首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT In an attempt to better understand the mode of action of the antagonistic fungus Microsphaeropsis sp., the interaction between this fungus and Venturia inaequalis was studied, using both light and electron microscopy. Cytological observations indicated that the antagonistic interaction between the two fungi likely involves a sequence of events, including (i) attachment and local penetration of Microsphaeropsis sp. into V. inaequalis hyphae; (ii) induction of host structural response at sites of potential antagonist entry; (iii) alteration of host cytoplasm; and (iv) active multiplication of antagonistic cells in pathogen hyphae, leading to host cell breakdown and release of the antagonist. The interaction was investigated further by gold cytochemistry. The use of gold-complexed beta-1,4-exoglucanase and wheat germ agglutinin/ovomucoid-gold complex to localize cellulosic beta-1,4-glucans and chitin monomers, respectively, resulted in regular labeling of V. inaequalis cell walls. This finding supports other studies refuting the classification of ascomycetes as only a glucan-chitin group. At an advanced state of parasitism, the labeling pattern of cellulose and chitin, which clearly showed that the level of integrity of these compounds was affected, suggested the production of cellulolytic and chitinolytic enzymes by Microsphaeropsis sp. Wall appositions formed in V. inaequalis in response to the antagonist's attack contained both cellulose and chitin. However, penetration of this newly formed material frequently succeeded. This study provides the first detailed picture of the cytological events associated with mycoparasitism in V. inaequalis.  相似文献   

2.
戊唑醇对立枯丝核菌的抑制作用及在水稻上的应用   总被引:3,自引:4,他引:3       下载免费PDF全文
戊唑醇是一种高效、广谱、内吸性强的三唑类杀菌剂。研究表明,在离体条件下其对立枯丝核菌Rhizoctonia solani Kuhn菌丝生长具有很强的抑制作用,EC50值为0.509 μg/mL。无论在天然培养基(LBA)还是在半组合培养基(AEA)上,戊唑醇均会抑制菌核的产生,且菌核的产量随着药剂浓度的增加而降低;虽然其对菌核的萌发无影响,但对菌核萌发后菌丝的生长有强烈的抑制作用。温室试验结果表明,立枯丝核菌菌碟经戊唑醇处理后,其对分蘖期水稻植株的致病力随着药剂浓度的提高而下降;戊唑醇可很好地被水稻叶片和根系吸收,并输送到水稻的茎部;对水稻纹枯病具有保护和治疗作用,EC50值分别为58.03和62.53 μg/mL;对立枯丝核具有较长的持效期,800 μg/mL处理水稻7 d后再接种的防效为41.46%。田间药效试验表明,43%的戊唑醇悬浮剂在有效剂量116.10 g/hm2下两次喷药后15 d的防效达71.97%。该药剂在本试验剂量范围内对水稻安全。  相似文献   

3.
ABSTRACT The interaction between the oomycete Pythium oligandrum and various soilborne oomycete and fungal plant pathogens (P. ultimum, P. aphanidermatum, Fusarium oxysporum f. sp. radicis-lycopersici, Verticillium albo-atrum, Rhizoctonia solani, and Phytophthora megasperma) was studied by light and electron microscopy in order to assess the relative contribution of mycoparasitism and antibiosis in the antagonistic process. Scanning electron microscope investigations of the interaction regions showed that structural alterations of all pathogenic fungi and oomycetes (except for Phytophthora megasperma) occurred soon after contact with the antagonist. Light and transmission electron microscope studies of the interaction region between the antagonist and P. ultimum revealed that intimate contact between both partners preceded a sequence of degradation events including aggregation of host cytoplasm and penetration of altered host hyphae. Localization of the host wall cellulose component showed that cellulose was altered at potential penetration sites. A similar scheme of events was observed during the interaction between P. oligandrum and F. oxysporum f. sp. radicis-lycopersici, with the exception that complete loss of host protoplasm was associated with antagonist invasion. The interaction between P. oligandrum and R. solani resulted in an abnormal deposition of a wall-like material at potential penetration sites for the antagonist. However, the antagonist displayed the ability to circumvent this barrier and penetrate host hyphae by locally altering the chitin component of the host hyphal wall. Interestingly, antagonist cells also showed extensive alteration as evidenced by the frequent occurrence of empty hyphal shells. In the case of Phytophthora megasperma, hyphal interactions did not occur, but hyphae of the plant pathogen were damaged severely. At least two distinct mechanisms appear to be involved in the process of oomycete and fungal attack by P. oligandrum: (i) mycoparasitism, mediated by intimate hyphal interactions, and (ii) antibiosis, with alteration of the host hyphae prior to contact with the antagonist. However, the possibility that the antagonistic process may rely on the dual action of antibiotics and hydrolytic enzymes is discussed.  相似文献   

4.
ABSTRACT The effects of reduced doses of methyl bromide (MB) or metham sodium, heating, short solarization, and soil microbial activity, alone or in combination, on survival of soilborne fungal pathogens were tested in a controlled-environment system and field plots. Sublethal doses of heating or MB delayed germination of Sclerotium rolfsii sclerotia. Combining MB and heating treatments was more effective than either treatment alone in controlling S. rolfsii and Fusarium oxysporum f. sp. basilici. The application heating followed by fumigation with MB, was significantly more effective in delaying and reducing germination of S. rolfsii sclerotia and in controlling F. oxysporum f. sp. basilici than the opposite sequence. Further, incubation in soil and exposure to microbial activity of previously heated or MB-treated sclerotia increased the mortality rate, indicating a weakening effect. Similarly, incubation of chlamydospores of F. oxysporum f. sp. melonis and F. oxysporum f. sp. radicis-lycopersici in soil in the field after fumigation further reduced their survival, confirming the laboratory results. In field tests, combining MB or metham sodium at reduced doses with short solarization was more effective in controlling fungal pathogens than either treatment alone. Treatment sequence significantly affected pathogen control in the field, similar to its effect under controlled conditions. This study demonstrates a frequent synergistic effect of combining soil treatments and its potential for improving pathogen control and reducing pesticide dose, especially when an appropriate sequence was followed.  相似文献   

5.
ABSTRACT The influences of Microsphaeropsis sp., M. arundinis, Ophiostoma sp., Diplodia sp., and Trichoderma sp., all antagonists of Venturia inaequalis, on ascospore production were evaluated under natural conditions and compared with urea and Athelia bombacina, a known antagonist. In the autumn, the fungi were applied to leaf disks artificially inoculated with V. inaequalis and to scabbed apple (Malus domestica) leaves incubated under controlled and natural conditions. In addition, large-scale trials were conducted with Microsphaeropsis sp. applied either as a foliar postharvest spray or as a ground application at 90% leaf fall. All fungal isolates, except Ophiostoma sp., were recovered from the leaf material that overwintered in the orchard. All treatments, except those with Ophiostoma sp., resulted in a significant reduction in V. inaequalis ascospore production on the leaf disks incubated under controlled conditions or in the orchard. In 1997, leaves with apple scab lesions treated with urea or Microsphaeropsis sp. produced significantly fewer ascospores of V. inaequalis than did nontreated leaves, with a reduction of 73.0 and 76.3%, respectively. In 1998, leaves treated with Microsphaeropsis sp., urea, Trichoderma sp., A. bombacina, and M. arundinis reduced ascospore production by 84.3, 96.6, 75.2, 96.6, and 52.2%, respectively. Based on all tests combined, the most efficient isolate was Microsphaeropsis sp. Postharvest applications of Microsphaeropsis sp. reduced the total amount of airborne ascospores trapped by 70.7 and 79.8% as compared with the nontreated plots in 1997 and 1998, respectively. Microsphaeropsis sp. provided a significant and consistent reduction in ascospore production in all tests.  相似文献   

6.
由立枯病丝核菌引起的烟草立枯病是我国烟草苗床上危害最严重的病害之一。本研究评价了5种杀菌剂 (嘧菌酯、啶酰菌胺、氟啶胺、丙环唑和嘧霉胺) 对立枯丝核菌菌丝生长、菌核形成和萌发的影响,以及其对烟草立枯病的防治效果。结果表明:立枯丝核菌菌丝对氟啶胺和嘧菌酯的敏感性高于丙环唑和啶酰菌胺,而对嘧霉胺的敏感性较低;嘧菌酯对菌核形成的抑制作用强于丙环唑、氟啶胺、啶酰菌胺和嘧霉胺;5种杀菌剂对立枯丝核菌菌核萌发均无抑制作用。在离体烟叶的保护活性方面,12.5和50 mg/L的嘧菌酯和啶酰菌胺对立枯病的保护作用优于氟啶胺、丙环唑和嘧霉胺;在治疗活性方面,50和200 mg/L的嘧菌酯的治疗作用优于其他4种杀菌剂。因此,供试的5种杀菌剂中嘧菌酯最适合用于烟草立枯病的防治。  相似文献   

7.
Verticillium biguttatum was isolated from sclerotia of Rhizoctonia solani removed from black scurf-infected potato tubers which had been field-grown in the UK. Two isolates were identified by means of morphological and physiological characteristics, together with their ability to overgrow cultures of R. solani. A Dutch isolate M73 was used for comparison.  相似文献   

8.
Isolates of Rhizoctonia collected from the stems, roots, tuber sclerotia and soil of potato crops in Virginia and Lenswood, South Australia, were identified to anastomosis groups (AG). Of the 301 multinucleate isolates of Rhizoctonia solani tested, 90% were AG-3, 7% were AG-4 and 2% were AG-5; 12 isolates were binucleate Rhizoctonia spp. This is the first report of isolates of AG-4 and AG-5 causing disease in potato crops in South Australia. All AG-3, AG-4 and AG-5 isolates tested caused rhizoctonia disease symptoms on the potato cultivar Coliban in pathogenicity trials conducted under glasshotise conditions. Both AG-3 and AG-5 isolates caused black scurf and stem cankers, although symptoms of black scurf were less severe with AG-5. AG-4 isolates produced the most severe stem and stolon cankers of all isolates tested. The pathogenicity of tuber-borne inoculum was confirmed by growing plants from sclerotia-infested tubers. AG-8 isolates from diseased barley and wheat produced severe root cankers and caused loss of feeder roots on inoculated potato plants. Results suggest that rhizoctonia disease in potato fields in South Australia is caused by a combination of different anastomosis groups and this has important implications for crop rotations.  相似文献   

9.
从南方红豆杉分离到的一种新内生真菌紫杉木霉Trichoderma taxi菌株ZJUF0986,与水稻纹枯病菌对峙培养。结果发现,该内生真菌通过菌丝缠绕附着等重寄生方式,导致纹枯病菌菌丝断裂或其内含物降解直至死亡。其产生的活性代谢产物也能强烈抑制纹枯病菌菌丝的生长,显著降低病原菌的菌核萌发率;对病原菌菌丝生长和菌核萌发的有效中浓度EC50分别为1.08和3.59μg/ml。盆栽试验结果表明,菌株ZJUF0986浓度80μg/ml的活性代谢产物对水稻纹枯病的防效达63.82%,与50μg/ml井冈霉素A的防治效果相当。  相似文献   

10.
The incidence of potato pathogens on healthy roots of micropropagated (MP) and seed tuber (ST) plants was examined on successive dates during the growing season in two field experiments. Microplants were grown in a glasshouse for 4–5 weeks in perlite or peal-based substrates, and exposed or not to natural inoculum before planting in the field. The seed tubers originated from stocks of visually clean or moderately blemished tubers and were surface-sterilized or not before planting. Polyscytalum pustulans and Helminthosporium solani only infected roots of ST plants and inoculated MP plants. The incidence of P. pustulans was affected by seed tuber-borne inoculum and, in I year, by the substrate. H. solani was detected infrequently on roots. Rhizoctonia solani was present at low frequencies in most root samples, and more ST than MP plant roots were colonized; there were no substrate effects. In 1 year, increased inoculum levels increased root infection, but only in MP roots. Colletotrichum coccodes occurred at high frequencies and was most common in roots of ST plants. Progeny tubers showed some treatment effects when tested in September and after storage for 6 months, but there were no consistent relationships between root and progeny tuber infection.  相似文献   

11.
The mode of action of acibenzolar-S-methyl (BTH) was investigated against sheath blight of rice and its pathogen, Rhizoctonia solani. BTH exhibited limited fungitoxicity against R solani, in the form of reduced mycelial growth, hyphal browning and sclerotia formation. Parasite fitness of mycelia and sclerotia formed on BTH-amended media was also reduced. When applied as soil drench or foliar spray, BTH inhibited both disease development on inoculated sheaths and its spread to the younger sheaths. The degree of protection against sheath blight increased with increase in duration between BTH application and inoculation. The curative effect of BTH was poor. When applied through roots a protective effect of BTH was visible even with only a 1-h interval between application and inoculation. However, in the case of foliar application, protective effect was recorded only when the gap between application and inoculation was 24 h. BTH reduced the frequency of penetration by R solani, colonization of host tissue and spread of the hyphae from primary lesions to form secondary lesions. BTH induced swelling of hyphal tips on the sheath surface, formation of papillae, browning of penetrated epidermal cells and degeneration of intra-cellular hyphae colonizing epidermal and mesophyll cells. Therefore, the protective effect of BTH against sheath blight was due to combination of its host defence-inducing activity and its adverse effect on growth and vigor (parasite fitness) of the pathogen.  相似文献   

12.
ABSTRACT Crater disease (CD) of wheat is caused by a Rhizoctonia solani strain of ambiguous phylogeny. Anastomosis reactions confirmed placement of CD-causing R. solani in anastomosis group (AG) 6, with results indicating a closer affinity to AG-6 GV than to AG-6 HG. Cultures of CD isolates were initially white to cream, turning a yellowish light brown after 10 days. Concentric rings of dark and light mycelium were evident from an early stage. Mycelium generally was appressed to the agar surface, with sparse aerial growth. A few light-colored, irregularly shaped sclerotia could be discerned after 2 weeks. The mean hyphal diameter of CD-causing R. solani was 7.46 mum (ranging from 5.0 to 10.0 mum), and cells contained a mean number of four (ranging from two to eight) nuclei, compared to a mean hyphal diameter of 8.58 and 8.42 mum and a mean nuclear number of six and four for AG-6 HG and AG-6 GV, respectively. The CD isolates had a slower growth rate (15.3 mm/day) than AG-6 HG (29.1 mm/day) and AG-6 GV (22.6 mm/day) but, like AG-6, were thiamine prototrophic. Conspicuous nodulose swellings were produced by CD-causing R. solani on roots of wheat, and infection resulted in retarded shoot growth. Smaller nodules were evident on bean and soybean roots. Fingerprint patterns generated for the various isolates with four enzymes, HpaII, Sau3AI, TaqI, and CfoI, showed the presence of a unique 610-bp fragment in the pathogen. It is proposed that CD-causing R. solani isolates represent a distinct intersterility group within AG-6 that is more related to subgroup GV than to subgroup HG.  相似文献   

13.
Relationships between diseases caused by Rhizoctonia solani on different parts of potato plants ( Solanum tuberosum ) at different stages of crop growth were investigated under selected agronomic conditions. The effects of different densities of tuber-borne inoculum, date of planting, irrigation, size of seed tubers and their interactions on the incidence of stem and stolon canker during crop growth, the incidence and severity of black scurf and the yield of progeny tubers at harvest were quantified in a multifactorial experiment. Differences in the incidence of stem canker, stolon canker and black scurf were dominated by the effect of density of inoculum on seed tubers at planting. Highly positive correlations between the disease variables indicated a close relationship between the incidence of disease at each stage of crop growth although the degree of association between variables measured at an early growth stage and those measured at progressively later stages of crop growth weakened as the time interval increased. Total yield of progeny tubers was not affected by the density of tuber-borne inoculum although there was a shift in the size distribution, with a decrease in the yield of main-sized tubers and an increase in the yield of baker- and oversized tubers at the higher density of inoculum. Of the remaining factors, the effect of season tended to be more pronounced than any of the agronomic treatments although the use of irrigation and later dates of planting did influence the incidence of infection to a limited extent.  相似文献   

14.
Wu BM  Subbarao KV 《Phytopathology》2008,98(10):1144-1152
Extensive studies have been conducted on the carpogenic germination of Sclerotinia sclerotiorum, but carpogenic germination in S. minor has not been studied adequately. It remains unclear why apothecia of this pathogen have seldom been observed in nature. In this study, a new method was developed to produce apothecia in the absence of soil or sand, and carpogenic germination without preconditioning was recorded for 95 of the 96 S. sclerotiorum isolates tested. Carpogenic germination of the two species was compared under a variety of temperature, soil moisture, burial depths, and short periods of high temperature and low soil moisture. The optimal temperatures for rapid germination and for maximum germination rates were both lower for S. minor than for S. sclerotiorum. The temperature range for carpogenic germination was also narrower for S. minor than for S. sclerotiorum. A 5-day period at 30 degrees C, either starting on the 10th or 20th day of incubation, did not significantly affect carpogenic germination of S. sclerotiorum. For both S. minor and S. sclerotiorum, the percentage of carpogenically germinated sclerotia increased as soil water potential increased from -0.3 to -0.01 MPa. In the greenhouse, a 10- or 20-day dry period completely arrested carpogenic germination of S. sclerotiorum, and new apothecia appeared after an interval of 35 days following rewetting, similar to the initial carpogenic germination regardless of when the dry period was imposed. In naturally infested fields, the number of sclerotia in 100 cc of soil decreased as depth increased from 0 to 10 cm before tillage, but became uniform between 0 and 10 cm after conventional tillage for both species. Most apothecia of S. minor were, however, produced from sclerotia located at a depth shallower than 0.5 cm while some apothecia of S. sclerotiorum were produced from sclerotia located as deep as 4 to 5 cm. These results provide the much needed information to assess the epidemiological roles of inoculum from sexual reproduction in diseases caused by the two Sclerotinia species in different geographical regions. However, more studies on effects of shorter and incompletely dry periods are still needed to predict production of apothecia of S. sclerotiorum in commercial fields under fluctuating soil temperature and moisture.  相似文献   

15.
生物农药麦丰宁B3对小麦纹枯病菌的抑制作用   总被引:11,自引:0,他引:11  
 用平板双培养法在PDA、NA及K'B 3种培养基上测定B3菌株(Bacillus sp.)对小麦纹枯病菌(Rhizoctonia cerealis)均有显著抑制作用。用喷菌法、四周划线法和四角点菌法测定的抑菌效果为73.6%~99.5%。B3的无细胞培养滤液也能显著抑制病菌菌丝生长、菌核形成和菌核萌发。PDA中含12.5%B3滤液时对菌丝生长的抑制效果达80%以上。滤液含量为10%时,病菌不能形成菌核。B3无细胞培养滤液可使含病菌菌丝溶液电导率上升,还原糖、氨基酸和蛋白质等物质含量提高,加热处理后B3滤液的作用减弱。显微观察表明,B3处理的病菌菌丝生长畸形,分枝增多,原生质稀薄。  相似文献   

16.
ABSTRACT Rhizoctonia solani anastomosis group (AG)-13 was collected from diseased roots of field grown cotton plants in Georgia in the United States. Isolates of AG-13 did not anastomose with tester isolates of AG-1 through AG-12. Mycelium of all isolates of AG-13 were light brown but darkened as cultures aged. All isolates produced aerial mycelium. Concentric rings were visible after 3 to 4 days of growth but disappeared as cultures aged and darkened. Individual sclerotia were up to 1.5 mm in diameter, similar in color to the mycelium, and generally embedded in the agar. Clumps of sclerotia up to 5 mm in diameter were produced on the agar surface. All attempts to induce basidiospore production were unsuccessful. The 5.8S region of the rDNA from isolates of AG-13 was identical in length and sequence to isolates of all other AGs of R. solani. Length and sequence of the internal transcribed spacer (ITS) regions of rDNA from isolates of AG-13 were unique among AGs of R. solani. Similarity between AG-13 and other AGs of R. solani ranged from 68 to 85% for ITS region 1 and 85 to 95% for ITS region 2. Selected isolates of AG-13 caused minor or no damage to barley, cauliflower, cotton, lettuce, potato, and radish in laboratory or greenhouse studies.  相似文献   

17.
Israeli farmers export 250,000 tons of potato tubers annually, ≈40,000 tons of which are harvested early, before skin set. In recent years, there has been an increase in the occurrence of dark skin spots on early-harvested potato tubers ('Nicola') packed in large bags containing peat to retain moisture. The irregular necrotic spots form during storage and overseas transport. Characterization of the conditions required for symptom development indicated that bag temperature after packing is 11 to 13°C and it reaches the target temperature (8°C) only 25 days postharvest. This slow decrease in temperature may promote the establishment of pathogen infection. Isolates from typical lesions were identified as Rhizoctonia spp., and Koch's postulates were completed with 25 isolates by artificial inoculation performed at 13 to 14°C. Phylogenetic analysis, using the internal transcribed spacer sequences (ITS1 and ITS2) of rDNA genes, assigned three isolates to anastomosis group 3 of Rhizoctonia solani. Inoculation of wounded tubers with mycelium of these R. solani isolates resulted in an oversuberization response in the infected area. With isolate Rh17 of R. solani, expression of the suberin biosynthesis-related genes StKCS6 and CYP86A33 increased 6.8- and 3.4-fold, respectively, 24 h postinoculation, followed by a 2.9-fold increase in POP_A, a gene associated with wound-induced suberization, expression 48 h postinoculation, compared with the noninoculated tubers. We suggest that postharvest dark spot disease is an oversuberization response to R. solani of AG-3 infection that occurs prior to tuber skin set.  相似文献   

18.
Potato seed certification is a disease management tool that minimises the risk of spreading seed tuber-borne inoculum of infectious diseases. Traditionally, certification sampling strategies have relied upon visual assessment of a seedlot from samples taken at one or two points within the load of seed tubers. However methodologies in selection of tuber samples have not been critically assessed for their precision in estimating disease load. This study presents an analysis of 37 potato seedlots over a 3 year period. Analysis of sample data using receiver operating curves (ROCs) indicates that point sampling taking two samples of 100 tubers at the beginning and end of a seedlot gives equivalent disease estimation as a continuous sampling strategy taking ten samples of 20 tubers randomly throughout the seedlot, although at lower statistical precision. This was confirmed both by visual assessment of tuber-borne disease and by analysis of pathogen DNA content from tuber peel. Across the 3 years of study, powdery scab and black scurf were the major seed tuber-borne diseases recognised and this corresponded with high levels of pathogen DNA from peel analysis for both Spongospora subterranea and Rhizoctonia solani AG3 respectively.  相似文献   

19.
Stem canker and black scurf are diseases of potato caused by the fungus Rhizoctonia solani . Spatiotemporal experimentation and empirical modelling were applied for the first time to investigate the effect of antagonistic Trichoderma harzianum on the dynamics of soilborne R. solani on individual potato plants. Trichoderma harzianum reduced the severity of symptoms, expressed as 'rhizoctonia stem lesion index' (RSI), during the first 7 days post-inoculation when the inoculum of R. solani was placed at certain distances (30–60 mm) from the host. For example, with inoculum at 40 mm from the host, RSI was 6 and 40 with and without T. harzianum , respectively. At later observation times, the antagonistic effect was overcome. Trichoderma harzianum reduced the severity of black scurf on progeny tubers. Furthermore, the mean number of progeny tubers per potato plant was reduced by the biocontrol treatment (means of 6·5 ± 1·1 and 9·9 ± 2·7 tubers per plant with and without T. harzianum , respectively), as was the proportion of small (0·1–20·0 g) tubers (48% and 66% with and without T. harzianum , respectively). Additionally, there were fewer malformed and green-coloured tubers in pots treated with T. harzianum than in those without T. harzianum .  相似文献   

20.
ABSTRACT The feasibility of developing a forecasting system for carpogenic germination of Sclerotinia sclerotiorum sclerotia was investigated in the laboratory by determining key relationships among temperature, soil water potential, and carpogenic germination for sclerotia of two S. sclerotiorum isolates. Germination of multiple burials of sclerotia to produce apothecia also was assessed in the field with concurrent recording of environmental data to examine patterns of germination under different fluctuating conditions. Carpogenic germination of sclerotia occurred between 5 and 25 degrees C but only for soil water potentials of >/=-100 kPa for both S. sclerotiorum isolates. Little or no germination occurred at 26 or 29 degrees C. At optimum temperatures of 15 to 20 degrees C, sclerotia buried in soil and placed in illuminated growth cabinets produced stipes after 20 to 27 days and apothecia after 27 to 34 days. Temperature, therefore, had a significant effect on both the rate of germination of sclerotia and the final number germinated. Rate of germination was correlated positively with temperature and final number of sclerotia germinated was related to temperature according to a probit model. Thermal time analysis of field data with constraints for temperature and water potential showed that the mean degree days to 10% germination of sclerotia in 2000 and 2001 was 285 and 279, respecttively, and generally was a good predictor of the observed appearance of apothecia. Neither thermal time nor relationships established in the laboratory could account for a decline in final percentage of germination for sclerotia buried from mid-May compared with earlier burials. Exposure to high temperatures may explain this effect. This, and other factors, require investigation before relationships derived in the laboratory or thermal time can be incorporated into a forecasting system for carpogenic germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号