首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In order to examine whether seedlings of non-native genetic lineages had been planted, we compared chloroplast DNA haplotypes in plantations and neighboring natural populations of Fagus crenata in Nagano Prefecture, Japan. This region was chosen for study because there are abundant natural F. crenata populations with different haplotypes, and because the species is also frequently used for afforestation in the area. We sampled 159 trees from 30 populations of the species across most of its natural range in the region, and 136 trees from 20 plantations of the species, ranging in age from 3 to 17 years. Six single nucleotide polymorphisms and four insertions/deletions in two chloroplast DNA regions (trnL–trnF and trnK) were analyzed in each of the sampled individuals in order to determine their haplotypes. Four haplotypes (B, D, E and F) were detected in the natural populations, and these exhibited a clear geographical structure; in contrast, only two haplotypes (A and B) were found in the plantations. We found that 15 out of the 20 plantations—located in central and southern areas on the Pacific side of Honshu, where the natural populations contain haplotypes D, E, and F, and where the climate is characterized by dry, cold winters—had been established using seedlings with haplotypes A and B derived from the Sea of Japan side of the Japanese Islands, where it snows heavily. The risks associated with planting seedlings of inappropriate lineages are discussed.  相似文献   

2.
Species composition and community structure of naturally regenerated trees in Larix kaempferi plantations and natural forests were compared in relation to altitudinal gradient. Fifty-nine L. kaempferi plantations and 26 natural forest stands including old-growth and secondary forests were selected from 1300 to 2000 m a.s.l. in Mt Kushigata of central Japan. Vegetation plots (10 × 10 m) were established in each stand (85 plots in total). Species composition differed significantly between forest types, particularly on high altitude plots. Some species were significantly biased to natural forests, while no species were biased to plantations. Although some species that responded significantly to altitude were common to both forest types (e.g., Acer ukurunduese, Castanea crenata, and Fraxinus lanuginose f. serrata), some differed between forest types (e.g., Fagus japonica, Prunus maximowiczii, and P. nipponica). Thus, plantation management altered species responses to altitude. Altitude should be considered when planning and carrying out forest ecological restoration in plantations, because species composition of naturally regenerated trees has already been changed by past plantation management. In particular, attention should be paid to ecological restoration at high altitude.  相似文献   

3.
Woody vegetation in cultivated landscapes in Burkina Faso is influenced by agricultural activities that are in turn influenced by institutional arrangements. Research was undertaken in a village in south-west Burkina Faso to investigate the relationship between species composition, diversity, density, species accumulation and land use category. Additionally the relationship between number of trees, size of farmed land and farmer ethnicity was investigated. Indigenous Tiéfo farmers had on average more than double the number of large (>4 m) trees of Vitellaria paradoxa Gaertn. f., Parkia biglobosa (Jacq.) R. Br. Ex G. Don and Anacardium occidentale L. than farmers belonging to other ethnic groups, but this was partly explained by a larger area being available. Differences between ethnic groups were not significant when expressed per ha. Botanical inventories of fallows more than 4 years old, cultivated parklands and plantations of Mangifera indica L. and A. occidentale showed that tree density and Simpson’s index of diversity for trees were highest in the fallow. Simpson’s index was not significantly different for regeneration, but sample-based species accumulation curves indicated that species accumulation in parklands was faster than in plantations when expressed per individual. The average regeneration density was 12,605, 1,995 and 6,772 seedlings ha-1 for fallow, parklands and plantations, respectively. This low density for parklands means that species accumulation is slow compared to the other land uses when expressed per unit area. Fallow seems the most efficient way of keeping tree diversity in the agricultural landscape.  相似文献   

4.
In managed rangelands periods of low primary productivity determine troughs of forage availability, constraining animal production year-round. Although alternative tools to increase forage availability during critical seasons exists, most of them are unaffordable and short-lived in marginal areas. We explore the potential benefits of deciduous tree plantations favoring winter forage productivity by comparing aboveground net primary productivity (ANPP) patterns in herbaceous understory to tree plantations and natural grasslands in the Pampas (Argentina). These temperate subhumid grasslands are characterized by the coexistence of winter species, mainly C3 grasses of the native genera Stipa, Piptochaetium, and Bromus and the exotic genera Lolium and Festuca) and summer species (mainly C4 grasses of the native genera Paspalum, Bothriochloa, and Stenotaphrum) that replace each other throughout the seasons, with domination of the latter. We hypothesize that the natural decoupling of growing seasons between winter deciduous trees and winter grasses could provide the basis for the sustainable promotion of winter forage. We measured ANPP on two 23-year-old Populus deltoides plantations and their understory and compared them with adjacent open grasslands. Afforested stands had 55–75% higher annual ANPP than their non-afforested neighbors, with trees contributing ~70% to total ANPP. Herbaceous canopies beneath plantations achieved about half of the ANPP observed in non-afforested situations with a contrasting seasonal distribution associated with shifts from C4 to C3 grass dominance. Winter ANPP, the most critical source of forage in these grazing systems, was similar or higher in the herbaceous understory of tree plantations to that on their non-afforested counterparts, suggesting that mixed systems involving deciduous trees and understory pastures are a valid and viable option in the region.  相似文献   

5.
Biodiversity in managed plantations has become an important issue for long-term sustainability of ecosystems. The environmental effects of plantations comprised of fast-growing introduced trees have been vigorously debated. On one hand, monocultures have been said to exhaust resources, resulting in decreased biodiversity. Conversely, it has been stated that monocultures may favor regeneration of undergrowth plants from surrounding forests, increasing biodiversity. In order to clarify the effects of planting Eucalyptus trees on species composition, diversity, and functional type of understory vegetation in Yunnan province, a field trial was implemented to compare Eucalyptus plantations (EPs) with two other local current vegetation types (secondary evergreen forests (SEs), and abandoned farmlands (AFs)). Each vegetation type was sampled in each of three elevational ranges (low = 1,000–1,400 meters above sea level (masl), medium = 1,400–1,800 masl, and high = 1,800–2,200 masl). Sample sites within each elevational range had similar environmental characteristics (slope, aspect, etc.). Thus, we sampled three vegetation types at each of three sites at each of three elevations for a total of 27 plots. We calculated relative abundance and importance value of species and diversity indexes to evaluate differences among local current vegetation types and elevational ranges, employing multivariate ordination analyses and other methods such as Analyses of Variance (ANOVA) and Indicator Species Analysis. We found that fast growing introduced Eucalyptus plantations led to reduced plant diversity in the study area, and that rare or threatened species were recorded almost exclusively in the SE plots, being essentially absent from the EP and AF plots. The understory plant diversity did not correlate with the altitude gradient significantly. Eucalyptus plantations (EPs) have a simpler community structure than that of either secondary evergreen forests (SEs; similar to natural state) or abandoned farmlands (AFs). No variable significantly explained variation of the understory shrub layer, but soil moisture-holding capacity and overstory coverage were significant in explaining variation of the understory herb layer, suggesting that the study of soil physical properties is necessary for better understanding of their importance in Eucalyptus plantations and other local current vegetation types.  相似文献   

6.
We compared the structure of the arboreal layer and the diversity and species composition of the understory vegetation of three types of mature forest communities: oak (Quercus pyrenaica) and beech (Fagus sylvatica) forests and Scots pine (Pinus sylvestris) plantations. Our main aim was to determine whether differences in these variables existed and were due to the identity of the dominant tree species. We selected four stands or replicates per forest type located geographically close and with relatively similar conditions. We found no differences in the arboreal structure of oak and beech forests, which were characterised by great variability in tree size, while in case of plantations, this variability was lower at both the intra-stand (estimated by the coefficient of variation) and inter-stand (i.e. the four replicates harboured trees of similar sizes) scales. However, the highest variability in the canopy layer of natural forests was not consistently linked to greater understory species richness. Indeed, the lowest plant species richness was found in beech forests, while oak forests harboured the highest value at either the sampling unit (per m2) or stand scales. The greatest negative correlation between plant diversity and the environmental variables measured was found for litter depth, which was the highest in beech forests. The results obtained by the CCA indicated that the four replicates of each forest type clustered together, due to the presence of characteristic species. We concluded that pine plantations did not approach the environmental conditions of native forests, as plantations were characterised by singular understory species composition and low arboreal layer variability, compared to natural woodlands.  相似文献   

7.
We compared the occurrence of woody plants present in sugi (Cryptomeria japonica D. Don) plantations and evergreen broad-leaved natural forests in a warm-temperate region in order to characterize the understory vegetation of sugi plantations. The influence of stand attributes on species occurrence in the plantations was evaluated using logistic regression analysis. Out of 163 species, 65 plantation-preferring species and 31 natural forest-preferring species were detected. The plantation-preferring species group contained deciduous species (38 of 65 species) that are characteristic of coppice woodland, but all the natural forest-preferring species were evergreen plants. This indicates that the composition of the woody understory in sugi plantations of the region is characterized by the species of open, disturbed habitats. Stand age and the distance from the nearest natural forests were found to significantly affect the occurrence of evergreen shrubs and plants with gravity-dispersed seeds, respectively, but the light environment of the stand had less effect. According to the regression model analyses, long-term strategies such as lengthening the rotation (logging age) or creating patch mosaics of plantations in the matrix of natural forests appeared to be effective in conserving woodland species that are characteristic of evergreen, broad-leaved forests. On the other hand, increasing light penetration through thinning practices is a short-term strategy that is less likely to be effective in promoting these species.  相似文献   

8.
《Southern Forests》2013,75(2):139-144
Plantations of eucalypts (species of Eucalyptus and Corymbia), particularly in the tropics and Southern Hemisphere, have expanded dramatically during the course of the last 100 years. The nature of these plantations has changed substantially as selection, breeding, hybridisation, vegetative propagation and other innovative techniques have been introduced to improve planting stock. Although there are various examples of diseases and pests damaging early plantations, it is clear that separation of the trees from their natural enemies has resulted in exceptional performance. Not surprisingly, both the incidence and impact of diseases and pests in eucalypt plantations has increased over time. This has been due to the accidental introduction of pests and pathogens from areas where the trees are native to new environments. There are also growing examples of host-specific pathogens native to areas where eucalypts have been planted as non-natives, which have undergone sometimes surprising host jumps. These 'new pathogens' threaten not only plantation forestry based on non-natives, but also eucalypts and their relatives in areas where they grow naturally. There is little question that pests and pathogens are set to challenge eucalypt plantation forestry worldwide, more than ever before. In order to sustain profitable businesses based on eucalypt plantations, forestry companies will need to invest substantially in technologies enabling management of these pests and diseases.  相似文献   

9.
A series of experiments was conducted on the rehabilitation of mine spoil in a dry tropical region of India for determining the suitability of tree species for plantation, growth performance of selected indigenous species in monoculture and impact of the plantations on the restoration of biological fertility of soil. All of the 17 indigenous species examined could grow in the mine spoil and the growth of a majority of them could be improved by amending the mine spoil with NPK fertilizer. Direct seeding showed greatest height of Zizyphus jujuba and Pongamia pinnata on flat surface, and of Azadirachta indica on slope. In terms of diameter, Syzygium cumini performed best on flat surface and Terminalia arjuna on slope. Total biomass in plantations of selected native tree species on mine spoil at 5-yr age varied from 7.2 to 74.7 t ha−1, being minimum for Shorea robusta and maximum for Dendrocalamus strictus. Total net production ranged from 3.5 (for Shorea robusta) to 32.0 t ha−1 yr−1 (for Dendrocalamus strictus), respectively. Microbial biomass in the redeveloping soil was lower compared to that in natural forest soil but immobilization of soil C in microbial biomass was greater in the mine spoil than in the natural forest. The study indicated that net primary production of the plantations was a function of the amount of foliage, soil C was a function of the amount of litter fall and biomass C was a function of soil C. Plantation of trees significantly accelerated the soil redevelopment process on the mine spoil.  相似文献   

10.
Naturally regenerated trees in young Cryptomeria japonica plantations were investigated in 141 quadrats of 10 × 50 m within a watershed of 1,000 ha, and factors affecting their composition and abundance were examined. The species composition of naturally regenerated trees was classified into four types. Dominant species were Swida controversa, Magnolia hypoleuca and Pterocarya rhoifolia in Type A1, Betula maximowicziana, M. hypoleuca, Quercus crispula and Castanea crenata in Type A2, Q. serrata and C. crenata in Type B1, and Pinus densiflora in Type B2. The results of path analysis showed significant influences of previous forest type and geology among the factors that correlated with the species composition of naturally regenerated trees; previous forest type in particular showed a higher absolute path coefficient value. Species composition types of naturally regenerated trees corresponded to the previous forest types: Types (A1 and A2) corresponded to the natural forests composed of Thujopsis dolabrata var. hondai, Fagus crenata, Aesculus turbinata, etc., Type B1 corresponded to the secondary Q. crispula and Q. serrata forest, and Type B2 corresponded to the secondary P. densiflora forest, respectively. The abundance of naturally regenerated trees was strongly affected by geology; i.e., plantations on soft-sedimentary dacitic tuff contained great amounts of colonizing P. densiflora trees.  相似文献   

11.
The disease known as pitch canker results from infection of Pinus species by the fungus Fusarium circinatum. This fungus also causes a serious root disease of Pinus seedlings and cuttings in forestry nurseries. Pinus radiata and P. patula are especially susceptible to the pathogen, but there are no records of pitch canker on P. patula in established plantations. To date, only planting material of this tree species in nurseries or in plantations at the time of establishment have been infected by F. circinatum. Symptoms of pitch canker have recently emerged in an established P. patula plantation in South Africa and this study sought to determine whether the symptoms were caused by F. circinatum. Isolates from cankers were identified as F. circinatum using morphology and DNA-based diagnostic markers. Microsatellite markers were then used to determine the genetic diversity of a collection of 52 isolates. The entire population included 17 genotypes representing 30 alleles, with a greater number of genotypes collected from younger (three- to six-year-old) than older (12- to 19-year-old) trees. Both mating types of F. circinatum were present, but no evidence of sexual recombination was inferred from population genetic analyses. This is the first record globally of pitch canker on P. patula trees in managed plantations. It is of significant concern to South Africa, where P. patula is the most important Pinus species utilised for plantation forestry.  相似文献   

12.
To test how efficiently plantations and seed orchards captured genetic diversity from natural Anatolian black pine (Pinus nigra Arnold subspecies pallasiana Holmboe) seed stands, seed sources were chosen from 3 different categories (seed stands (SS), seed orchards (SO) and plantations (P)) comprising 4 different breeding zones of the species in Turkey. Twenty-five trees (mother trees) were selected from each SS, SO and P seed sources and were screened with 11 Random Amplified Polymorphic DNA (RAPD) markers. Estimated genetic diversity parameters were found to be generally high in all Anatolian black pine seed sources and the majority of genetic diversity is contained within seed sources (94%). No significant difference in genetic diversity parameters (numbers of effective alleles, % of polymorphic loci and heterozygosity) among seed source categories was found, except for a slight increase in observed heterozygosities in seed orchards. For all seed source categories, observed heterozygosity values were higher (Ho = 0.49 for SS, 0.55 for SO and 0.49 for P) than expected ones (He = 0.40 for SS, 0.39 for SO and 0.38 for P) indicating the excess of heterozygotes. In general, genetic diversity in seed stands has been transferred successfully into seed orchards and plantations. However, the use of seeds from seed orchards can increase the amount of genetic diversity in plantations further. The study also demonstrated that number of plus-tree clones (25–38) used in the establishment of seed orchards was adequate to capture the high level of diversity from natural stands.  相似文献   

13.
Clonal forestry captures genetic gain generated by skillful selection and is now well recognized as a method for mass production of desired trees to obtain increased economic benefits. In Eucalyptus, clonal plantations have enhanced the productivity twofold, compared to plantations of unimproved seed origin. The present investigation was carried out to assess the genetic relationship of 41 eucalypt clones using the intersimple sequence repeat (ISSR) marker system. The ISSR-derived dendrogram and principal coordinate analysis (PCA) clustered 39 clones into two groups of E. camaldulensis and E. tereticornis in agreement with their taxonomic classification. Further, a total of three clone specific diagnostic markers and five unique profiles were identified using five ISSR primers. The eucalypt clones analyzed in the present investigations are derived from the breeding populations of both the species and are presently being used for large-scale plantation and hybridization studies. The molecular marker based clonal discrimination can be used to avoid duplication of clones and quality control of planting stock.

[Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Sustainable Forestry for the following free supplemental resource(s): ISSR Profiles of Eucalyptus Clones]  相似文献   

14.
Reforestation of degraded land in tropical regions provides one means of restoring ecosystems and improving rural livelihoods. Most plantations in humid tropical regions are established in pure plots, including few species of high commercial value, generally exotics. The present study compares growth and economic viability of 15–16 year-old trees of native species in pure and mixed plantations on degraded pasturelands at La Selva Biological Station, Costa Rica. The species with the best growth were Vochysia guatemalensis, Virola koschnyi, Jacaranda copaia, Terminalia amazonia, and Hieronyma alchorneoides. The mixed plantations performed better than pure plantations for all growth variables considered, including height, diameter at breast height, volume, and aboveground biomass. Mixed plantations outperformed pure plantations economically, with Net Present Value (NPV) of 1,124 to1,124 to 8,155/ha and Internal Rate of Return (IRR) of 7.7–15.6% depending on the species mixture. The most profitable pure plantations were those of Vochysia guatemalensis, with NPV and IRR of $6,035/ha and 14.3%, respectively; Hieronyma alchorneoides ($6,035/ha and 14.3%, respectively; Hieronyma alchorneoides (2,654 and 10.8%); and Virola koschnyi ($1,906/ha and 9.22%). These are the estimated benefits that would be accrued at harvest. These projections are realistic since the decision to harvest is generally mandated not just by profit maximization but by economic necessity, thus many small- to medium-scale farmers in Costa Rica harvest plantations prior to the completion of the rotation length. Mixed plantation may be the preferred system for reforestation with native species designed for timber production or carbon sequestration because this system is more economically viable and productive than pure plantations.  相似文献   

15.
Plant and bird diversity in the Indonesian jungle rubber agroforestry system was compared to that in primary forest and rubber plantations by integrating new and existing data from a lowland rain forest area in Sumatra. Jungle rubber gardens are low-input rubber (Hevea brasiliensis) agroforests that structurally resemble secondary forest and in which wild species are tolerated by the farmer. As primary forests have almost completely disappeared from the lowlands of the Sumatra peneplain, our aim was to assess the contribution of jungle rubber as a land use type to the conservation of plant and bird species, especially those that are associated with the forest interior of primary and old secondary forest. Species-accumulation curves were compiled for terrestrial and epiphytic pteridophytes, trees and birds, and for subsets of ‘forest species’ of terrestrial pteridophytes and birds. Comparing jungle rubber and primary forest, groups differed in relative species richness patterns. Species richness in jungle rubber was slightly higher (terrestrial pteridophytes), similar (birds) or lower (epiphytic pteridophytes, trees, vascular plants as a whole) than in primary forest. For subsets of ‘forest species’ of terrestrial pteridophytes and birds, species richness in jungle rubber was lower than in primary forest. For all groups, species richness in jungle rubber was generally higher than in rubber plantations. Although species conservation in jungle rubber is limited by management practices and by a slash-and-burn cycle for replanting of about 40 years, this forest-like land use does support species diversity in an impoverished landscape increasingly dominated by monoculture plantations.  相似文献   

16.
Tree plantations can be an important tool for restoration of abandoned pasturelands in the tropics. Plantations can help speed up secondary forest succession by improving soil conditions, attracting seed-dispersal agents, and providing shade necessary for understory growth. In this study, abundance and richness of understory regeneration was measured in three native tree plantations 15–16 years of age at La Selva Biological Station in the Costa Rican Caribbean lowlands. Each plantation contained tree species in pure plots, a mixture of the species, and natural regeneration plots (no trees planted). The greatest abundance of regeneration was found in the understory of pure plots of Jacaranda copaia (Aubl.) D.Don., Vochysia guatemalensis Donn.Sm., Dipteryx panamensis Benth, Vochysia ferruginea Mart., and in two mixed stands, while the lowest was found in the natural regeneration treatments with about half the values as in the plantation stands. There was a significant negative correlation between percent canopy openness and abundance of regeneration in the understory. Two distinctive clusters separated the regeneration treatments from the mixed and pure plantations at a very low Bray–Curtis similarity value. The natural regeneration treatments are separated from mixed and pure plantations in the two-dimensional ordination. The lack of difference between the understory make-up of pure and mixed plantations in abundance, species richness, and seed-dispersal syndromes of understory species suggests that planting mixed stands is not necessarily superior to planting pure stands for promoting understory diversity of woody species. While regeneration of woody species can be faster under pure- or mixed-species plantations than in open pastures, the abundance, richness and species composition depends on each plantation species, or species assemblages in case of the mixtures.  相似文献   

17.
Old oak trees (Quercus crispula Blume) that are remnants of former old-growth forests have been isolated singly or as small patches within a matrix of conifer plantations in the central mountainous region of Japan. Fifty-six aerial Malaise traps were deployed around seven isolated oak trees within larch [Larix kaempferi (Lamb.) Carrière] plantations and at seven larch plots within larch plantations. The species richness and composition of beetles (Cerambycidae, Curculionidae, Elateridae, Chrysomelidae, and Lycidae) around the oak trees were compared to those in the larch plantations. Species richness was higher around the oak trees than in the larch plantations, and the species composition differed. A number of saproxylic beetles were characteristic of isolated old oak trees. These results emphasize the importance of isolated old oak trees for maintaining beetle diversity in larch plantations and raise the possibility that further losses of these isolated oak trees could eliminate many individuals and reduce beetle diversity in larch plantations.  相似文献   

18.
Teak is the most important timber species in northern Thailand, and as such, large areas of teak forest have been disturbed or become highly degraded. Teak plantations have been established on this highly degraded land, where the rate of natural recovery is relatively slow. At the study site, five mixed or pure teak plantation types have been established to ameliorate limiting soil properties in order that long-term productivity is maintained. Observations within these plantations in northern Thailand have suggested that native species become established naturally under the shade of a “nurse” plantation, one that shades out early successional species. The objective of this study was to investigate the influence of the number of species in nurse plantations on the diversity and number of seedlings representative of mature native forests that become established within the plantations. Five types of plantations were investigated: (1) Tectona grandis L.f. (T); (2) T.grandis and Tamarindus indica L. (TT); (3) T.grandis and Gmelina arborea Roxb. (TG); (4) T.grandis, T. indica and G. arborea (TTG); (5) T.grandis, T.indica and Anacardium occidentale L. (TTA). These plantations were established primarily for the production of T.grandis (teak), with the other species introduced as economic trees. The plantations were surrounded by native stands of species representative of late successional and mature teak forests. In each of the plantations studies measurements were made on species density, species diversity, and evenness of plants regenerating in the understorey. Results showed that plantations consisting of several species in the overstorey had a higher diversity of native forest species in the understorey than the single-species plantation. Mixed plantation types were also found to reduce the density of the grass Imperata cylindrica (L.) P. Beauv. Consideration of the establishment of woody species found that TG and TTA had high densities of trees and shrubs. This suggested that if the goal of management was to regenerate forest with a high diversity of tree species similar to that found in native mature forests, multiple-species plantations, especially TG and TTA, would be more effective nurse communities than the single-species plantation in providing an environment into which seeds of native species could disperse and germinate. In addition, several climax species, such as Xylia xylocarpa (Roxb.) Taub. var. kerrii (Craib & Hutch) I.C. Nielsen, Pterocarpus macrocarpus Kurz, Largerstroemia sp., Afzelia xylocarpa (Kurz) Craib, Lannea coromandelica (Houtt) Merr., Spondias pinnata (L.f.) Kurz, Garuya pinnata Roxb., Terminalia mucronata Craib & Hutchison, Diospyoros mollis Griff., Irvingia malayana Oliv. ex Benn., Milletia leucantha Kurz, Dalbergia oliviri Gamble ex Prain, Chukrasia tabularis A. Juss and Schleichera oleosa (Lour.) Oken, were found in the early stages of succession, thus indicating that some may be suitable for planting in future restoration processes in order to accelerate natural succession and provide economic returns to managers.  相似文献   

19.
There is an increasing need to restore natural hardwood forests in landscapes dominated by monocultural conifer plantations. A convenient restoration approach is to exploit natural regeneration processes. Natural regeneration, however, is affected by diverse interacting factors, for which better understanding is required, in order to optimize restoration programs. To identify optimal management practices for improving natural regeneration of hardwood trees in coniferous plantations, we examined the effects of multiple factors on the abundance of seedlings, small saplings and large saplings (height <0.3, 0.3-1.3 and ?1.3 m, respectively) of hardwood tree and shrub species in both line thinned (LT) and unthinned (UT) plantations of sugi (Cryptomeria japonica) and hardwood forests (HF) in central Japan. The effects of management practices (number of the times of weeding and cleaning, thinning method, years after thinning and forest age), environment (slope position, slope angle and canopy openness), and landscape conditions (distance from nearest hardwood forest, altitude and landuse before planting) on the number of hardwood individuals were examined by using the data obtained from the LT plantations. We also compared hardwood density between LT and UT plantations to examine the effect of line thinning. Finally, we examined species composition of LT plantations and HF to identify hardwood forest components in the thinned plantations. The effects on hardwood regeneration of environmental conditions, landscape factors and management practices applied in the plantations varied, depending on the size class and life form of the regenerating species. The abundance of large saplings of tall tree species was affected by several management factors, especially number of the times of weeding. Landscape conditions (distance from the nearest hardwood forest and altitude) affected the abundance of small saplings and seedlings of tall tree species, but not the other classes. Seedlings and small saplings of many tall tree species that contribute to hardwood forest canopies were less abundant in the LT plantations. The results show that numerous factors affect the establishment and abundance of naturally regenerating hardwood tree species, and suggest that successful establishment during early plantation stages can have long-lasting effects on natural regeneration of tall tree species.  相似文献   

20.
《Southern Forests》2013,75(2):77-88
Estimating tree volume and biomass constitutes an essential part of the forest resources assessment and the evaluation of the climate change mitigation potential of forests through biomass accumulation and carbon sequestration. This research article provides stem volume and biomass equations applicable to five tree species, namely Afzelia africana Sm. (Caesalpiniaceae), Anogeissus leiocarpa (DC.) Guill. and Perr. (Combretaceae), Ceiba pentandra (L.) Gaertn. (Bombacaceae), Dialium guineense Willd. (Caesalpiniaceae), Diospyros mespiliformis Hochst. ex A.DC. (Ebenaceae) in natural protected tropical forests and, in addition, Tectona grandis L.f. (Verbenaceae) in plantations. In addition to the tree species specific equations, basic wood density, as well as carbon, nitrogen, organic matter and ash content were determined for these tree species in tropical conditions in West Africa. One hundred and sixty-two sample trees were measured through non-destructive sampling and analysed for volume and biomass. Stem biomass and stem volume were modelled as a function of diameter (at breast height; Dbh) and stem height (height to the crown base). Logarithmic models are presented that utilise Dbh and height data to predict tree component biomass and stem volumes. Alternative models are given that afford prediction based on Dbh data alone, assuming height data to be unavailable. Models that include height are preferred, having better predictive capabilities. Ranges in carbon, nitrogen and ash contents are given as well. The successful development of predictive models through the use of non-destructive methods in this study provide valuable data and tools for use in determining the contribution of these major African rainforest tree species to global carbon stocks, while ensuring the preservation of this valued African resource. This study needs to be expanded to further regions and tree species to complete a full inventory of all tree species, emphasising the relevance of African trees to carbon stocks at a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号