首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Gardiner ES  Krauss KW 《Tree physiology》2001,21(15):1103-1111
Two-year-old cherrybark oak (Quercus pagoda Raf.) seedlings raised in full or partial (27%) sunlight were flooded for 30 days to study the effects of light availability and root inundation on photosynthetic light response. Compared with seedlings receiving full sunlight, seedlings receiving partial sunlight developed leaves with 90% greater blade area, 26% less mass per unit volume, and 35% lower nitrogen (N) concentration per unit area, leading to a 15% reduction in leaf photosynthetic capacity when carbon exchange rates were based on blade area. However, when carbon exchange rates were based on leaf mass, leaves acclimated to partial sunlight exhibited a 15% greater photosynthetic capacity realized primarily through an increased initial slope of the photosynthetic light response (A/PPFD) curve and increased net photosynthesis at leaf saturation (Amax). Short-term flooding increased leaf mass per unit area more than 19%, reduced foliar N concentrations per unit dry mass by 19%, and initiated reductions in Amax and apparent quantum yield (phi) of seedlings in both light regimes. Greatest impairment of Amax (56% area basis, 65% mass basis) and phi (40%) were observed in leaves receiving full sunlight, and the declines were concomitant with a 35% decrease in chlorophyll concentration. Flooding also depressed instantaneous photosynthetic N-use efficiency (PPNUE) such that Amax decreased 54%, and the initial slope of PPNUE/PPFD curves decreased 33 and 50% for leaves acclimated to partial and full sunlight, respectively. The A/PPFD patterns indicated that the magnitude of flood-induced inhibition of the photosynthetic mechanism of cherrybark oak seedlings is determined partly by the light environment.  相似文献   

2.
Photosynthetic light acclimation of leaves can result from (i) changes in mass-based leaf nitrogen concentration, Nm, (ii) changes in leaf mass:area ratio, Ma, and (iii) partitioning of total leaf nitrogen among different pools of the photosynthetic machinery. We studied variations in Nm and Ma within the crowns of two peach (Prunus persica L. Batsch) trees grown in an orchard in Portugal, and one peach tree grown in an orchard in France. Each crown was digitized and a 3-D radiation transfer model was used to quantify the intra-crown variations in time-integrated leaf irradiance, . Nitrogen concentration, leaf mass:area ratio, chlorophyll concentration, and photosynthetic capacity were also measured on leaves sampled on five additional peach trees in the orchard in Portugal. The data were used to compute the coefficients of leaf nitrogen partitioning among carboxylation, bioenergetics, and light harvesting pools. Leaf mass:area ratio and area-based leaf nitrogen concentration, Na, were nonlinearly related to , and photosynthetic capacity was linearly related to Na. Photosynthetic light acclimation resulted mainly from changes in Ma and leaf nitrogen partitioning, and to a lesser extent from changes in Nm. This behavior contrasts with photosynthetic light acclimation observed in other tree species like walnut (Juglans regia L.) in which acclimation results primarily from changes in Ma.  相似文献   

3.
Two-year-old beech (Fagus sylvatica L.) saplings were planted directly in the ground at high density (100 per m(2)), in an experimental design that realistically mimicked field conditions, and grown for two years in air containing CO(2) at either ambient or an elevated (ambient + 350 ppm) concentration. Plant dry mass and leaf area were increased by a two-year exposure to elevated CO(2). The saplings produced physiologically distinct types of sun leaves associated with the first and second growth flushes. Leaves of the second flush had a higher leaf mass per unit area and less chlorophyll per unit area, per unit dry mass and per unit nitrogen than leaves of the first flush. Chlorophyll content expressed per unit nitrogen decreased over time in plants grown in elevated CO(2), which suggests that, in elevated CO(2), less nitrogen was invested in machinery of the photosynthetic light reactions. In early summer, the photosynthetic capacity measured at saturating irradiance and CO(2) was slightly but not significantly higher in saplings grown in elevated CO(2) than in saplings grown in ambient CO(2). However, a decrease in photosynthetic capacity was observed after July in leaves of saplings grown in CO(2)-enriched air. The results demonstrate that photosynthetic acclimation to elevated CO(2) can occur in field-grown saplings in late summer, at the time of growth cessation.  相似文献   

4.
A quantitative analysis was applied to the stomatal and biochemical limitations to light-saturated net photosynthesis under optimal field conditions in mature trees and seedlings of the co-occurring evergreen oak, Quercus ilex L., and the deciduous oak, Q. faginea Lam. Stomatal limitation to photosynthesis, maximal Rubisco activity and electron transport rate were determined from assimilation versus intercellular leaf carbon dioxide concentration response curves of leaves that were subsequently analyzed for nitrogen (N) concentration, mass per unit area, thickness and percent internal air space. In both species, seedlings had a lower leaf mass per unit area, thickness and leaf N concentration than mature trees. The root system of seedlings during their third year after planting was dominated by a taproot. A lower leaf N concentration of seedlings was associated with lower maximal Rubisco activity and electron transport rate and with assimilation rates similar to or lower than those of mature trees, despite the higher stomatal conductances and potential photosynthetic nitrogen-use efficiencies of seedlings. Consequently, stomatal limitation to photosynthesis increased with tree age in both species. In both seedlings and mature trees, a lower assimilation rate in Q. ilex than in Q. faginea was associated with lower stomatal conductance, N allocation to photosynthetic functions, maximal Rubisco activity and electron transport rate, and potential photosynthetic nitrogen-use efficiency but greater leaf thickness and leaf mass per unit area. Tree-age-related changes differed quantitatively between species, and the characteristics of the two species were more similar in seedlings than in mature trees. Despite higher stomatal conductances, seedlings are more N limited than adult trees, which contributes to lower biochemical efficiency.  相似文献   

5.
We hypothesized that photoinhibition of shade-developed leaves of deciduous hardwood saplings would limit their ability to acclimate photosynthetically to increased irradiance, and we predicted that shade-tolerant sugar maple (Acer saccharum Marsh.) would be more susceptible to photoinhibition than intermediately shade-tolerant red oak (Quercus rubra L.). After four weeks in a canopy gap, photosynthetic rates of shade-developed leaves of both species had increased in response to the increase in irradiance, although final acclimation was more complete in red oak. However, photoinhibition occurred in both species, as indicated by short-term reductions in maximum rates of net photosynthesis and the quantum yield of oxygen evolution, and longer-term reductions in the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (dark-adapted F(v)/F(m)) and the quantum yield of PSII in the light (phi(PSII)). The magnitude and duration of this decrease were greater in sugar maple than in red oak, suggesting greater susceptibility to photoinhibition in sugar maple. Photoinhibition may have resulted from photodamage, but it may also have involved sustained rates of photoprotective energy dissipation (especially in red oak). Photosynthetic acclimation also appeared to be linked to an ability to increase leaf nitrogen content. Limited photosynthetic acclimation in shade-developed sugar maple leaves may reflect a trade-off between shade-tolerance and rapid acclimation to a canopy gap.  相似文献   

6.
To examine the effects of different solar irradiances on leaf characteristics at the leaf primordium and expansion stages, we shaded parts of branches in the upper canopies of two adult beech trees, Fagus crenata Blume and Fagus japonica Maxim., for 4 years. The treatments during the leaf primordium and leaf expansion stages, respectively, were: (1) high light and high light (H, control), (2) high light and low light (HL), (3) low light and low light (LL), and (4) low light and high light (LH). Both number of cell layers in palisade tissue and individual leaf area were affected by the previous-year irradiance, whereas cell length of palisade tissue was larger in LH leaves than in LL leaves, suggesting determination by current-year irradiance. Lamina chlorophyll/nitrogen ratio was higher in HL and LL leaves than in LH leaves, suggesting determination by current-year irradiance. Diurnal minimum values of leaf water potential measured under sunlit conditions were lower in H and LH leaves than in HL and LL leaves. Effective osmotic adjustment was found in H and LH leaves, suggesting that leaf water relations were affected by current-year irradiance. Net photosynthetic rate and stomatal conductance measured under sunlight conditions were higher in H and LH leaves than in HL and LL leaves. Thus, effects of current-year irradiance had a greater effect on leaf-area-based daily carbon gain than previous-year irradiance.  相似文献   

7.
In the tropical canopy tree, Dryobalanops aromatica Gaertn. f., upper-canopy leaves (UL) develop under sunlit conditions but are subjected to self-shading within the crown as they age. In contrast, lower-canopy leaves (LL) are exposed to uniform dim light conditions throughout their life span. By comparing leaf morphology and physiology of UL and LL, variations in leaf characteristics were related to leaf age and self-shading. Mass-based chlorophyll (chl) concentration and the chlorophyll/nitrogen (chl/N) ratio were lower and the chl a/b ratio was higher in UL than in LL. In UL, the chl/N ratio gradually increased and the chl a/b ratio gradually decreased with leaf aging, whereas these ratios remained unchanged with leaf age in LL. The effective quantum yield of photosystem II (PSII) (DeltaF/F(m)') at a given irradiance remained unchanged with leaf age in LL, whereas DeltaF/F(m)' changed with leaf age in UL. These data indicate N reallocation within the leaves from carbon fixation components to light harvesting components and a dynamic regulation of photochemical processes of PSII in response to increased self-shading of UL. Despite the difference in light environment with leaf age between UL and LL, maximum photosynthetic rates and nitrogen-use efficiency decreased with leaf aging in both UL and LL. Constancy in the chl/N ratio with leaf age in LL indicated that the decrease in photosynthetic capacity was caused by effects other than shading, such as leaf aging. We conclude that N reallocation and acclimation of PSII to self-shading occurred even in mature leaves, whereas the change in photosynthetic capacity with leaf age was more conservative.  相似文献   

8.
We investigated acclimation responses of seedlings and saplings of the pioneer species Cecropia schreberiana Miq. and three non-pioneer species, Dacryodes excelsa Vahl, Prestoea acuminata (Willdenow) H.E. Moore var. montana (Graham) Henderson and Galeano, and Sloanea berteriana Choisy ex DC, following a hurricane disturbance in a lower montane wet forest in Puerto Rico. Measurements were made, shortly after passage of the hurricane, on leaves expanded before the hurricane (pre-hurricane leaves) and, at a later time, on recently matured leaves that developed after the hurricane (post-hurricane leaves) from both seedlings and saplings at sites that were severely damaged by the hurricane (disturbed sites) and at sites with little disturbance (undisturbed sites). Pre-hurricane leaves of the non-pioneer species had relatively low light-saturated photosynthetic rates (A(max)) and stomatal conductance (g(s)); neither A(max) nor g(s) responded greatly to the increase in irradiance that resulted from the disturbance, and there were few significant differences between seedlings and saplings. Pre-hurricane leaves of plants at undisturbed sites had low dark respiration rates per unit area (R(d)) and light compensation points (LCP), whereas pre-hurricane leaves of plants at disturbed sites had significantly higher R(d) and LCP. Post-hurricane leaves of plants at disturbed sites had significantly higher A(max) and R(d) than plants at undisturbed sites. Compared with seedlings, saplings had higher A(max) and R(d) and showed greater acclimation to the increase in irradiance that followed the disturbance. Post-hurricane leaves of the non-pioneer species had significantly lower A(max) and were less responsive to changes in irradiance than the pioneer species C. schreberiana. Variation in A(max) across light environments and stages was strongly related to differences in leaf mass per unit area (LMA), especially in the non-pioneer species. As indicated by V(cmax) or J(max) per unit nitrogen, light acclimation of A(max) was determined by leaf morphology (LMA) for the non-pioneer species and by both leaf morphology and leaf biochemistry for C. schreberiana. Ontogenetic changes in A(max) were attributable to changes in leaf morphology. The ontogenetic component of variation in A(max) across light environments and stages differed among species, ranging from 36 to 59% for the non-pioneer species (D. excelsa, 59.3%; P. acuminata var. montana, 44.7%; and S. berteriana, 36.3%) compared with only 17% in the pioneer species C. schreberiana.  相似文献   

9.
Matsuki S  Ogawa K  Tanaka A  Hara T 《Tree physiology》2003,23(11):769-775
We investigated morphological and photosynthetic responses of current-year seedlings of oak (Quercus crispula Blume) under high-light conditions. Quercus crispula seedlings were grown from seed in a relative photosynthetically active photon flux density (RPPFD) of 100, 10 or 2%. There was no difference in total dry mass between 100 and 10% RPPFD. At the end of the growing season, plants grown in 2% RPPFD had a lower total dry mass than those grown in 100 or 10% RPPFD. Seedlings grown in 100% RPPFD showed morphological acclimation, i.e., high root/shoot ratios and high leaf mass per area. De-epoxidation level in the xanthophyll cycle and activity of an antioxidant enzyme were highest in 100% RPPFD, but total chlorophyll concentration and photosynthetic rate were highest in 10% RPPFD. These results indicate that excess photons were generated in 100% RPPFD, leading to increased capacities for dissipation of received light energy through the xanthophyll cycle and for scavenging of reactive oxygen species through the water-water cycle. Nevertheless, a midday decrease in dark-adapted quantum yield of photosystem II (F(v)/F(m)) indicated that seedlings grown in 100% RPPFD were suffering from photoinhibition. We conclude that Q. crispula current-year seedlings have high morphological acclimation to high light but that photosynthetic efficiency cannot be maintained under high-light conditions even with a photoprotection system.  相似文献   

10.
Despite its recent expansion in eastern US forests, red maple (Acer rubrum L.) generally exhibits a low leaf photosynthetic rate, leaf mass per unit area (LMA) and leaf nitrogen concentration ([N]) relative to co-occurring oaks (Quercus spp.). To evaluate these differences from the perspective of leaf energy investment, we compared leaf construction cost (CC) and leaf maintenance cost (MC) with leaf photosynthetic rate at saturating photon flux density and ambient CO2 partial pressure (Amax) in red maple and co-occurring red oak (Quercus rubra L.) and chestnut oak (Quercus prinus L.). We also examined relationships among leaf physiological, biochemical and structural characteristics of upper-canopy leaves of these three species at lower (wetter) and upper (drier) elevation sites of a watershed in the Black Rock Forest, Cornwall, NY, USA. Although A(max), leaf [N], leaf carbon concentration ([C]) and LMA were significantly less in red maple than in either oak species at both sites, CC per unit leaf area of red maple was 28.2 and 35.4% less than that of red oak at the lower and upper site, respectively, and 38.8 and 32% less than that of chestnut oak at the lower and upper site, respectively. Leaf MC per unit leaf area, which was positively associated with leaf CC (r2 = 0.95), was also significantly lower in red maple than in either oak species at both sites. When expressed per unit leaf area, A(max) was positively correlated with both CC (r2 = 0.65) and MC (r2 = 0.59). The cost/benefit ratio of CC/Amax of red maple was significantly less than that of chestnut oak at the lower site, however, CC/A(max) did not exhibit any significant interspecific differences at the upper site. Expressed per unit leaf area, CC was correlated positively with LMA (r2 = 0.90), leaf [N] (r2 = 0.97), and leaf [C] (r2 = 0.89), and negatively correlated with leaf molar carbon to nitrogen ratio (r2 = 0.92). Combined with red maple's general success in many oak-dominated forests, our findings suggest that reduced leaf-level photosynthetic capacity and related leaf characteristics in red maple are partially balanced by lower energy and resource requirements for leaf biomass construction and maintenance, which could enhance the competitive success of this species.  相似文献   

11.
Well-watered American elm (Ulmus americana L.) seedlings responded to increased nitrate availability with increased leaf nitrogen (N) concentration and photosynthetic rate, larger and more numerous leaves, greater total growth and greater proportional allocation of carbon to shoot than root. Plasticity of growth and carbon allocation were greater than plasticity of N concentration and photosynthetic capacity. For a given N availability, allocation of N per unit leaf area was positively correlated with dry mass per unit leaf area (specific leaf mass), but these relationships differed with N availability. Rates of net photosynthesis and leaf conductance declined logarithmically with decreasing predawn water status. Increased water stress resulted in a greater relative decline in net photosynthesis and leaf conductance for high-N than low-N plants.  相似文献   

12.
We studied morphological, biochemical and physiological leaf acclimation to incident Photon-Photosynthetic-Flux-Density (PPFD) in Quercus ilex (holm oak) and Quercus suber (cork oak) at Mediterranean evergreen oak woodlands of southern Portugal. Specific leaf area (SLA) decreased exponentially with increasing PPFD in both species. Q. ilex had lower SLA values than Q. suber. Leaf nitrogen, cellulose and lignin concentration (leaf area-based) scaled positively with PPFD. Maximum rate of carboxylation (Vcmax), capacity for maximum photosynthetic electron transport (Jmax), rate of triose-P utilization (VTPU) and the rate of nonphotorespiratory light respiration (Rd) were also positively correlated with PPFD in both Quercus species, when expressed in leaf area but not on leaf mass basis. Q suber showed to have higher photosynthetic potential (Vcmax, Jmaxm and VTPUm) and a higher nitrogen efficient nitrogen use than Q.ilex. Leaf chlorophyll concentration increased with decreasing PPFD, improving apparent quantum use efficiency (Φ) in both Quercus species. We concluded that, in Q.ilex and Q.suber, leaf structural plasticity is a stronger determinant for leaf acclimation to PPFD than biochemical and physiological plasticity.  相似文献   

13.
Hikosaka K  Hirose T 《Tree physiology》2000,20(18):1249-1254
Photosynthetic nitrogen-use efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen) varies among species from different habitats and correlates with several ecological characteristics such as leaf life span and leaf mass per area. We investigated eight evergreen broad-leaved woody species with different leaf life spans that coexist in a warm-temperate forest. We determined photosynthetic capacity at ambient CO(2) concentration in saturated light, nitrogen concentration, and the concentration of ribulose-1,5-bisphosphate carboxylase (RuBPCase), a key enzyme of photosynthesis and the largest sink of nitrogen in leaves. Each species showed a strong correlation between photosynthetic capacity and RuBPCase concentration, and between RuBPCase concentration and nitrogen concentration. Photosynthetic capacity of leaves decreased with increasing leaf life span, whereas PNUE did not correlate significantly with leaf life span. There was a twofold variation in PNUE among species. This relatively small variation in PNUE is consistent with the argument that species that coexist in a single habitat maintain a similar PNUE. The two components of PNUE-photosynthetic rate per unit RuBPCase and RuBPCase per unit leaf nitrogen-were not significantly correlated with other leaf characteristics such as leaf life span and leaf mass per area. We conclude that differences in PNUE are relatively small among coexisting species and that differences in absolute amounts of photosynthetic proteins lead to differences in photosynthetic productivity among species.  相似文献   

14.
Cai ZQ  Chen YJ  Bongers F 《Tree physiology》2007,27(6):827-836
We hypothesized that photosynthesis and growth of tropical vegetation at its most northern distribution in Asia (Xishuangbanna, SW China) is adversely affected by seasonal drought and chilling temperatures. To test this hypothesis, we measured photosynthetic and growth characteristics of Zizyphus attopensis Pierre seedlings grown in three contrasting forest microhabitats: the understory, a small gap and a large gap. Photosynthetic capacity (light-saturated photosynthetic rate (A(max)), maximum rate of carboxylation and electron transport rate) and partitioning of leaf nitrogen (N) into carboxylation and electron transport differed significantly among seasons and microhabitats. Specific leaf area (SLA) did not change seasonally, but differed significantly among microhabitats and showed a negative linear relationship with daily integrated photon flux (PPF(i)). In contrast, leaf N concentration per unit area (N(a)) changed seasonally but did not differ among microhabitats. Measurements of maximum PSII photochemical efficiency (F(v)/F(m)) indicated that chronic photoinhibition did not occur in seedlings in any of the microhabitats during the study. Photosynthetic capacity was greatest in the wet season and lowest in the cool season. During the cool and dry seasons, the reduction in A(max) was greater in seedlings grown in the large gap than in in the understory and the small gap. Close logarithmic relationships were detected between PPF(i), leaf N(a) and photosynthetic capacity. Stem mass ratio decreased, and root mass ratio increased, in the dry season. We conclude that seasonal acclimation in growth and photosynthesis of the seedlings was associated with changes in biochemical features (particularly N(a) and partitioning of total leaf N between the different photosynthetic pools) and biomass allocation, rather than with changes in leaf morphological features (such as SLA). Local irradiance is the main factor driving seasonal variations in growth and photosynthesis in the study area, where the presence of heavy fog during the cool and dry seasons limits irradiance, but supplies water to the soil surface layers.  相似文献   

15.
Leaf trait-based research has become the preferred method to understand the ecological strategies of plants.However,there is still a debate on whether area-based or mass-based traits provide different insights into environmental adaptations and responses.In this study,seven key leaf traits(maximum net photosynthetic rate,dark respiration rate,nitrogen content,photosynthetic nitrogen use efficiency,leaf mass per area,leaf dry matter contents and leaf area) of 43 woody species were quantified on the basis of both area and mass along an altitudinal gradient(1100-2700 m) in the Qinling Mountains of China.Differences in leaf traits and bivariate correlations between the two expressions were compared.By considering different expressions,the strengths and directions of the responses of leaf traits to the altitudinal gradient were determined.Leaf traits showed large variations;interspecific variations contributed more to total variance than intraspecific variations.Bivariate correlations between photosynthetic traits and structural traits(mass per area,dry matter content,and area) were weaker on a mass basis than those on an area basis.Most traits exhibited quadratic trends along the altitudinal gradient,and these patterns were more noticeable for area-based than mass-based traits.Area-based traits were more sensitive to changes in temperature and precipitation associated with altitude.These results provide evidence that mass-versus area-based traits show different ecological responses to environmental conditions associated with altitude,even if they do not contain very broad spatial scales.Our results also indicate distinction of photosynthetic acclimation among the two expressions along an altitudinal gradient,reflecting trade-offs among leaf structure and physiological traits.  相似文献   

16.
The biochemically based leaf photosynthesis model proposed by Farquhar et al. (1980) and the stomatal conductance model proposed by Jarvis (1976) were parameterized for walnut. Responses of photosynthesis to CO(2) and irradiance were used to determine the key parameters of the photosynthesis model. Concurrently, stomatal conductance responses to leaf irradiance (Q), leaf temperature (T(l)), water vapor pressure deficit at the leaf surface (D), and air CO(2) concentration at the leaf surface (C(s)) were used to parameterize the stomatal conductance model. To test the generality of the model parameters, measurements were made on leaves from a 20-year-old tree growing in the field, and from sunlit and shaded greenhouse-grown seedlings. The three key parameters of the photosynthesis model (maximum carboxylation rate V(cmax), electron transport capacity J(max), and dark respiration rate R(d)) and the key parameter of the conductance model (reference stomatal conductance, g(sref)) were linearly correlated with the amount of leaf nitrogen per unit leaf area. Unique relationships could be used to describe nitrogen effects on these parameters for leaves from both the tree and the seedlings. Our data allowed separation of the effects of increasing total photosynthetic apparatus per unit leaf area from the effects of partitioning nitrogen among different pools of this apparatus for foliage acclimation to leaf irradiance. Strong correlations were found between stomatal conductance g(s) and Q, D and C(s), whereas the relationship between g(s) and T(l) was weak. Based on these parameterizations, the model adequately predicted leaf photosynthesis and stomatal conductance when tested with an independent set of data obtained for the tree and seedlings. Total light-driven electron flows derived from chlorophyll fluorescence data obtained at different leaf temperatures were consistent with values computed by the model. The model was also tested with branch bag data acquired from a three-year-old potted walnut tree. Despite a relatively large variance between observed and simulated values, the model predicted stomatal conductance and photosynthesis reasonably well at the branch scale. The results indicate that the photosynthesis-conductance model developed here is robust and can be applied to walnut trees and seedlings under various environmental conditions where water is non-limiting.  相似文献   

17.
The three-dimensional (3-D) architecture of a peach tree (Prunus persica L. Batsch) growing in an orchard near Avignon, France, was digitized in April 1999 and again four weeks later in May 1999 to quantify increases in leaf area and crown volume as shoots developed. A 3-D model of radiation transfer was used to determine effects of changes in leaf area density and canopy volume on the spatial distribution of absorbed quantum irradiance (PAR(a)). Effects of changes in PAR(a) on leaf morphological and physiological properties were determined. Leaf mass per unit area (M(a)) and leaf nitrogen concentration per unit leaf area (N(a)) were both nonlinearly related to PAR(a), and there was a weak linear relationship between leaf nitrogen concentration per unit leaf mass (N(m)) and PAR(a). Photosynthetic capacity, defined as maximal rates of ribulose-1,5-bisphosphate carboxylase (Rubisco) carboxylation (V(cmax)) and electron transport (J(max)), was measured on leaf samples representing sunlit and shaded micro-environments at the same time that the tree crown was digitized. Both V(cmax) and J(max) were linearly related to N(a) during May, but not in April when the range of N(a) was low. Photosynthetic capacity per unit N(a) appeared to decline between April and May. Variability in leaf nitrogen partitioning between Rubisco carboxylation and electron transport was small, and the partitioning coefficients were unrelated to N(a). Spatial variability in photosynthetic capacity resulted from acclimation to varying PAR(a) as the crown developed, and acclimation was driven principally by changes in M(a) rather than the amount or partitioning of leaf nitrogen.  相似文献   

18.
Plasticity of structural and physiological leaf traits elicited by irradiance and soil nutrients was investigated in two sympatric mediterranean oaks: a sclerophyllous (Quercus suber L.) and a non-sclerophyllous species (Q. canariensis Willd.). Seedlings were grown for 2 years in pots in a 2-way crossed factors design. Leaf mass-to-area ratio (LMA) and nitrogen were recorded, and photosynthetic capacity (i.e. the apparent maximal carboxylation rate by rubisco, V cmax) was derived from response curves of net CO2 assimilation (A) versus intercellular CO2 mol fraction (C i). Structural equation modelling was applied to the data for disentangling the complex correlation structure between variables. The two species differed significantly in photosynthetic nitrogen use efficiency (PNUE). They displayed the expected responses to irradiance, with large increases in LMA, V cmax and nitrogen per unit leaf area and decreases in mass-based nitrogen content. Nutrient availability modulated severely leaf N content (mass- and area-based) and mass-based maximal carboxylation rate, but not the plastic response of all these parameters to irradiance. Irradiance primarily modulated leaf structure (LMA), and secondarily nitrogen content, while nutrient availability modulated directly nitrogen content. Nitrogen content in turn had a severe impact on mass-based photosynthetic capacity. It is concluded that in young trees solely leaf structure displayed irradiance-elicited plasticity. This plasticity was not modulated by nutrient availability and was similar in a sclerophyllous and a non-sclerophyllous species.  相似文献   

19.
Leaf-level morphological and physiological responses of mature, winter-deciduous, shade-tolerant Acer saccharum Marsh. trees to gap formation caused by selection harvest were studied experimentally over a 2-year period. We found no evidence for either physiological stress or positive acclimation following gap creation during the 1-2-week post-harvest period. Rather, lower-canopy leaves showed gradual increases in area-based maximum photosynthetic rates (Amax-area), stomatal conductance (gs), and leaf nitrogen concentration (Narea) over the entire 2-year study. These acclimation responses were directly related to changes in leaf mass per unit area (LMA) in the subsequent two leaf flushes. No change in Amax-area, gs, Narea, or photosynthetic nitrogen-use efficiency was observed that could not be accounted for by changes in LMA. The gradual acclimation responses in the lower canopy may account, in whole or in part, for the approximately 2-year lag in post-harvest growth response observed in Acer saccharum.  相似文献   

20.
The combined effect of drought and light on different physiological and biochemical traits was assessed in cork oak (Quercus suber L.) seedlings grown under two levels of light availability and submitted to a long-standing drought. Watering was withdrawn after germination and seedlings were allowed to dry to a water content of ca. 50% of field capacity. At this point, water-stressed seedlings were grown under moderate drought and two light regimes: high light (HL—50%) and low light (LL—2%). Soil water in control plants was kept close to field capacity (90–100%) for both light environments. Water-relations parameters derived from PV curves, gas exchange and water status at predawn (Ψpd) were evaluated at twice during the experiment. Nitrogen and chlorophyll contents were determined in the same leaves used for the gas exchange measurements. In addition, maximum rate of carboxylation (Vcmax) and electronic transport (Jmax) were derived from ACi curves in well-watered seedlings.

The variation on moisture availability during the experiment was the same under both light environments. In control plants, Ψpd was over −0.3 MPa at the two harvests, while stressed seedlings decreased to −0.9 MPa, with no differences between light treatments. Water stress decreased osmotic potentials at full (Ψπ100) and zero turgor (Ψπ0). The regressions between both potentials and Ψpd showed a higher intercept in shade grown seedlings. This fact will point out the higher osmoregulation capacity in sun seedlings whatever water availability.

Nitrogen investment on a per leaf mass (Nmass), chlorophyll content (Chlmass) and SLA tended to show a typical pattern of sun-shade acclimation. Thus, the three parameters increased with shade. Only for Nmass there was a significant effect of watering, since water stress increased Nmass.

LL plants showed a lower photosynthetic capacity in terms of maximum net photosynthesis at saturating light (Amax), which was related to a decrease in Vcmax and Jmax. Both parameters varied with specific leaf area (SLA) in a similar way. The low-light environment brought about a higher nitrogen investment in chlorophyll, while under high-light environment the investment was higher in carboxylation (Vcmax) and electronic transport (Fmax).

Stomatal conductance to water vapour (gwv) and Amax were lower in low-light seedlings independently of watering. In addition, there was a trend to keep higher intrinsic water use efficiency (IWUE) under high light environment. The increase of IWUE under water stress was higher in HL seedlings. This was as consequence of the steeper decline in gwv as Ψpd decreased. The decrease of Amax with Ψpd occurred in a similar way in LL and HL seedlings. Thus, the HL seedlings tended to sustain a higher ability to increase IWUE than LL seedlings when they were submitted to the same water stress.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号