were observed. Forty four different patterns of HMW-GS in synthetics were found. This higher HMW glutenin composition was due to higher proportion of D-genome encoded subunits in these SHs. 8% urea/SDS-PAGE better discriminated subunit 2* than 12% gels. However 12% urea/SDS-PAGE allowed differentiated mobility of Glu-Dt1 subunits. Genetic variability at Glu-Dt1 locus was greater than Glu-A1 and Glu-B1 loci. The relative high frequency of superior alleles, Glu-B1b and Glu-Dt1d indicated the superior bread making quality attributes embedded in these synthetic hexaploid wheats. Of the 95 Elite-1 SHs 27.1% possessed superior alleles at Glu-A1 and 51% had superior alleles at Glu-B1 locus. At Glu-Dt1 frequency of inferior allele 1Dx2 + 1Dy12 was very low (5.26%) and nine different rare alleles along with the higher frequency (22.1%) of D-genome encoded subunit, 1Dx5 + 1Dy10, were observed. These superior alleles shall form the priority selective sieve for their usage in wheat improvement efforts.  相似文献   

13.
The diploid D-genome progenitor of hexaploid wheat, Triticum tauschii (Coss.) Schmahl., was screened to identify mechanisms for resistance to pre-harvest sprouting. A number of promising mechanisms were identified, and transferred to hexaploid wheat via wide-hybridisation. One identified mechanism, an inhibitory phenolic compound present in the bracts surrounding the grain, has been shown to function effectively in synthetic hexaploid wheats. A number of seed-borne dormancy mechanisms were also identified. Expression of embryo dormancy in synthetic hexaploid wheats was demonstrated when compared with non-dormant hexaploid wheat. Effects of the seed coat on dormancy were also studied, with the seed coat of synthetic hexaploids accelerating rather than inhibiting germination. Embryo dormancy was also demonstrated in two `direct-cross' hybrids. The results suggest that a combination of the described mechanisms may produce white wheats with resistance to pre-harvest sprouting adequate for most Australian climatic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Wanquan Chen  Taiguo Liu  Li Gao 《Euphytica》2013,192(3):339-346
Stripe rust and leaf rust caused by Puccinia striiformis (Ps) Westend. and P. triticina (Pt) Eriks., respectively, are important foliar diseases of wheat worldwide. Breeding resistant wheat cultivars is the preferred strategy to control these diseases. Genes for resistance when introgressed from alien species or wheats of lower ploidy are frequently diluted effectiveness in the hexaploid wheat background or are completely suppressed. The objective of this study was to examine the expression of wheat stripe rust and leaf rust resistances derived from wild emmer wheat and Aegilops tauschii when combined in synthetic hexaploid lines. Eight amphidiploid wheat lines, synthesized by crossing five tetraploid wheats (AABB), viz. Triticum carthlicum var. darginicum, T. carthlicum var. fuligioscum, T. dicoccoides var. fuligioscum, T. durum with five lines of Ae. tauschii (DD), were evaluated in the seedling stage for resistance to five pathotypes of stripe rust caused by Ps and four pathotypes of leaf rust caused by Pt. Resistance in one or both parents was frequently suppressed in synthetic hexaploid lines, indicating the presence of suppressor genes in both Ae. tauschii and T. carthlicum var. darginicum. Specific suppression of resistance genes in the parental genotypes and to pathotypes of Ps and Pt were also observed. The presence and specificity of the suppressors for rust resistance obtained in this study provides useful knowledge for developing cultivars resistant to both rusts utilizing such genetic stocks in wheat breeding programs.  相似文献   

15.
发掘人工合成小麦中千粒重QTL的有利等位基因   总被引:4,自引:1,他引:3  
廖祥政  王瑾  周荣华  任正隆  贾继增 《作物学报》2008,34(11):1877-1884
以人工合成小麦Am3为供体亲本,普通小麦莱州953为轮回亲本,经5次回交然后自交,培育出含85个株系的F2:3群体。以该群体为材料,用348对多态性SSR标记,进行全基因组扫描,发掘人工合成小麦中千粒重QTL的有利等位基因。利用复合区间作图法检测到3个千粒重QTL,其对表型变异的贡献率为10.9%~33.79%。其中,Am3的等位基因能够增加千粒重2.3~4.8 g。相关分析表明,该导入系群体的千粒重与穗粒数、穗数和株高无显著相关性。千粒重QTL与穗粒数、穗数性状的QTL不在同一位置,这有利于高千粒重基因与其他产量性状基因的聚合。采用混合线性模型作图法检测到1个千粒重QTL(QGw.caas-3D),该QTL与环境互作效应小,而且与复合区间作图法在3个环境中都检测到的QTL相同,表明QGw.caas-3D是一个稳定的主效QTL。  相似文献   

16.
Fusarium head blight (FHB) is an important disease of wheat (Triticum aestivum L.). The aim of this study was to determine the effects of quantitative trait locus (QTL) regions for resistance to FHB and estimate their effects on reducing FHB damage to wheat in Hokkaido, northern Japan. We examined 233 F1-derived doubled-haploid (DH) lines from a cross between ‘Kukeiharu 14’ and ‘Sumai 3’ to determine their reaction to FHB during two seasons under field conditions. The DH lines were genotyped at five known FHB-resistance QTL regions (on chromosomes 3BS, 5AS, 6BS, 2DL and 4BS) by using SSR markers. ‘Sumai 3’ alleles at the QTLs at 3BS and 5AS effectively reduced FHB damage in the environment of Hokkaido, indicating that these QTLs will be useful for breeding spring wheat cultivars suitable for Hokkaido. Some of the QTL regions influenced agronomic traits: ‘Sumai 3’ alleles at the 4BS and 5AS QTLs significantly increased stem length and spike length, that at the 2DL QTL significantly decreased grain weight, and that at the 6BS QTL significantly delayed heading, indicating pleiotropic or linkage effects between these agronomic traits and FHB resistance.  相似文献   

17.
Rice brown spot (BS), caused by Bipolaris oryzae, causes yield loss and deterioration of grain quality. Using single-nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between an American rice cultivar, ‘Dawn’ (resistant), and ‘Koshihikari’ (susceptible). Four QTLs for BS resistance were detected in a three-year field evaluation, and ‘Dawn’ contributed the resistance alleles at all QTLs. The QTL with the greatest effect, qBSR6-kd, explained 15.1% to 20.3% of the total phenotypic variation. Although disease score and days to heading (DTH) were negatively correlated in all three years, qBSR6-kd was located near a QTL for DTH at which the ‘Dawn’ allele promoted heading. Another BS resistance QTL (qBSR3.1-kd) was unlinked to the QTLs for DTH. Therefore, these two QTLs are likely to be useful for breeding BS-resistant varieties without delaying heading. The other two BS resistance QTLs (qBSR3.2-kd and qBSR7-kd) were located near DTH QTLs at which the ‘Dawn’ alleles delayed heading. The QTLs reported here will be good candidates for developing BS-resistant cultivars.  相似文献   

18.
Greater variability in starch properties is found in lower ploidy wheats than in commercial hexaploid wheats. This paper reports on the starch properties and variability in granule bound starch synthase (GBSS) loci of 17 diploid (Aegilops tauschii) and 12 tetraploid (durums) potential progenitors of wheat, compared with 29 synthetic hexaploid wheats produced from such progenitors. Starch properties examined were granule size distribution, swelling power, amylose content, gelatinisation and amylose-lipid dissociation properties. A PCR screening method was able to detect the presence or absence of each of the three GBSS genes. It also detected polymorphisms in eight diploids and nine hexaploids, all displaying the same 25 bases deletion in the D genome allele of GBSS. Two tetraploids and five hexaploids were null 4A for GBSS. There was little difference in the amylose contents and amylose-lipid dissociation peak temperatures of the synthetic hexaploids and the lower ploidy wheats. The synthetic hexaploids showed intermediate swelling power values with the durums giving the highest swelling powers. The durums also had higher B granule contents than the A. tauschii accessions, but not as high as the synthetics. However, the A. tauschii samples gave the highest gelatinisation peak temperatures. The presence of the null 4A mutation was positively correlated with swelling power, amylose content and DSC measurements. The new smaller D genome allele of GBSS was associated with slightly higher swelling power. These results confirm the value of wheat progenitor lines as sources of new starch properties for hexaploid wheat. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Two major genes controlling leaf pubescence were mapped on chromosomes 4BL (Hl1) and 7BS (Hl2 Aesp ) in wheat (Saratovskaya 29) and a wheat/Aegilops introgression line (102/00I), respectively, together with quantitative trait loci (QTLs) determining hairiness of the leaf margin (QHl.ipk-4B, QHl.ipk-4D) and auricle (QPa.ipk-4B, QPa.ipk-4D) on the long arms of chromosomes 4B and 4D, respectively. The QTLs on chromosome 4D were contributed by a synthetic wheat and, therefore, originated from Aegilops tauschii. The homoeologous group 4 wheat/A. tauschii genes/QTLs detected in the present study were aligned with the barley pubescence genes Hln/Hsh and Hs b and the hairy peduncle rye gene Hp1. The locus seems to be pleiotropically responsible for the pubescence of different plant organs in different species of the Triticeae. Another homoeologous series may be present on the short arms of the homoeologous group 7 chromosomes, based on the results of an allelic test cross between the Chinese local cultivar Hong-mang-mai carrying Hl2 and the wheat/Aegilops speltoides introgression line 102/00I.  相似文献   

20.
Synthetic hexaploid wheat, produced by combining tetraploid wheat (AB genome) with Triticum tauschii (D genome), was crossed to modern hexaploid wheat (Triticum aestivum ABD genome) in an attempt to introduce new cold hardiness genes into the common hexaploid wheat gene pool. The cold hardiness levels of F) hybrids ranged from similar to parental means to equal to the hardy parent, indicating that cold hardiness was controlled by both additive and dominant genes. As expected when dominant gene action is involved, differences between F2 and parental means were smaller than comparable differences in the F., Frequency distributions of F2—derived F3 lines also suggested that dominant genes were involved in the control of cold hardiness in some crosses. Heritability estimates for cold hardiness ranged from 63 to 70 % indicating that selection for cold hardiness should be effective in populations arising from crosses between common and synthetic hexaploid wheat. However, high selection pressure on the progeny of crosses that included the most hardy T. aestivum, T. durum, and T. tauschii accessions as parents did not identify transgressive segregates for improved cold hardiness. These observations indicate that the close wheat relatives, sharing common genomes with T. aestivum, are not promising sources of new genes to increase the maximum cold hardiness potential of common hexaploid wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号