首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
Liezel Herselman 《Euphytica》2003,133(3):319-327
The amplified fragment length polymorphism (AFLP) technique, employing two different rare cutters, EcoRI and MluI in combination with the frequent cutter MseI, was used to assess genetic diversity and relationships among 21 closely related cultivated Southern African peanut genotypes. A dendrogram was constructed using Jaccard's coefficient and the UPGMA clustering method. Low levels of polymorphism (on average 2.78%) were detected. Results indicated that both EcoRI/MseI and MluI/MseIAFLP enzyme combinations efficiently detected polymorphism within closely related cultivated peanut, although the EcoRI/MseI enzyme combination detected more fragments per primer combination (on average 67.8) as opposed to29.7 by the MluI/MseI enzyme combination. All 21 genotypes could be uniquely distinguished from each other with a minimum of three MluI/MseI primer combinations. Genetic data correlated well with known species and pedigree data, dividing the 21 genotypes into two main groups corresponding to the two subspecies of Arachis hypogaea namely fastigiata and hypogaea. Divisions within the two main groups correlated with botanical types and pedigree data. This is the first report where MluI/MseI primer combinations were used on cultivated peanut and also the first successful detection of polymorphisms between closely related cultivated peanut genotypes worldwide. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
AFLP markers distinguishing an early mutant of Flame Seedless grape   总被引:10,自引:0,他引:10  
Molecular markers have been frequently used to differentiate grape species and cultivars. There are fewer cases where molecular markers have been used to differentiate grape clones within a cultivar, or for the demarcation of somatic mutants from parental clones. This study reports the first successful utility of AFLPs for the differentiation of somatic mutants from their parental grapevine line, and discusses the potential for similar AFLP applications. The somatic mutant analysed demonstrates earlier budburst characteristics than the Flame Seedless line from which is arose. Analysis of 64 AFLP primer combinations in silver stained polyacrylamide produced in excess of 3000 markers in Vitis vinifera, and provided two markers which differentiated the somatic mutant, from its parental line. One marker was 440 bpin length and was produced with primer combinationEcoR1-AT and Mse1-CTT. The second marker was 340 bp in length and generated with primer combination EcoR1-TC and Mse1-CAC. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. FHB resistance genes from Sumai 3 and its derivatives such as Ning 7840 have been well characterized through molecular mapping. In this study, resistance genes in Wangshuibai, a Chinese landrace with high and stable FHB resistance, were analyzed through molecular mapping. A population of 104 F2-derived F7 recombinant inbred lines (RILs) was developed from the cross between resistant landrace Wangshuibai and susceptible variety Alondras. A total of 32 informative amplified fragment length polymorphism (AFLP) primer pairs (EcoRI/MseI) amplified 410 AFLP markers segregating among the RILs. Among them, 250 markers were mapped in 23 linkage groups covering a genetic distance of 2,430 cM. In addition, 90 simple sequence repeat (SSR) markers were integrated into the AFLP map. Fifteen markers associated with three quantitative trait loci (QTL) for FHB resistance (P < 0.01) were located on two chromosomes. One QTL was mapped on 1B and two others were mapped on 3B. One QTL on 3BS showed a major effect and explained up to 23.8% of the phenotypic variation for type II FHB resistance.  相似文献   

4.
B. Saal  G. Wricke 《Plant Breeding》2002,121(2):117-123
Amplified fragment length polymorphisms (AFLPs) are now widely used in DNA fingerprinting and genetic diversity studies, the construction of dense genetic maps and in fine mapping of agronomically important traits. The AFLP markers have been chosen as a source to extend and saturate a linkage map of rye, which has previously been generated by means of restriction fragment length polymorphism, random amplified polymorphic DNA, simple sequence repeat and isozyme markers. Gaps between linkage groups, which were known to be part of chromosome 2R, have been closed, thus allowing the determination of their correct order. Eighteen EcoRI‐MseI primer combinations were screened for polymorphism and yielded 148 polymorphic bands out of a total of 1180. The level of polymorphism among the different primer combinations varied from 5.7% to 33.3%. Eight primer combinations, which revealed most polymorphisms, were further analysed in all individuals of the F2 mapping population. Seventy‐one out of 80 polymorphic loci could be integrated into the linkage map, thereby increasing the total number of markers to 182. However, 46% of the mapped AFLP markers constituted four major clusters located on chromosomes 2R, 5R and 7R, predominantly in proximity to the centromere. The integration of AFLP markers caused an increase of 215 cM, which resulted in a total map length of almost 1100 cM.  相似文献   

5.
Nineteen of the major strawberry (Fragaria × ananassa Duch.) cultivars grown in the UnitedStates and Canada were examined for AFLP markerpolymorphisms. For the AFLP reactions, the EcoRI-ACC primer was used in combination with fourMseI primers (MseI-CAC, MseI-CAG,MseI-CAT, or MseI-CTT). Each set ofprimers produced 46–66 scorable fragments ranging insize between 50 and 500 bp. The polymorphic fragmentsproduced from each set of primers were more thansufficient to distinguish among all the cultivars,demonstrating the usefulness of AFLP markers forcultivar identification. Similarity coefficients werecalculated based on data from 228 AFLP markers anddata from 15 previously characterized RAPD markers. The RAPD markers had been specifically selected forfingerprinting purposes because they succesfullydistinguish 41 strawberry cultivars, including the 19cultivars analyzed in this study. Separatedendrograms were constructed based on analysis of theAFLP and RAPD marker data using a neighbor-joiningalgorithm. The dendrograms were compared and found tobe very different. Correlations between similaritycoefficients calculated from AFLP marker data,similarity coefficients calculated from RAPD markerdata, and coefficients of coancestry calculated frompedigree information were evaluated. Interestingly,a better correlation with the coefficients ofcoancestry was observed with the RAPD marker data thanwith the AFLP marker data.  相似文献   

6.
Genetic diversity of eight selected Argentinean garlic clones (Allium sativum L.) were investigated at the DNA level with the amplified fragment length polymorphism DNA (AFLP) procedure. A total of 405 unambiguous bands were identified by six primer combinations of EcoR I +3 and Mse I +3, of those, 398 showed a clear polymorphism, representing 98% of the total bands. A presence/absence matrix was constructed with the polymorphic bands, and a dendrogram was obtained from it with the UPGMA method. The accessions showed different levels of similarity ranging between 0.24 and 0.97, using the coefficient of Jaccard. The dendrogram showed six arbitrary groups. Accessions typically considered as different clones show similarities between 0.97 and 0.495. The garlic clones were clustered according to the physiological group and bulb color. We could detect an association between AFLP and the geographical origin of the clones. The potential use of AFLP could allow not only the differentiation among species, but also between botanical varieties and well-defined ecotype groups. This is the first report of the use of AFLP to characterize Argentinean garlic clones. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Resistance to root-knot nematode (Meloidogyne incognita) is determined by a single major gene rkn1 in Gossypium hirsutum Acala NemX cotton. Bulked segregant analysis (BSA) combined with amplified fragment length polymorphism (AFLP) was used to identify molecular markers linked to rkn1. DNA pools from homozygous susceptible (S) and resistant (R) bulks of an F2:3 originating from the intraspecific cross NemX × SJ-2 were screened with 128 EcoR1/Mse1 primer combinations. Putative AFLP markers were then screened with 60 F2:7 RIL plants and four AFLP markers were found linked to rkn1. The linkage of AFLP markers to rkn1 was also confirmed in a F2 population. The closest AFLP marker was converted to a cleaved amplified polymorphic sequence (CAPS) marker (designated GHACC1) by aligning the sequences from both susceptible and resistant parents. GHACC1 linkage to rkn1 was confirmed in the F2 (1R:3S), F2:7 RIL (1R:1S) and the backcross population SJ-2 × F1 (NemX × SJ-2) (1 heterozygous: 1 homozygous). The four AFLP markers, GHACC1 plus two SSR markers (CIR316 and BNL1231) linked to rkn1 from previous work were mapped to intervals of 2.6–14.2 cM from the rkn1 locus, and the genomic region around rkn1 was spanned to about 28.2 cM in the F2:7 population. The PCR-based GHACC1 and CIR316 markers were tested on 21 nematode resistant and susceptible cotton breeding lines and cultivars. GHACC1 was suitable for nematode resistance screening within G.␣hirsutum, but not G. barbadense, whereas CIR316 was useful in both species, indicating their␣potential for utilization in marker-assisted selection.  相似文献   

8.
In this study, the genetic relationship between 14 genotypes of black nightshade, most which were part of the Solanum nigrum complex, was investigated. Fifteen morphological characters were measured and used to compile a dendrogram. Amplified fragment length polymorphism (AFLP) markers were also used to assess the level of polymorphism between the 14 Solanum genotypes. Three EcoR I/Mse I primer combinations with three selective nucleotides per primer were used for screening the respective genotypes. Multiple polymorphisms could be detected to the extent that all the genotypes studied could be distinguished, using any single primer combination, thus showing the usefulness of AFLP's for this purpose. Up to 43 polymorphic bands were detected with a single primer combination among the 14 different genotypes. The three primer combinations generated a total of 359 bands, of which 222 (62%) were clearly polymorphic. This data was used to compile a dendrogram. Both the morphological and AFLP marker analysis clearly separated the different genotypes into similar groups. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
In order to obtain an overview of the genetic diversity present within the set of pea cultivars released in Germany, 21 cultivars were analysed at the DNA level by random amplified polymorphic DNAs (RAPDs) and amplified fragment length polymorphisms (AFLPs), as well as for agronomic traits. Yield of grain cultivars ranged from 2.95 to 3.87 t/ha. Based on the screening of 60 RAPD primers and 32 Eco RI + 3/Mse I+3 AFLP primer combinations, 20 RAPD primers and 11 Eco RI + 3/MseI+ 3 primer combinations generating polymorphic and distinct fragments were chosen for estimation of genetic diversity. Twenty RAPD primers amplified a total of 314 scorable bands ranging from about 262 bp to 1996 bp. Of these, 175 fragments (55.7%) were polymorphic. Based on these data, genetic similarity (GS) was estimated between 0.80 (‘Lisa’ vs.‘Grapis’) and 0.94 (‘Bohatyr’ vs. ‘Sponsor’; mean GS = 0.88). Eleven AFLP primer combinations led to the amplification of 949 scorable fragments ranging from 43 to 805 bp and of these, 462 (48.7%) were polymorphic. Genetic similarity based on AFLPs was calculated between 0.85 (‘Lisa’ vs.‘Laser’) and 0.94 (‘Bohatyr’ vs. ‘Sponsor’, mean GS = 0.90). Correlation of genetic similarity estimated on RAPDs and AFLPs was estimated at r = 0.79** using Spearman's rank correlation coefficient and at r = 0.84 by the Mantel test, respectively. UPGMA cluster analysis carried out on these data separately for RAPDs and AFLPs and on the combined data reflected, to some extent, pedigree relationships and cophenetic correlations (r = 0.89 for RAPDs, r = 0.88 for AFLPs, and r = 0.93 RAPDs + AFLPs) indicate a good fit of respective clusters to genetic similarity data. The correlation of cluster analyses to pedigree information and the impact on parental genotype selection is discussed.  相似文献   

10.
In this research, we used two sets of cotton aneuploid (G. hirsutum × G. tomentosum and G. hirsutum × G. barbadense) plants to locate AFLP markers to chromosomes using deletion analysis method. Thirty-eight primer combinations were used to generate 608 polymorphic AFLP markers. A total of 98 AFLP markers were assigned to 22 different cotton chromosomes or chromosome arms. Of those assigned markers, 63.3% were assigned to A genome and 36.7% were assigned to D genome. A low rate (14.3%) of common markers were found between those assigned AFLP markers with the AFLP markers from an intraspecific cross population developed previous in our lab. Based on the 16 common markers, we were able to associate the 13 linkage groups previously identified in our lab to eight chromosomes. Further research will be carried out by using SSR markers with known location to associate unassigned linkage groups to chromosomes.  相似文献   

11.
Amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) techniques were used to map the _RGSpeking gene, which is resistant to most isolates of Cercospora sojina in the soya bean cultivar ‘Peking’. The mapping was conducted using a defined F2 population derived from the cross of ‘Peking’(resistant) בLee’(susceptible). Of 64 EcoRI and MseI primer combinations, 30 produced polymorphisms between the two parents. The F2 population, consisting of 116 individuals, was screened with the 30 AFLP primer pairs and three mapped SSR markers to detect markers possibly linked to RcsPeking. One AFLP marker amplified by primer pair E‐AAC/M‐CTA and one SSR marker Satt244 were identified to be linked to ResPeking. The gene was located within a 2.1‐cM interval between markers AACCTA178 and Satt244, 1.1 cM from Satt244 and 1.0 cM from AACCTA178. Since the SSR markers Satt244 and Satt431 have been mapped to molecular linkage group (LG) J of soya bean, the ResPeking resistance gene was putatively located on the LG J. This will provide soya bean breeders an opportunity to use these markers for marker‐assisted selection for frogeye leaf spot resistance in soya bean.  相似文献   

12.
In a previous study, two chromosome regions (Scmv1 and Scmv2), conferring sugarcane mosaic virus (SCMV) resistance in maize, were enriched with EcoRI/MseI AFLP (Eco‐AFLP) markers (methylation insensitive) by targeted bulked segregant analysis (tBSA). The objective of the present study was to further saturate these two regions with PstI/MseI AFLP (Pst‐AFLP) markers (methylation sensitive) using the same tBSA approach, and to compare the genomic distribution of both Pst‐AFLP and Eco‐AFLP markers. Out of 470 PstI/MseI primer combinations screened, four Pst‐AFLP markers were identified in the Scmv1 region (chromosome 6), and none in the Scmv2 region (chromosome 3). These Pst‐AFLP markers were more closely linked to the Scmv1a gene than any of the Eco‐AFLP markers, and could be useful for marker‐assisted selection and even map‐based cloning. In addition, Pst‐AFLP and Eco‐AFLP markers were dissimilarly distributed in both target regions. Pst‐AFLP markers were equally distributed across both regions, while Eco‐AFLPs were clustered in the Scmv2 region.  相似文献   

13.
Successful prediction of heterosis and performance of F1-hybrids from the genetic similarity of their parents based on molecular markers has been reported in several crops and can be very helpful in hybrid breeding. The relationship between genetic similarities based on amplified fragment length polymorphism (AFLP) of 18 European faba bean lines and their hybrid performance and heterosis was investigated. Parental lines, 62 F1-hybrids and their F2-progenies were evaluated in field trials in four environments in Germany for seed yield, 1,000-seed weight and plant height. Results clearly demonstrated a stable superiority of the hybrids over their inbred parents and elite check cultivars, and showed a marked and varying amount of heterosis. Parental seed yield and F2-hybrid yield were promising as predictors for F1-hybrids. AFLP analysis of the 18 inbred lines using 26 EcoRI/MseI primer combinations resulted in 1202 polymorphic fragments. Cluster analysis based on genetic similarity estimates unambiguously identified pedigree-related inbred lines. No clear separation of the 18 inbred lines into subgroups was detected. Correlation coefficients between genetic similarity estimates and either heterosis or F1-hybrid performance were small and not useful. Also correlations between specific genetic similarity and specific combining ability were too small for all traits to be of predictive value. Results showed that AFLP-based genetic similarities are not useful to predict the performance of hybrids or heterosis within the elite European faba bean gene pool.  相似文献   

14.
The columnar phenotype is a very valuable genetic resource for apple breeding because of its compact growth form determined by the dominant gene Co. Using bulked segregant analysis combined with several DNA molecular marker techniques to screen the F1 progeny of Spur Fuji × Telamon (heterozygous for Co), 9 new DNA markers (6 RAPD, 1 AFLP and 2 SSRs) linked to the Co gene were identified. A total of 500 10-mer random primers, 56 pairs of selective AFLP primers and 8 SSR primer pairs were screened. One RAPD marker S1142682, and the AFLP marker, E-ACT/M-CTA346, were converted into SCAR markers designated SCAR682 and SCAR216, respectively. These markers will enable early selection in progenies where Co is difficult to identify. The Co gene was located between the SSR markers CH03d11 and COL on linkage group 10 of the apple genetic linkage map. Finally, a local genetic map of the region around the Co gene was constructed by linkage analysis of the nine new markers and three markers developed earlier.  相似文献   

15.
The or mutation in Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a recessive, single-locus mutation that causes the head leaves of the plant to accumulate carotenoids and turn orange. In China, considerable attention has been focused in recent years on breeding the variety with orange head leaves. In this study, sequence-characterized amplified region (SCAR) markers linked to the or gene were identified based on random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) by performing a bulked segregant analysis (BSA) using a doubled haploid (DH) population derived from the F1 cross between 91-112 (white head leaves) and T12-19 (orange head leaves) via microspore culture. Two RAPD markers—OPB01-845 and OPAX18-656—and 1 AFLP marker, namely, P67M54-172, were identified to be linked to the or gene, and they were successfully converted into the SCAR markers SCR-845, SCOR204, and SCOR127, respectively. In a linkage analysis, these 3 SCAR markers and 2 previously published simple sequence repeat markers, namely, BRMS-51 and Ni4D09 (located on R9 linkage group), were mapped to the same linkage group with the or gene at a LOD score of 6.0, indicating that the or gene should be located on the linkage group R9 of the A genome. In addition, accuracies of 92%, 90%, and 89.1% were obtained when 110 different inbred breeding lines of Chinese cabbage were used for investigation with these 3 SCAR markers, indicating that these makers could be used in marker-assisted selection in orange head leaf breeding programs for Chinese cabbage.  相似文献   

16.
117AB is a recessive genic male sterility (RGMS) line in which the sterility is controlled by a duplicate recessive gene named ms, located at two separate loci. In the RGMS line, the genotype of the sterile plant (117A) is msmsmsms, and that of the fertile plant (117B) is Msmsmsms. The present study was aimed to identify DNA markers linked to the ms locus by amplified fragment length polymorphism (AFLP). From the survey of 512 AFLP primer combinations, 6 AFLP fragments (y1, k1, k2, k3, k4, k5) were identified as being tightly linked to the Ms locus. The genetic distances between the markers and the Ms locus were all less than 8 cM, among which two fragments, designated as k2 and k3, co-segregated with the target gene in the tested population. Fragment k2 was successfully converted into a sequence characterized amplified region (SCAR) marker. The markers detected could be valuable in marker-assisted breeding of RGMS in Brassica napus.  相似文献   

17.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

18.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

19.
A partial genetic linkage map was constructed on 71 doubled-haploid lines derived from a cross between the barley lines Tadmor and WI2291 with 181 molecular markers. The segregating population was used to detect markers linked to the gene Mlg conferring resistance to powdery mildew (Erysiphe graminis f. sp. hordei) and to genes for quantitative resistance to scald (Rhynchosporium secalis). The gene Mlg on chromosome 4H was flanked by two AFLP markers at a distance of 2.0 and 2.4 cM, respectively. QTLs for resistance to scald were detected on chromosomes 2H and 3H. This association of molecular markers with qualitative and quantitative disease resistance loci represents a valuable starting-point for marker-assisted selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The objective of this study was to identify polymorphic molecular markers associated with partial resistance to coffee leaf rust, Hemileia vastarix. A segregating F 2 population derived from a cross between the susceptible Coffea arabica cv. Caturra and a C. canephora-introgressed Arabica line exhibiting high partial resistance was analyzed. Rust resistance measured as rust incidence (RI) and defoliation (DEF) was evaluated in field conditions in three consecutive years (2003–2005). During the 2003 season, which was characterized by favorable conditions for a rust epidemic, the F 2 plants exhibited different levels of resistance ranging from very susceptible (50.1% for DEF and 49.5% for RI) to highly partial resistance (9.1% for DEF and 3.7% for RI). Molecular analysis enabled identification of seven polymorphic markers (5 AFLP and 2 SSR) exhibiting significant association with partial resistance. Coexistence of resistance homozygous alleles (RR) at codominant SSR loci was correlated with high resistance. This study is the first attempt to develop PCR-based sequence specific markers linked to partial rust resistance in coffee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号