首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
旨在探究DNA损伤诱导转录本3(DDIT3)基因序列特征及其在母牦牛组织表达特性。以母牦牛为研究对象,利用RT-PCR技术克隆牦牛DDIT3基因,利用生物信息学软件分析DDIT3蛋白的结构和功能,并利用实时荧光定量PCR(RT-qPCR)检测DDIT3基因在牦牛不同组织及不同生理阶段的生殖器官和卵母细胞中的表达特征。结果显示:牦牛DDIT3基因CDS区全长507 bp,共编码168个氨基酸;核苷酸序列比对发现,牦牛与野牛同源性最高,为99.71%,与其他物种的同源性均在88%以上,说明DDIT3基因在进化过程中表现出高度保守性;牦牛DDIT3基因在卵巢中的表达量极显著高于心脏、肝脏、肾脏、脾脏、肺、子宫和输卵管(P0.01);在卵巢中,妊娠期DDIT3基因的表达水平显著高于卵泡期、黄体期和胎儿期(P0.05),黄体期的表达量显著高于胎牛期(P0.05);在子宫中,妊娠期DDIT3基因的表达水平显著高于卵泡期和胎牛期(P0.05);DDIT3在各时期输卵管中表达水平差异不显著;MⅡ期卵母细胞中DDIT3基因的表达水平显著高于GV期和MⅠ期(P0.05),MⅡ颗粒细胞DDIT3基因的表达量也显著高于GV期和MⅠ期(P0.05),GV期、MⅠ期的卵母细胞和颗粒细胞DDIT3表达量差异不显著。综上,牦牛DDIT3基因可能在维持母牦牛卵巢机能与妊娠以及卵泡发育与成熟过程中发挥重要的调控作用。  相似文献   

2.
旨在探讨磷脂酰肌醇-3激酶催化亚基β(Phosphoinositide-3 kinase, PI3K,catalytic subunit beta, PIK3CB/P110β)基因序列特征,比较分析其在牦牛不同发育阶段卵泡中的表达规律。通过RT-PCR技术从牦牛卵巢组织中克隆获得PIK3CB基因序列并对其进行生物信息学分析;采用RT-qPCR方法检测PIK3CB基因在牦牛不同组织中的表达水平;将采集的牦牛卵泡根据直径大小分为大(≥7 mm)、中(3.0~6.9 mm)、小(≤2.9 mm)3组,分别收集各组卵泡中的壁颗粒细胞及卵母细胞提取总RNA,采用RT-qPCR方法检测PIK3CB mRNA在各级别卵泡壁颗粒细胞及卵母细胞中的相对表达量。结果显示:克隆获得牦牛PIK3CB基因CDS区长3 213 bp,共编码1 070个氨基酸。蛋白质分析显示,PIK3CB蛋白为亲水酸性蛋白,无跨膜结构无信号肽,二级结构主要由α-螺旋和无规卷曲组成。PIK3CB核苷酸同源性及遗传进化树分析显示,牦牛与野牦牛和黄牛亲缘关系最近。PIK3CB基因在牦牛心脏、脾脏、肾脏、肌肉、肝脏、肺脏、子宫、胃、小肠、卵巢组织中均有表达,尤其在脾脏、子宫和卵巢组织中表达量显著高于其他组织(P0.05)。RT-qPCR结果显示,PIK3CB基因在卵泡发育过程中均有表达,其中在各级别卵泡壁颗粒细胞中,mRNA表达量随着卵泡发育进程呈现上升趋势,且大、中级别卵泡中的表达量极显著高于小卵泡组(P0.01);但是卵母细胞中mRNA表达量差异不显著(P0.05)。结果提示,mRNA基因参与了牦牛卵泡发育调控,是PI3K信号通路在调节颗粒细胞的功能中不可或缺的催化亚基之一,具体调控机制有待进一步研究。本研究为深入探讨PI3K-AKT信号通路在卵巢发育中的调控机理提供基础资料。  相似文献   

3.
4.
为鉴定牦牛水通道蛋白7(AQP7)基因,分析其在不同组织中的表达水平及蛋白定位,采用RT-PCR方法克隆九龙牦牛AQP7基因,并进行生物信息学分析,采用RT-qPCR方法检测AQP7基因在九龙牦牛8种不同组织中的表达量,并用免疫组织化学染色方法对AQP7蛋白进行组织表达及定位分析。结果表明,九龙牦牛AQP7基因CDS区序列长度为993 bp,编码330个氨基酸,生物信息学分析发现,AQP7为稳定的疏水性蛋白。进化树结果显示,九龙牦牛AQP7基因与黄牛的亲缘关系最近,同源性为99.7%。AQP7基因在九龙牦牛心脏和肌肉表达量较高,极显著高于肾脏、肝脏、脾脏、肺脏、小肠和瘤胃(P0.01)。免疫组化结果显示,AQP7蛋白主要分布在九龙牦牛心脏和肌肉的肌细胞以及肾脏近曲小管中,且在心脏、肌肉和肾脏中的表达显著高于肝脏、脾脏、肺脏、小肠和瘤胃(P0.05)。结果为深入研究AQP7基因在牦牛低氧适应性中的生理功能和能量代谢机制提供了基础数据。  相似文献   

5.
为了检测牛GDF-9基因mRNA在怀孕期牛生殖系统的表达情况,为GDF-9基因在雌性动物繁殖上的研究提供一定的理论依据。本试验根据GenBank中报道的牛GDF-9基因序列设计引物,从牛卵巢、输卵管、子宫、肾脏中提取RNA,采用RT-PCR技术进行cDNA扩增,扩增产物与载体pGM-T连接,转化大肠杆菌DH5α,筛选阳性克隆,测序。结果表明,已成功克隆的阳性重组子经测序鉴定其片段大小与预期大小完全一致,为264 bp。序列同源性分析比较表明,该cDNA及其推导的氨基酸序列与绵羊GDF-9cDNA和氨基酸序列同源性分别为97%和94%。以-βactin为内参照物,采用RT-PCR技术进行半定量分析,通过检测比较牛GDF-9基因在卵巢、输卵管、子宫、肾脏组织中mRNA的表达情况。结果表明,牛GDF-9基因在卵巢中表达量最高,在输卵管、子宫、肾脏中均有表达,但表达量不高。  相似文献   

6.
研究牦牛MITF-M基因编码区序列及其编码蛋白的结构,以及其在皮肤组织中mRNA的表达水平,探讨MITF-M基因与牦牛毛色形成相关性,以期为揭示牦牛毛色形成分子机理奠定基础。采用RT-PCR技术扩增,成功获得了牦牛MITF-M基因编码区序列。采用生物信息学方法,预测分析MITF-M基因及其编码蛋白的基本理化性质、二级结构等;采用半定量PCR检测技术,检测出MITF-M基因mRNA在牦牛各组织器官中表达水平;通过荧光定量PCR技术检测出在牦牛不同颜色皮肤组织中MITF-M基因mRNA表达水平。结果表明,扩增得到的MITF-M基因的编码区是一条长为1 460 bp的DNA序列。将牦牛的MITF-M基因序列命名为YAK MITF-M,并且在NCBI数据库中注册该基因的登录号为KM985448。牦牛MITF-M序列基因含有一个长度为1 242 bp的开放性阅读框,编码413个氨基酸,二级结构主要以α螺旋和无规则卷曲为主,β折叠和延伸链较少。MITF-M基因编码产物氨基酸邻接系统树表明,牦牛MITF-M与黄牛、绵羊等物种的MITF-M氨基酸具有高度相似性。在牦牛各组织器官中,MITF-M基因mRNA仅在皮肤组织中特异性表达,且在不同毛色牦牛皮肤组织中,MITF-M在黑色被毛皮肤组织中mRNA表达量显著高于白色被毛皮肤组织(P0.01)。  相似文献   

7.
旨在克隆牦牛诱导细胞凋亡DNA片段化45样效应因子A(CIDEA)基因序列、分析其生物学特性及检测CIDEA基因在牦牛不同组织及脂肪细胞分化中的表达模式。以金川牦牛皮下脂肪组织的cDNA为模板,采用PCR技术克隆CIDEA基因的CDS序列(Coding sequence),对CDS区进行相关的生物信息学分析;设计特异引物,检测该基因在金川牦牛肺脏、心脏、肾脏、脂肪等组织的表达情况;同时分离原代前体脂肪细胞,分析CIDEA基因在脂肪细胞分化过程中的表达趋势。结果表明,金川牦牛CIDEA基因的序列长度为696 bp,其中CDS序列为684 bp,编码227个氨基酸;金川牦牛CIDEA基因与普通牛的同源性最高,核苷酸序列同源性为94.14%,氨基酸序列同源性为99.54%,与鸡的同源性最低,核苷酸序列同源性仅为63.38%,氨基酸序列同源性仅为59.05%,利用MEGA 5.0软件构建进化树显示金川牦牛与牛的亲缘关系最近,与鸡的亲缘关系最远。蛋白理化性质分析结果表明,CIDEA蛋白是一个不稳定的碱性亲水蛋白,不存在跨膜结构与信号肽;二级结构预测显示CIDEA蛋白中α螺旋占33.92%,无规则卷曲占51.98%。实时荧光定量PCR结果表明,CIDEA基因在金川牦牛脂肪组织中表达量最高,肺脏中表达量最低;在金川牦牛脂肪细胞分化过程中呈现上升的趋势。由此可推测金川牦牛CIDEA基因可能参与牦牛脂肪细胞分化与脂肪沉积。  相似文献   

8.
为探讨组蛋白去乙酰化酶8(Histone deacetylases 8,HDAC8)在牦牛生殖中的作用,以牦牛肝脏cDNA为模板,采用RT-PCR方法克隆牦牛HDAC8基因,并通过生物信息学方法分析牦牛HDAC8序列;利用实时荧光定量PCR(Quantitative Real-time PCR,qRT-PCR)技术检测该基因在牦牛不同组织及卵母细胞体外成熟过程(GV、MⅠ和MⅡ期)中的表达规律。结果表明,牦牛HDAC8基因序列为1 109 bp(GenBank No.MK889494),CDS为1 008 bp,编码氨基酸335个;序列比对分析发现,牦牛与其他哺乳动物的相似性在94%以上,表明HDAC8在哺乳类动物进化过程及蛋白结构水平上具有较高的保守性;组织表达分析发现,HDAC8在肝脏组织中的表达水平最高,极显著高于其他组织(P0.01);HDAC8基因在卵母细胞不同发育阶段中具有不同的表达模式,表达水平随着卵母细胞成熟阶段的递增呈上升趋势,MⅡ期表达水平最高,极显著高于GV和MⅠ期(P0.01)。综上,HDAC8基因可能在牦牛肝脏代谢及卵母细胞的成熟过程中起一定的调控作用,为进一步探索HDAC8在牦牛生殖中的调控作用提供一定的理论基础。  相似文献   

9.
旨在克隆牦牛水通道蛋白2基因(Aquaporin 2,AQP2),并检测其在牦牛不同组织及其雄性生殖道发育过程中的表达模式,为探索AQP2在牦牛雄性生殖中的作用机制提供可靠数据。以牦牛为研究对象,利用RT-PCR技术获取牦牛AQP2 cDNA序列,使用生物信息学软件分析其功能和结构。利用实时荧光定量PCR(Quantitative Real-time PCR,qRT-PCR)检测AQP2在牦牛肾、睾丸、附睾、脾脏、脑、肺脏、心脏和肝脏组织中的表达模式以及不同发育时期雄性生殖道中的表达规律。结果显示,得到AQP2基因CDS序列,长816 bp,共编码271个氨基酸,并发现牦牛AQP2基因与黄牛、水牛和山羊的同源性较高,AQP2在睾丸和肾中高表达,显著高于其他组织(P0.05)。免疫组化结果发现,AQP2仅在曲细精管的圆形精子细胞中表达,而精原细胞、精母细胞、长形精子细胞、间质细胞及支持细胞均未见其表达。qRT-PCR结果显示,在牦牛雄性生殖道中,输精管中的AQP2表达量最高(P0.05),且AQP2 mRNA在睾丸和输精管中的表达水平随年龄增长逐渐升高(P0.05),而在前列腺中其表达水平随年龄增加稍有降低,但差异不显著(P0.05)。以上结果表明,AQP2在遗传进化上高度保守,在睾丸和肾组织中高表达,参与精子成熟及运输过程,可能是通过调节水重吸收和液体形成来完成。  相似文献   

10.
旨在初探BMF基因在小尾寒羊卵泡发育过程中的生物学功能,为将来深入探索其调控机理提供理论依据。对小尾寒羊实施同期发情,采用实时荧光定量PCR(Quantitative real-time PCR,RT-qPCR)、蛋白免疫印迹(Western Blot, WB)及免疫荧光染色(IF)方法检测BMF基因及其编码蛋白在不同生理阶段卵巢中的表达量;随后分离不同直径的卵泡,分析目的基因在大、中、小卵泡中的表达差异。结果显示,BMF mRNA在撤栓后42 h卵巢中的表达量显著高于撤栓后18 h(P<0.05),其编码蛋白表达结果与mRNA基本一致;BMF蛋白主要表达于卵泡颗粒细胞和卵泡膜细胞中;进一步分离卵泡,发现BMF基因及其编码蛋白表达量均在中卵泡中显著高于大卵泡和小卵泡(P<0.05)。以上结果表明,BMF基因可能参与卵巢周期性活动,在卵泡发育过程中发挥重要作用。  相似文献   

11.
补体C1q(Complement 1q)蛋白由A、B、C 3条多肽链构成,在维护机体内环境稳定、氧化应激、糖脂代谢等过程发挥重要作用。为研究牦牛C1QA、C1QB、C1QC基因的分子特性及在不同组织中的表达水平,探讨该基因对牦牛高原适应性的影响,通过克隆获得牦牛C1QA、C1QB、C1QC基因的CDS区序列,分析其核苷酸序列相似性并构建系统进化树;利用在线软件进行功能预测分析;采用实时荧光定量PCR方法检测3个基因在牦牛心脏、肝脏、脾脏、肺脏和肾脏组织中的相对表达量。结果显示:C1QA、C1QB、C1QC基因CDS区全长分别为735,744,732 bp,分别编码244,247,243个氨基酸;3个基因编码的蛋白质均为稳定的亲水性蛋白,主要由甘氨酸(Gly)和脯氨酸(Pro)组成,含有C1Q结构域和信号肽,不存在跨膜结构域,属胞外蛋白;蛋白氨基酸序列中分别存在18,21,15个潜在的磷酸化位点,三者二级结构主要由无规则卷曲构成,比例分别为61.85%,63.97%,66.67%。荧光定量结果显示,C1QA、C1QB基因在肺脏、脾脏中表达量较高,极显著高于心脏、肝脏、肾脏组织(P0.01),C1QC基因在肺脏的表达量极显著高于心脏、肝脏、脾脏、肾脏组织(P0.01)。试验结果为深入研究C1QA、C1QB、C1QC基因在牦牛高原适应中的生理功能和调控机制提供了基础数据。  相似文献   

12.
为研究牦牛肿瘤抑制蛋白Tp53(Tumor protein p53)的基因序列特征及其在牦牛卵巢中的表达情况,采集不同发情时期牦牛卵巢。根据黄牛的基因序列设计5'到3'端特异性引物,RT-PCR扩增基因克隆得到Tp53基因,并对其基因结构等其他生物信息进行分析。采用Real-time PCR方法分析牦牛不同发情时期卵巢中Tp53基因的表达差异。结果显示:牦牛Tp53基因序列的编码区为1 161 bp,编码386个氨基酸。相似性与进化分析显示,与瘤牛Tp53基因的相似性最高,达到98.4%,与家猫的相似性最低,为80.7%,表明Tp53基因在进化中具有高度保守性;Real-time PCR检测结果显示,Tp53基因在各个发情时期卵巢中均有表达,且表达量差异显著(P0.05)。Tp53基因的表达量出现差异可能是由于在不同发情时期卵巢细胞DNA损伤程度及内分泌等因素的不同所致。牦牛Tp53基因的成功克隆及生物信息学分析为该基因的进一步研究奠定了一定基础。  相似文献   

13.
为了克隆TNNI基因家族,预测其蛋白结构和功能,并分析其在牦牛不同组织中的表达差异,以0.5岁健康的类乌齐牦牛为试验材料,采用RT-PCR技术克隆牦牛肌钙蛋白Ⅰ基因家族的CDS区序列并进行生物信息学分析,利用实时荧光定量PCR技术检测TNNI基因家族各成员的mRNA表达水平。结果表明,TNNI1、TNNI2和TNNI3基因CDS区大小分别为564,549,639 bp,分别编码187,182,212个氨基酸残基。预测分析结果显示:TNNI基因家族编码的蛋白质均为偏碱性蛋白,蛋白结构不稳定,均无跨膜结构域,无信号肽,属非分泌型蛋白;二、三级结构均以α-螺旋为主,均含有肌蛋白超家族保守结构域。系统进化树分析表明:类乌齐牦牛TNNI1基因与水牛的亲缘关系最近,其次是绵羊、黄牛,与小鼠亲缘关系最远;TNNI2和TNNI3均与黄牛、水牛的亲缘关系较近,与其他亲缘关系较远。实时荧光定量PCR结果显示,TNNI1和TNNI2基因在臀肌中的相对表达量最高,且TNNI1基因在心脏、肝脏和肺脏中的表达量显著高于TNNI2基因(P0.05),TNNI3基因在心脏中表达量较高,而在肺脏、臀肌和肝脏中表达量低。  相似文献   

14.
为了探究HSPB6对牦牛肉嫩度的影响,分析了牦牛HSPB6基因的分子特征,并利用荧光定量PCR技术检测了HSPB6 mRNA在牦牛和黄牛背最长肌中的表达量。结果表明,牦牛HSPB6基因含有一个504 bp的开放性阅读框,编码167个氨基酸,属于亲水性蛋白;二级结构主要由α-螺旋、β-折叠、延伸链以及无规卷曲组成;牦牛HSPB6蛋白与水牛、普通牛相似度较高。荧光定量PCR研究表明,牦牛背最长肌中HSPB6基因mRNA表达水平显著高于黄牛(P0.01),说明HSPB6基因较高的表达量可能是造成牦牛肉剪切力较高的原因,为牦牛肉嫩化的分子机制研究奠定了理论基础。  相似文献   

15.
旨在克隆山羊FGF9基因序列并对其进行生物信息学分析,阐明FGF9基因组织表达特性及其在成肌细胞分化过程中的表达差异。试验动物为简州大耳羊,利用RT-PCR技术克隆FGF9基因序列,再用实时荧光定量PCR(qRT-PCR)技术检测FGF9在山羊各组织中的表达特性及其在成肌细胞不同分化阶段的表达情况。结果显示,克隆得到山羊FGF9基因序列818 bp,其中ORF区627 bp,编码208个氨基酸,其CDS区核苷酸序列与牛和绵羊有99%的同源性。FGF9蛋白具有1个跨膜结构域和1个FGF家族同源性结构域,为不稳定亲水蛋白。FGF9基因在山羊各组织中均有表达,在肾脏中表达水平最高,极显著高于其他组织(P0.01)。FGF9基因在诱导分化第2天表达水平显著高于分化前(P0.05),且在第4天达到极显著水平(P0.01)。推测其可作为调控山羊成肌细胞分化的候选基因。为进一步探究FGF9基因在山羊肌肉生长中的作用提供理论依据。  相似文献   

16.
旨在获得山羊Kruppel样因子6(Kruppel-like factor 6,KLF6)CDS序列,明确其组织及在皮下脂肪细胞分化过程中的表达模式。利用RT-PCR技术克隆山羊KLF6基因序列,利用生物学软件及在线网站对获得的KLF6基因进行序列分析。利用实时荧光定量PCR(Quantitative Real-time PCR,qPCR)技术检测KLF6在山羊各组织中的表达丰度及成脂诱导分化不同阶段皮下脂肪细胞中的表达水平。结果显示,获得山羊KLF6基因全长序列1 233 bp,其中包括CDS区957 bp,编码318个氨基酸残基,与牛和绵羊的亲缘关系最近。KLF6基因在山羊各个组织中都有广泛表达,且在脂肪组织中高表达,极显著高于其他组织(P0.01)。KLF6在诱导分化60 h的山羊皮下脂肪细胞中的表达量极显著高于在前体脂肪细胞中的表达水平(P0.01)。获得山羊KLF6基因序列并明确其分子特征,发现其在脂肪组织中存在高表达,且在分化后表达水平显著高于分化前的表达水平,为最终揭示KLF6调控山羊脂肪细胞分化提供重要数据。  相似文献   

17.
研究旨在检测血红素加氧酶(HO-1)和胆绿素还原酶A(BLVRA)在卢氏鸡和固始鸡输卵管子宫部的表达量差异,探索绿壳蛋的形成机理。以24周龄产绿壳蛋卢氏鸡和产褐壳蛋固始鸡为素材,采集每只鸡输卵管子宫部,提取总RNA,经过RT-PCR反转录为cDNA,以与色素相关的血红素加氧酶-1(Heme Oxygenase,HO-1)和胆绿素还原酶A(BLVRA)为目的基因,选择GAPDH作为参照基因,通过实时荧光定量PCR,分析HO-1和BLVRA在不同品种鸡的机体内转录水平的差异。结果表明:卢氏鸡子宫部组织中HO-1的mRNA相对表达量显著高于固始鸡(P<0.05)。固始鸡子宫部组织中BLVRA mRNA相对表达量极显著高于卢氏鸡(P<0.01)。  相似文献   

18.
旨在克隆山羊载脂蛋白E(Apolipoprotein E,APOE)基因序列并进行生物信息学分析,明确APOE基因在山羊各组织及分化前后脂肪细胞中的表达模式,利用RT-PCR及3′RACE方法克隆山羊APOE基因序列,利用实时荧光定量PCR(Real-time quantitative PCR,qPCR)方法检测该基因在山羊心、肝、脾、肺、肾、肌肉、脂肪等13个组织中的表达水平以及在皮下前体脂肪细胞成脂分化过程中的表达变化情况。结果表明,RT-PCR方法获得山羊APOE基因序列970 bp,其中ORF 951 bp,5′UTR 7 bp,3′UTR 12 bp(GenBank登录号:MN049956);3′RACE法获得3′UTR 152 bp(登录号:MN049957);Targetscan和Mirbase预测得知miR-22-3p可能靶标山羊APOE基因;蛋白预测显示山羊APOE编码316个氨基酸,是一个具有信号肽、无跨膜结构域的不稳定酸性蛋白;亚细胞定位结果发现APOE在细胞外、细胞质、液泡、细胞核以及内质网中均发挥生物学作用;进化树显示该基因在各物种的同源性较高,与绵羊、藏羚羊和牛的亲缘关系最近;基因组织表达谱显示山羊APOE在皮下脂肪中的表达量最高,极显著高于其他组织(P0.01);时序表达结果显示随着皮下前体脂肪细胞分化的进行,APOE基因表达呈上升趋势且在诱导分化60 h时表达量最高。结果为最终进一步揭示APOE基因在脂肪细胞分化、脂肪沉积及脂质代谢中的作用提供了基础理论数据。  相似文献   

19.
牦牛与普通牛的种间杂种犏牛雄性不育机理一直是畜牧科学研究的热点之一,对牦牛、犏牛睾丸组织特异表达基因的比对分析,可为犏牛雄性不育分子调控机制提供基因参考。通过对牦牛及杂种犏牛TB-RBP基因进行克隆,并利用实时荧光定量PCR技术对候选基因进行组织表达差异分析。结果表明,克隆获得牦牛TB-RBP基因CDS全序列873 bp,犏牛TB-RBP基因部分CDS区序列587 bp;系统进化树显示不同物种TB-RBP基因编码区序列高度保守,遗传相似性较高;蛋白功能预测TB-RBP蛋白属于Translin结合蛋白家族,对精子发生等生物过程具有重要调控作用。TB-RBP基因在犏牛和牦牛的睾丸组织中均有表达,TB-RBP基因的表达水平在牦牛与犏牛组间差异显著(0.01P0.05),牦牛显著高于犏牛。TB-RBP基因是精子正常发育的关键基因,而在犏牛睾丸组织中表达量较低,表明犏牛雄性不育与精子发生异常有关,为今后开展TB-RBP基因与犏牛雄性不育的相关分析以及基因定位、表达调控和牦牛分子育种奠定了理论基础。  相似文献   

20.
旨在通过克隆牦牛MDHⅡ基因,探究其组织表达谱及与脂代谢候选基因的相关性,为进一步研究牦牛脂代谢机制提供基础数据。采集0.5,2.5,3.5,7.5岁4个年龄段的12头牦牛心脏、肝脏、肺脏、臀肌和臀脂组织总RNA并反转录成cDNA,实时荧光定量检测MDHⅡ表达量;随机选取12个与脂代谢相关的候选基因,采用实时荧光定量检测MDHⅡ在类乌齐牦牛臀肌、臀脂上的表达量,利用皮尔森系数法计算其与MDHⅡ基因表达量相关性。结果表明:牦牛MDHⅡ基因全长1 196 bp,CDS区长为1 017 bp,编码338个氨基酸,在进化上相对不保守;随年龄增长,MDHⅡ在各组织表达量下降,且在心脏上的表达量高于其他组织;除FABP2和VLDLR外的其余10个脂代谢候选基因在牦牛臀脂上的表达量均高于臀肌,MDHⅡ基因在臀肌上的表达量与脂代谢候选基因没有相关性,在臀脂上的表达量与CPT1基因呈显著负相关。本研究成功克隆得到牦牛MDHⅡ基因,其与脂代谢候选基因CPT1显著相关,推测该基因可能参与脂代谢调控,为进一步研究牦牛脂代谢机制提供了理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号