首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
The ERA strain of rabies virus was propagated in a baby hamster kidney cell line (BHK-21/C13). The viral titer was 10(1.8) tissue culture infective doses (TCID) higher than that of commercial ERA vaccine. The ERA/BHK-21 vaccine in baits retained titers of 10(6.3) to 10(6.4), TCID when subjected to daily temperature fluctuations from 9 degrees C to 24 degrees C for 21 days. This titer, according to a dose response in laboratory foxes, was still capable of immunizing up to 100% of foxes consuming a bait. The ERA/BHK-21 vaccine, when presented in baits, produced antibodies in 80 to 100% of dogs consuming more than one bait. Duration of immunity in foxes, from feeding the ERA strain rabies virus in baits, as determined by resistance to challenge with virulent virus, was at least 48 months. The vaccine strain retained some pathogenicity for nontarget species. In tests carried out on foxes, raccoons, dogs, cats and cattle, the vaccine did not cause vaccine-induced rabies. One of 14 skunks which consumed four baits developed vaccine-induced rabies, but virus could not be isolated from the salivary glands of this animal. The vaccine, when presented in baits, caused vaccine-induced rabies in 37% of laboratory mice, 3.4% of Microtus and 2.6% of Peromyscus species. Rabies virus could not be isolated from the salivary glands of rodents with vaccine-induced rabies. It was concluded that ERA virus propagated in BHK-21/C13 cells and incorporated in an acceptable bait produced a high titer, stable, immunogenic and safe vaccine for foxes.  相似文献   

2.
When rabies reappeared in Finland in April 1988, the country had been rabies free since 1959. Soon a picture of sylvatic rabies become evident, its main vector and victim being the raccoon dog (Nyctereutes procyonoides). Between 8 April 1988 and 16 February 1989, 66 virologically verified cases were recorded (48 raccoon dogs, 12 red foxes, 2 badgers, 2 cats, 1 dog and 1 dairy bull) in an area estimated at 1700 km2 in south-eastern Finland. The greatest distance between recorded cases was 67 km. A positive reaction with monoclonal antibody p-41 indicated that the virus was an arctic-type strain. A field trial on oral immunization of small predators was initiated in September 1988 using Tübingen fox baits according to the Bavarian model of bait distribution. Each bait contained 5*10(7) TCID50/ml modified live rabies virus (SAD-B19). The 6 months' surveillance indicate a seroconversion rate of 72% (N = 126) in the raccoon dog population, 67% (N = 56) in the red foxes and 13% (N = 16) in the badgers, when titers greater than or equal to 1.0 IU/ml are considered seropositive. In the whole follow-up period, no statistically significant difference could be detected between the raccoon dogs and red foxes in the rate of seroconversion or in the uptake of tetracycline from the baits. Notably high antibody levels were recorded in both raccoon dogs and red foxes within 4-5 months after vaccination. Of the seropositive animals, the proportion of animals with titers 3.0 IU/ml or greater was higher in raccoon dogs (73%) than in red foxes (51%) (x2 = 5.29, p less than 0.05). The trial shows that raccoon dogs can be immunized against rabies in the field with vaccine baits originally developed for controlling sylvatic rabies in foxes.  相似文献   

3.
The viability of an attenuated live virus rabies vaccine in a bait targeted to red foxes was examined under various operational conditions in a series of experiments in Ontario. The virus was relatively stable over a 28-day period in the field, losing a mean 0.5, s = 0.2 log10 of virus titer. The micro-environment into which the bait was placed (open cultivated field, grassy meadow, wooded grove, sun or shade) did not make an appreciable difference in the viability of the virus. There was no significant difference (P < or = 0.05) between mean ambient temperatures and the temperature of fluids in blister packs of baits placed in sun or shade. Sixty-three percent of foxes fed baits exposed to sun and shade conditions for 21 days (titer 10(6.2) tissue culture infective doses per 1 mL) developed rabies virus-neutralizing antibodies. Storage of vaccine baits at -30 degrees C prior to bait distribution was important in maintaining virus viability.  相似文献   

4.
Ninety percent of foxes fed commercial ERA vaccine in a specially designed bait developed rabies serum neutralizing antibodies. The vaccine bait did not cause clinical signs of rabies when consumed by foxes, raccoons, skunks, dogs, cats, cattle and monkeys. When presented, in the laboratory, to wild rodents of the species Microtus, Mus musculus and Peromyscus, the vaccine baits caused vaccine-induced rabies only in Mus musculus. Laboratory mice of the CD-1 and CLL strain were susceptible to vaccine-induced rabies; however, studies showed that transmission of virus to other animals did not occur. These studies suggest that the vaccine bait described could be useful in a rabies control program in areas where foxes and wild dogs are the principal vectors.  相似文献   

5.
Foxes given ERA rabies vaccine baits were challenged at one, six, 12 and 24 months later and showed a resistance to challenge in 80%, 78%, 60% and 44% of individuals respectively. All animals showing seroconversion following vaccination, resisted challenge at 24 months, suggesting that successful vaccination by the oral route could confer a relatively long term duration of immunity. The trials showed that fox pups did not immunize as easily as adult foxes using ERA rabies vaccine baits. Back-passage studies and the consumption of ERA injected mice by foxes failed to show any reversion of the vaccine virus to a virulent state. The fox and mouse are shown to be highly susceptible to rabies street virus, while the domestic species tested are consisderably more resistant. Monkeys were found to be intermediate in susceptibility to the virus. Safety tests carried out on various species of wildlife showed only the mouse to be susceptible to infection from ingesting the vaccine in the form of a bait. ERA rabies vaccine was shown to be safe in monkeys even when high titred virus was administered by the oral route.  相似文献   

6.
The aim of this study was to evaluate the efficacy of lyophilised C-strain vaccine in domestic pigs and wild boar after oral application. A new spherical bait form (diameter 3 cm) containing lyophilised vaccine virus and the recent vaccine baits were used for animal experiments. Four vaccination groups were established in experiment 1 (group 1: recent liquid bait vaccine; group 2: spherical baits containing one dose of the lyophilised vaccine; groups 3 (domestic pigs) and 4 (wild boar): spherical baits containing two doses of the lyophilised vaccine) and two groups in experiment 2 (group 1: recent liquid bait vaccine; group 2: spherical baits with two doses of the lyophilised vaccine). Challenge was carried out with the highly virulent virus strain "Alfort 187" (using 100 TCID50 in the first and 1.000 TCID50 in the second experiment). Our results showed that the animals vaccinated with lyophilised C-strain vaccine developed high neutralising antibody titres comparable to those obtained after vaccination with the recent bait vaccine. All pigs which picked up the baits remained healthy after challenge. Neither clinical symptoms nor viremia or virus shedding were observed after infection except in one pig (group 2, experiment 2) which had not consumed the vaccine bait. The surviving domestic pigs and wild boar were tested negative for CSFV and viral RNA at the end of the study. This result demonstrates that lyophilised vaccine may become an effective vaccine formulation for oral immunisation of wild boar against CSF in the near future.  相似文献   

7.
During the spring of 1997, various protocols of rabies vaccine bait (SAG2) distribution for foxes were compared: in the first test zone, a first distribution was organised at the end of April, followed by a second distribution two weeks later; in the second test zone, there was a first distribution at the same period as for the previous zone, followed by a second distribution four weeks later, at the end of May. In two control zones, a classical single bait distribution was organised during the same periods as for the second distribution in the respective test zones. No statistical differences were observed for adult foxes or fox cubs sampled in the test and control zones neither for baits uptake nor for seroconversion rate. However, seroconversion rates observed in fox cubs population were significantly higher (P < 0.01) in areas vaccinated at the end of May (43 and 56%) compared with those vaccinated at mid-May (24 and 20%). The vaccinal efficacy of baits was also significantly (P < 0.05) increased for the fox cubs in the areas vaccinated at the end of May (46 and 57%) compared with those vaccinated at mid-May (24 and 25%). This increase in immunological response by fox cubs when vaccinating in late spring must be related to their development. In the early spring, fox cubs are generally too young to have access to baits or to be vaccinated when eating them. For most of these fox cubs, a second distribution will not constitute a booster. Therefore, in order to increase the efficient access of fox cubs to vaccine baits, Spring distribution of baits should preferably be organised during May or June rather than in April.  相似文献   

8.
Controlling rabies in skunk populations is an important public health concern in many parts of the United States due to the potential for skunk rabies outbreaks in urban centres and the possible role for skunks in raccoon rabies variant circulation. Oral rabies vaccination (ORV) programmes have supported wildlife rabies control efforts globally but using ORV to control rabies in skunk populations has proven more challenging than with other target species, like foxes, coyotes and raccoons. A review of published studies found that some ORV constructs are immunogenic in skunks and protect against virulent rabies virus challenges, especially when delivered by direct installation into the oral cavity. However, in field ORV programmes using currently available vaccine‐bait formats and distribution methods targeting other rabies reservoir species, skunks often fail to seroconvert. Field effectiveness of ORV in skunks appears to be limited by poor bait uptake or inadequate ingestion of vaccine rather than from poor vaccine efficacy. Observations of captive skunks revealed vaccine spillage when handling and biting into baits such that modification of bait formats might improve field effectiveness. In addition, a dose–response relationship between bait distribution density and post‐baiting seroconversion among skunks was observed across the limited number of field studies. Additional research is needed to identify opportunities to modify ORV baits and distribution strategies to improve the viability of ORV as a rabies control strategy in skunks.  相似文献   

9.
The vaccination of foxes by distributing vaccine baits in the environment was initiated in France in 1986. Two campaigns per year were carried out: one in the spring and one in the autumn. After the spring campaigns, only 22-52% of fox cubs consumed vaccine baits compared to 75% of the adults and 70-80% of the adults or fox cubs after autumn campaigns. In order to reduce the period of time during which fox cubs do not have access to baits and are not immunised, a vaccination campaign was organised during the summer of 1992 over a contaminated area of 25,748 km2 where vaccines had never previously been given. Vaccine bait stability was assessed during the same summer in the field and their appetence tested on captive foxes. The efficacy of the campaign was evaluated by the relative decrease in rabies incidence and the rate of bait uptake by foxes compared to those from neighbouring areas vaccinated for the first time with the same vaccine during the spring or autumn. Summer vaccination significantly increased (P < 0.01) bait uptake by fox cubs (71%) compared with spring vaccination (39%), but no significant difference was observed for adult foxes. Moreover, the decrease in rabies incidence, measured during the 6-month period following the campaigns was less pronounced after summer vaccination (49% decrease) than when the first vaccination was carried out during the spring or autumn (79 and 72% decrease, respectively). Three campaigns led to an apparent elimination of rabies when the first campaign was performed in the spring or autumn, but only to a 76% decrease in rabies incidence density index when the first campaign was performed during the summer. The high thermostability of the Raboral VRG bait permits its use during the summer for an emergency campaign. For routine vaccination plans, however, the classical calendar of spring and autumn vaccination campaigns should continue to be preferred.  相似文献   

10.
The efficacy of a vaccinia-rabies recombinant virus (10(8) TCID50) contained in a machine-made baiting system has been tested in 22 captive young foxes which were divided into three experimental groups of six and a control group of four foxes. Each fox in groups 1, 2 and 3 were fed one, two and three vaccine-baits, respectively, on successive days. The four unvaccinated foxes were housed separately. As shown by the incorporation of a tetracycline biomarker into their bones, all the baited foxes ingested at least one bait. Thirty days after baiting seroconversion to rabies was observed in 15 (83 per cent) of the foxes and seroconversion to vaccinia in 14 (78 per cent). Sixteen of the 18 (89 per cent) baited foxes resisted a rabies challenge 30 days after baiting. One cub was protected against rabies despite the absence of detectable anti-rabies antibody. The results demonstrate that the bait-sachet system permits a good release of the virus suspension into the mouth.  相似文献   

11.
After more than 10 years of absence, sylvatic rabies re‐appeared in Italy in 2008. To prevent disease spread, three oral rabies vaccination (ORV) campaigns targeting red foxes were performed through manual distribution of vaccine baits between January and September 2009. As these campaigns proved unsuccessful, at the end of December 2009, baits started being distributed using helicopters, allowing uniform coverage of larger areas in a shorter time period. From winter 2009 to autumn 2016, a total of 15 ORV campaigns (four emergency, four regular and seven preventive ORV) were implemented through aerial distribution of baits. In this study, we assessed the costs of the aerial ORV campaigns, which were aimed at eradicating the disease and reobtaining the rabies‐free status. Cumulative costs per km2 were estimated at €59.45 during emergency campaigns and ranged between €51.94 and €65.67 in the regular vaccinations. The main portion of costs for ORV programmes were related to baits supply and distribution: €49.24 (82.83%) in emergency campaigns and from €40.33 to € 43.35 in regular ORVs (71.97% and 66.02%, respectively). At the end of each ORV campaign, the efficacy of vaccination activities was estimated by assessing the proportion of foxes testing positive for tetracycline biomarker in jawbone, indicating bait intake. Results revealed that the proportion of foxes that ingested baits varied between 70.97% and 95.51%. Statistical analysis indicated that reducing the density of dropped baits could potentially lead to a cost‐saving of 22.81%, still maintaining a satisfactory level of bait intake by the fox population.  相似文献   

12.
In this study, ecological models, optimisation algorithms and threshold analysis were linked to develop oral-vaccination strategies against rabies in fox populations. It is important that such strategies are cost-efficient and resistant to environmental conditions which would lessen their success.The model validation shows that the ecological models used are suited to predict the proportion of tetracycline- (TC) marked foxes in the course of time. This figure indicates the proportion of foxes which had at least one contact to vaccine baits, and is based on the design of the vaccination strategy (i.e. the number and timing of vaccination campaigns and the number of baits used per square kilometre and campaign). The design of a vaccination strategy also determines the costs.It is the combination of ecological models and optimisation algorithms that helped us to design a vaccination strategy which is capable of achieving a continuous rate of >70% of TC-marked foxes within an analytical horizon of 3 years at low costs. Compared to the standard strategy (baseline comparator), the improved strategy incurs just over half of the cost while almost doubling the number of weeks during which the proportion of TC-marked foxes is >70%.In the improved strategy, June is recommended as the time for bait distribution. The standard strategy, however, avoids summer months (because high temperatures reduce the durability of the baits) which again leads to a reduction of the bait intake by the foxes. Using threshold analysis, we examined the effect of a reduced durability of the baits on the design of the improved vaccination strategy. We concluded that distribution of baits in June was optimal given that the durability of baits is above a threshold of 7 days.  相似文献   

13.
Bait disappearance can give valuable information for the assessment of oral vaccination campaigns of foxes against rabies. In this study, the spatial and temporal disappearance of three different vaccine baits under almost identical conditions was investigated. In the study area, 350 baits were placed at previously marked positions during two different periods; late autumn and early spring. The distribution of baits was in accordance with the method as recommended by the European Union; a density of 20 baits per km2 along flight lines 500m apart. Bait disappearance was checked 1, 3, 5 and 7 days after distribution. At least 80% of the baits had disappeared within one week after distribution. No difference in bait disappearance was observed between the two selected periods. However, a significant higher bait disappearance was observed in forested areas when compared to open agricultural areas. Furthermore, the differences in bait disappearance between the three type of baits tested were relatively small and not significant.  相似文献   

14.
Rabies is one of the oldest known zoonotic diseases that has significant impact on public health, but still remains neglected in Serbia. Rabies virus can infect humans and other mammals and causes inflammation of the brain associated with encephalomyelitis and neurological symptoms. In 2010, Veterinary Directorate (national Competent Authority for animal health in Serbia) has started multi‐annual project of oral rabies vaccination of foxes and other wild carnivores (e.g. jackals), as support of long‐term programme of eradication of rabies in Serbia, co‐funded by EU (financed by Instrument for Pre‐Accession Assistance). Monitoring of the effectiveness of oral vaccination campaigns has been carried out in continuation from 2011 and was based on: (i) post‐mortem laboratory examination of brain tissue of target animals (foxes, jackals and other carnivores) by fluorescent antibody test (FAT), (ii) detection of antibodies against rabies virus in serum samples by ELISA and (iii) detection of tetracycline biomarker in the mandibles for the evaluation of vaccine bait uptake. From September 2011 to May 2014, the total number of 4943 brain tissue samples, 4241 sera and 4971 mandibles were analysed. Confirmed rabies‐positive brains decreased from 10 in 2011/2012 to 6 in 2012/2013 and eventually to 1 positive case in 2013/2014. The seroconversion rate increased from 10.48% (133/1269) in 2011/2012 to 20.11% (362/1800) in 2012/2013 and 42.23% (495/1172) in 2013/2014. Along with the seroconversion, the number of detected tetracycline‐positive mandibles demonstrated an increasing tendency in the same period, being 49.67% (682/1373) in 2011/2012, 62.60% (1294/2067) in 2012/2013 and 90.33% (1383/1531) in the monitoring programme carried out in 2013/2014. Presented results confirmed that ORV of foxes and other wildlife in Serbia against rabies was successful and characterized by steady increase of vaccine baits uptake and immunization of animals.  相似文献   

15.
Studies on the immunogenicity and efficacy of SAD B19 attenuated rabies virus vaccine in foxes under laboratory conditions were conducted. Twenty-seven foxes (Vulpes vulpes) were offered a vaccine bait containing 10(6.3) FFU/ml SAD B19. Blood samples were collected 60, 110 and 190 days post-vaccination. On day 190 post vaccination the animals and 14 controls were challenged with a canid street rabies virus. Twenty-four of the 26 vaccinated foxes (92.3%) survived the challenge, whereas all the controls died from rabies. The two vaccinated foxes that did not survive the challenge did not show any detectable level of rabies neutralizing antibodies at any time after vaccination. The geometric mean titres (GMT) of foxes that seroconverted after vaccination were 43.5, 33.9 and 43.5 IU/ml 60, 110 and 190 days post-vaccination, respectively. Furthermore, to test the vaccine virus under sub-optimal conditions five naive and nine previously vaccinated vixens received 2 ml SAD B19 (10(6.7) FFU/ml) by direct administration of the vaccine virus into the oral cavity shortly before or during pregnancy. All vixens seroconverted above the threshold of 0.5 IU/ml. No booster effect was observed in the immune response of the previously vaccinated animals.  相似文献   

16.
Studies were conducted to evaluate the feasibility of using canine herpesvirus (CHV) as a vaccine vector for bait-delivered oral vaccination of wild foxes. To test the viability of CHV in baits, CHV was freeze-dried, incorporated into different baits, stored, and the remaining viral infectivity tested in cell culture after varying periods of time at different storage temperatures. Experimental baits (mouse carcasses) and commercial baits (FOXOFF and PROBAIT) were prepared with either liquid or freeze-dried CHV and tested in two fox trials for their capacity to induce CHV-specific antibodies following oral baiting. Freeze-drying and storage temperatures below 0 degrees C had a stabilizing effect to virus infectivity. When stored at -20 degrees C, freeze-dried CHV retained its full infectivity for up to 3 months in PROBAIT baits, the remaining infectivity in FOXOFF baits was 100-fold less. Oral baiting with CHV induced antiviral serum antibodies in all vaccinated foxes (20/20). None of the vaccinated foxes became ill or shed infectious virus into the environment although viral DNA was detected in body secretions as evaluated by PCR. The results indicate that CHV can be freeze-dried and stored over extended periods of time without loosing much of its infectivity. This is the first report of CHV being used for oral bait vaccination of foxes. It appears that CHV is well suited for use as a recombinant vector for wild canids.  相似文献   

17.
Duration of immunity in foxes vaccinated orally with ERA vaccine in a bait.   总被引:2,自引:0,他引:2  
Red foxes (Vulpes vulpes) vaccinated orally with the ERA strain of rabies vaccine in a bait were challenged after 83 mo. Ten of 11 foxes that had seroconverted following vaccination resisted challenge with a virulent rabies virus which produced clinical signs of rabies in 6 of 6 unvaccinated foxes. Five of 11 vaccinated animals retained titers of rabies virus neutralizing antibody throughout the period. Although 6 of 11 had no detectable antibody at the time of challenge, 5 of these 6 resisted challenge and had an anamnestic response, as indicated by elevated titers of antibody when measured at day 77 postchallenge. These results show that foxes can be immunized successfully with a single oral dose of ERA vaccine, probably with protection against a lethal rabies challenge, for at least 7 y.  相似文献   

18.
As a result of oral vaccination of foxes (Vulpes vulpes) against rabies, this virus disease has almost been completely eradicated from West- and Central Europe. In most countries, vaccine baits were distributed twice a year: during spring (March to May) and autumn (September to October). This strategy has shown to be able to control and eventually eradicate rabies. However, it remains to be clarified if this is the most cost-effective strategy. Astonishingly, the behavioural ecology of the target species, the red fox, did receive only limited attention selecting the periods when baits should be distributed. Considering the behavioural ecology and rabies epidemiology of foxes, territory owners seem to play a key role in the spread and maintenance of rabies. Thus, oral vaccination campaigns should be targeted primarily at these animals. It is suggested that the optimal timing for bait distribution in Europe is late autumn (November) or early winter (December), depending on the prevailing climatic conditions. Additional campaigns, when financially feasible, can be implemented in order to maintain a high vaccination coverage during the remaining year. Furthermore, different baiting strategies can be selected in case of re-infection or persistent residual foci.  相似文献   

19.
Four-week-old poults obtained from avian pneumovirus (APV) antibody-free parents were vaccinated with different serial 10-fold dilutions of cell culture-propagated APV vaccine. The birds were vaccinated with 50 microl into each conjunctival space and nostril (total of 200 microl). Each poult of each group was vaccinated in groups that received doses of 4 x 10(4), 4 x 10(3), 4 x 10(2), 4 x 10(1), or 4 x 10(0) 50% tissue culture infective dose (TCID50) of APV vaccine, respectively. Respiratory signs were seen between 3 and 12 days postvaccination (PV) in the poults that were vaccinated with 4 x 10(4), 4 x 10(3), and 4 x 10(2) TCID50, respectively. In these groups, APV was detected from swabs collected at 5 days PV and seroconversion was detected at 2 wk PV. The groups that were originally vaccinated with 4 x 10(1) and 4 x 10(0) TCID50 developed mild clinical signs after vaccination, but neither virus nor antibody was detected PV. At 2 wk PV (6 wk of age), birds from each group, along with five unvaccinated controls, were challenged with APV. Upon challenge, the 4 x 10(4) and 4 x 10(3) TCID50 groups were protected against development of clinical signs and were resistant to reinfection. The group previously vaccinated with 4 x 10(2) TCID50 developed clinical signs after challenge that were considerably milder than those seen in the groups that had previously been vaccinated with lower doses or no virus. Even though 4 x 10(2) TCID50 vaccine dose administered by intranasal ocular route resulted in infection, incomplete protection resulted with this pivotal dose. Upon challenge, the 4 x 10(1) and 4 x 10(0) TCID50 groups exhibited milder disease signs than those seen in the challenged unvaccinated controls. In these groups, APV was detected in preparations of swabs collected at 5 days postchallenge (PC) and seroconversion was detected at 2 wk PC. These results indicate that the dose of APV vaccine that causes protection is higher than that required to produce infection.  相似文献   

20.
Anthelmintic (praziquantel) baiting of wild red foxes against Echinococcus multilocularis infection was studied in a highly epizootic suburban area of Otaru, Hokkaido (the northern island of Japan) during the summer and autumn in the years 1999-2004. Acceptance of baits containing the biomarker tetracycline (TC) was evaluated. The prevalence of E. multilocularis infection in foxes before baiting (1999-2000) was 58% (88/153), whereas in the fourth year of bait distribution year (2004), it decreased to 11% (5/45). Analysis of TC marking in the teeth of foxes showed that 39% (77/195) of those captured after baiting were estimated to have consumed baits in the year of capture. Importantly, more juvenile (56%, 49/87) than adult foxes (26%, 28/108) were marked, indicating efficient baiting of juveniles, which tended to have a higher worm burden of E. multilocularis. Of 77 marked foxes, E. multilocularis and Alaria alata (monitored as the second indicator species of deworming) were not detected in 70 (90%) and 76 (99%) foxes, respectively. The results suggest effective deworming by bait consumption. However, it was also demonstrated that 9% of the marked foxes were infected or re-infected after bait consumption, suggesting high infection pressure and the importance of frequent baiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号