共查询到13条相似文献,搜索用时 86 毫秒
1.
参考作物腾发量是估算作物蒸发蒸腾量的关键参数,其准确预测对提高作物需水预报精度具有十分重要的意义.最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种改进算法,它基于结构风险最小化准则,可兼顾模型的经验风险和推广能力,将LS-SVM方法引用于参考作物腾发量预测中,并以辽宁省铁岭市为例,对比分析了 LS-SVM模型与BP模型的预测结果.结果表明:LS-SVM模型学习速度快,具有比BP模型更高的模拟性能和预测精度.LS-SVM方法克服了BP模型训练时间长,容易陷入局部极小的缺点,是适合参考作物腾发量预测的新方法. 相似文献
3.
4.
5.
为帮助猪场管理者更好地对母猪进行繁殖管理、预测母猪的高低产、及时淘汰低产母猪,收集和整理包含出生场地、分娩栏位、品种和不同胎次、初生窝重信息的3个母猪群体的生产数据集,制定母猪高低产的分类标准,使用R软件中的Boruta包筛选出影响母猪高低产的重要特征,使用4种不同的机器学习方法——逻辑回归(logistic regression, LOG)、决策树(decision tree, DT)、随机森林(random forest, RF)和支持向量机(support vector machine, SVM)构建母猪高低产的分类模型,并进行决策树视图分析探究影响母猪最高产的相关因素。结果显示:4种机器学习方法构建母猪高产分类模型的分类准确率均在71%左右,最高可达84%,并且发现SVM作为最佳建模方法在所有数据集和不同分类标准下出现的频率最高,其次是LOG和DT。决策树视图显示出生场地、品种和初生窝重是划分最高产母猪的重要叶节点,利用这些特征预测最高产母猪准确率可达73%~82%。以上结果表明在未来的养猪生产中,利用机器学习方法实现母猪高低产的早期预测将会是一个不错的选择。 相似文献
6.
为实现大田作物灌溉的精细化管理,研究了基于气象因素的生育期ET0预测模型。采用灰色理论对ET0与日均、日最高、最低温度,日均风速,相对湿度以及日照时数进行灰色关联度分析,结果表明ET0与温度(包括日均、最高、最低温度)及相对湿度的灰色关联度较高。在分析ET0与上述气象因素间的相关系数基础上,采用日均温度、日均风速以及日照时数作为模型的输入,ET0作为输出,建立了BP神经网络(BPNN)预测模型;采用日均温度、日均风速、日照时数及灰色关联度作为输入,建立了模糊最小二乘支持向量机(FLSSVM)预测模型。研究结果表明,BPNN模型的训练值决定系数为0.8643,平均相对误差6.29%,预测值决定系数为0.8099,平均相对误差7.83%;FLSSVM模型的训练值决定系数为0.9684,平均相对误差2.89%;预测值决定系数为0.9663,平均相对误差3.43%。BP神经网络与FLSSVM模型的精度均较高,可以用来预测ET0日值,这为大田作物的精细化灌溉管理提供理论与技术支持。 相似文献
7.
提出了一种基于β因子历史样本淘汰机制的在线学习算法.对UCI标准数据集中的部分样本集的测试结果表明:该机制有效地淘汰了一些样本,在保持了分类精度和泛化能力的情况下,大大加快了增量学习的训练速度. 相似文献
8.
基于深度学习和支持向量机的4种苜蓿叶部病害图像识别 总被引:1,自引:2,他引:1
为实现苜蓿叶部病害的快速准确诊断和鉴别,基于图像处理技术,对常见的4种苜蓿叶部病害(苜蓿褐斑病、锈病、小光壳叶斑病和尾孢菌叶斑病)的识别方法进行探索。对采集获得的899张苜蓿叶部病害图像,利用人工裁剪方法从每张原始图像中获得1张子图像,然后利用结合K中值聚类算法和线性判别分析的分割方法进行病斑图像分割,得到4种病害的典型病斑图像(每张典型病斑图像中仅含有1个病斑)共1 651张。基于卷积神经网络提取病斑图像特征,建立病害识别支持向量机(Support vector machine,SVM)模型。结果表明:当病斑图像尺寸归一化为32×32像素,利用归一化的特征HSV(即特征H、特征S和特征V归一化后的组合特征)构建的病害识别SVM模型最优,其训练集识别正确率为94.91%,测试集识别正确率为87.48%。本研究基于深度学习和SVM所建立的病害识别模型可用于识别上述4种苜蓿叶部病害。 相似文献
9.
针对黑龙江垦区各农场农机装备水平不平衡差异问题,采用支持向量机多类分类和主成分分析相结合的方法进行研究。将农机装备水平分为3个等级水平,从总量、速度和均量3方面选取10个评价指标;采用主成分分析法确定5个主要合成指标;建立多类分类支持向量机新模型,把新模型转化成一个互补问题,利用Lagrangian隐函数进一步转化成一个强凸的无约束优化问题,采取快速牛顿算法进行求解;利用实证调研数据,从发展差异度的角度对黑龙江垦区98个农场农机装备水平的差异进行多指标分析,在分类的准确度和训练速度方面都有很好的表现。 相似文献
10.
在小麦叶面积指数(leaf area index, LAI)的估算过程中,光谱变量与机器学习算法(MLs)相结合的方法具有较好的性能,但由于输入参数过多会导致数据冗余,使得计算效率降低。为了提高LAI估算的精度和MLs的计算效率,本研究提出了全局敏感性分析(global sensitivity analysis, GSA)与MLs相结合的方法(简称GSA-MLs)。首先,基于PROSAIL模拟数据集,利用GSA量化植被生长参数对Sentinel-2光谱变量的影响;此外利用4种变量筛选策略对所有光谱变量进行排序,并选择最优变量作为MLs的输入参数。然后,通过偏最小二乘回归(partial least square regression, PLSR)、支持向量机(support vector machine, SVM)和随机森林(random forest, RF)3种MLs对小麦叶面积指数(LAI)进行估算。结果表明:红边植被指数主要受叶绿素含量的影响,而短波红外相关的植被指数主要受等效水厚度的影响,所有光谱变量均会受到参数之间的交互作用。SLAI-SInteraction筛选得到的30... 相似文献
11.
目的 以油青菜心Brassica chinensis var. parachinensis为试验对象,基于冠层温度研究其生长过程中的水分胁迫变化规律,并利用机器学习方法,以水分胁迫指数(Crop water stress index, CWSI)和光合有效辐射预测光合作用速率。方法 试验期间,在营养生长阶段(V期)和生殖生长阶段(R期)对油青菜心进行不同田间持水量处理,采集冠层温度、空气温湿度数据,建立无蒸腾作用基线(上限方程)、无水分胁迫基线(下限方程),通过经验公式计算CWSI。利用基于密度的空间聚类方法和空气温度研究油青菜心的冠气温差上限分布情况,选取固定值作为上限;以CWSI经验公式为基础,使用不同温度定值的无蒸腾作用基线计算CWSI,验证聚类效果。为更简便获取光合作用速率,使用4种机器学习方法:最邻近节点算法(k-Nearest neighbor,KNN)、支持向量回归(Support vector regression,SVR)、极端梯度提升法(Extreme gradient boosting,XGBoost)、随机森林(Random forest,RF)进行预测,并对比预测效果。结果 在不同田间持水量处理下,CWSI能较好地监测油青菜心水分胁迫状况。通过聚类分析,将V期和R期冠气温差上限分类到2个簇中,得到簇心分别为3.4和4.2 ℃,与CWSI经验公式计算值显著相关,表明使用固定值作为油青菜心冠气温差上限值具有可行性。KNN、SVM、XGBoost和RF预测模型均取得较好效果,相关系数分别为0.873、0.877、0.887和0.863。结论 机器学习方法可用于油青菜心光合作用速率的预测,可以避免使用大型笨重仪器,降低对油青菜心叶片的损伤,减少测量时间。 相似文献
12.
[目的]应用参数优化支持向量机对水稻施氮水平进行准确分类预测,为水稻精准施肥和高产管理提供科学依据.[方法]以水稻品种金优458为试验材料,设4个施氮水平(从高至低折合纯氮用量分别为225、150、75和0 kg/ha),通过叶绿素测量仪SPAD-502获取水稻第6~9叶序叶片的SPAD值(即叶尖、叶中和叶枕的SPAD值),并分别应用网格搜索算法和粒子群算法参数优化支持向量机对4个施氮水平下的水稻叶片SPAD值进行训练和预测分类.[结果]对于第7、8叶序、第7~9叶序及第6~8叶序叶片组合,粒子群算法参数优化支持向量机对水稻施氮水平的分类识别效果均优于网格搜索算法,其准确率均高于75.000%,对归一化处理后的第7、8叶序叶片组合识别率最高,达88.889%.[结论]基于粒子群算法参数优化支持向量机适用于水稻施氮水平分类预测,能满足农学研究的需求. 相似文献
13.
叶面积指数(LAI)作为表征植被冠层结构的重要参数,一直是气候变化和生态研究中的热点,遥感技术的发展为大范围叶面积指数的获取提供了可能。以景洪市热带橡胶林为研究对象,以机载LiDAR和Landsat8/OLI为信息源,结合44块样地实测数据,使用支持向量机回归(SVR)、BP神经网络(BPNN)和偏最小二乘回归(PLSR) 3种模型,在前期建立基于林分水平的LAI估测模型的基础上,进一步构建区域尺度的LAI反演模型,实现景洪市橡胶林LAI的反演。结果表明,基于LiDAR的林分水平模型中,SVR模型最优,决定系数(R2)为0.76,相对均方根误差(rRMSE)为17%,估测精度(P)为83%;以SVR模型估测结果作为区域尺度遥感反演模型的先验样本,结合Landsat8/OLI数据的BP神经网络模型反演效果最好,估测精度达76%。 相似文献